Механизмы защитного действия мезенхимальных мультипотентных стромальных клеток при экспериментальном остром пиелонефрите
Инкубация с ЫС1 не приводит к увеличению в ММСК количества Т6(31, ?N03 и активности ММП-2, однако повышает количество фосфорилированной формы СвК-Зр. Влияние таких ММСК на число лейкоцитов в крови и активность МПО в тканях почки при остром пиелонефрите не отличается от действия на эти показатели интакных ММСК. ММСК, сокультивированные с активированными лейкоцитами, вызывают более выраженное… Читать ещё >
Содержание
- Обзор литературы
- Пиелонефрит
- Медицинские аспекты пиелонефрита
- Моделирование пиелонефрита
- Механизмы развития пиелонефрита
- Цитокины, хемокины и молекулы клеточной адгезии в развитии пиелонефрита
- Роль толл-подобных рецепторов в развитии пиелонефрита
- Иммунологические реакции при пиелонефрите
- Активные формы кислорода и азота при воспалении
- Ишемическое и фармакологическое прекондиционирование
- Матриксные металлопротеиназы
- Применение стволовых клеток для лечения почечных патологий
- Биология стволовых клеток
- Типы стволовых клеток, используемых для нефропротекции
- Влияние ММСК на воспалительный процесс
- Общая характеристика ММСК
- Миграционная способность ММСК
- Иммуномодулирующие свойства ММСК
- Влияние ММСК на активность матриксных металлопротеиназ
- Материалы и методы исследования
- Материалы
- Методы
- Эксперименты на культурах клеток
- Получение и ведение культуры мезенхимальных мультипотентных стромальных клеток
- Выделение лейкоцитов из периферической крови
- Инкубация культуры ММСК с лейкоцитами и ЛПС или LiCI
- Микроскопическое исследование клеток
- Оценка продукции активных форм кислорода
- Проточная цитофлуориметрия
- Оценка продукции оксида азота
- Оценка митохондриального трансмембранного потенциала
- Иммуноцитохимия (адгезивные и суспензионные клетки)
- Определение активности матриксных металлопротеиназ
- Мечение клеток кальцеином зеленым и микрочастицами оксида железа
- Оценка миграции клеток in vitro
- Эксперименты на животных
- Моделирование острого пиелонефрита у крыс
- Приготовление инокулята фекальных бактерий крыс
- Определение количества малонового диальдегида в тканях почек
- Определение продукции фактора некроза опухоли и нитрата/нитрита
- Определение активности миелопероксидазы в тканях почек
- Оценка интенсивности флуоресценции кальцеина в тканях почек
- Гистологическое исследование почек
- Гематологический и биохимический анализ крови крыс
- Определение числа лейкоцитов в суточной моче крыс
- Определение концентрации белка
- Иммуноблоттинг
- Статистика
- Результаты
- Влияние ММСК на окислительный стресс и развитие воспаления при экспериментальном остром пиелонефрите
- Влияние ММСК на морфологические изменения в почке после индукции острого пиелонефрита у крыс
- Миграция экзогенных ММСК в ткани поврежденной почки
- Влияние активированных лейкоцитов на ММСК в культуре
- Сокультивирование с лейкоцитами индуцирует в ММСК запуск сигнальных путей, аналогичных фармакологическому прекондиционированию ЫС
- Влияние ММСК, прекондиционированных ионами лития или воспалением, на течение острого пиелонефрита у крыс
- Обсуждение
- Выводы
Механизмы защитного действия мезенхимальных мультипотентных стромальных клеток при экспериментальном остром пиелонефрите (реферат, курсовая, диплом, контрольная)
Выводы.
1. При введении инокулята из смешанной культуры фекальных бактерий в мочевой пузырь у крыс развивается острый пиелонефрит, который характеризуется диффузной и очаговой, преимущественно нейтрофильной, воспалительной инфильтрацией, развитием окислительного стресса и повышением содержания провоспалительного цитокина ТЫРа в тканях почки. После введения ММСК костного мозга указанные показатели воспалительного процесса снижаются.
2. При экспериментальном остром пиелонефрите трансплантированные ММСК накапливаются в почке более интенсивно, чем в почке животных контрольной группы. Усилению миграции ММСК способствует высокий уровень ТМРа.
3. В условиях сокультивирования с лейкоцитами, активированными липополисахаридом, в ММСК происходит запуск сигнальных путей, обеспечивающих иммуносупрессорные свойства этих клеток, признаками которых является повышение количества трансформирующего ростового фактора (Т6Р1) и индуцибельной 1Ю-синтазы (?N08), а также усиление активности матриксной металлопротеиназы (ММП-2).
4. Сокультивирование с лейкоцитами и липополисахаридом индуцирует в ММСК сигнальные пути, аналогичные путям, активируемым при фармакологическом прекондиционировании 1Ю1, о чем свидетельствует повышение количества фосфорилированной формы киназы гликогенсинтазы (ввК-Зр), ключевого фермента, определяющего устойчивость клеток к окислительному стрессу.
5. Трансплантация ММСК костного мозга после сокультивирования с активированными лейкоцитами снижает признаки воспаления при экспериментальном остром пиелонефрите, что выражается в уменьшении числа лейкоцитов в крови, уровня TNFa и активности миелопероксидазы (МПО) в тканях почки.
6. Инкубация с ЫС1 не приводит к увеличению в ММСК количества Т6(31, ?N03 и активности ММП-2, однако повышает количество фосфорилированной формы СвК-Зр. Влияние таких ММСК на число лейкоцитов в крови и активность МПО в тканях почки при остром пиелонефрите не отличается от действия на эти показатели интакных ММСК. ММСК, сокультивированные с активированными лейкоцитами, вызывают более выраженное уменьшение числа лейкоцитов в крови по сравнению с эффектом нативных ММСК и ММСК, обработанных ЫС1.
1. Архипов, С.А. (1996). Способ моделирования гранулематозного воспаления in vitro. Патент на изобретение № 94 041 090.
2. Винк, Д.А., Водовоз, Й., Кук, Дж.А., Кришна, М.С., Ким, С., Коффин, Д., ДеГрафф, В., Делюка, A.M., Либманн, Дж., и Митчелл, Дж.Б. (1998). Значение химических свойств оксида азота для лечения онкологических заболеваний. Биохимия 63, 948−957.
3. Горрен, А.К.Ф. и Майер, Б. (1998). Универсальная и комплексная энзимология синтазы оксида азота. Биохимия 63, 870−880.
4. Зоров, Д.Б., Банникова, С.Ю., Белоусов, В.В., Высоких, М.Ю., Зорова, Л.Д., Исаев, Н.К., Красников, Б.Ф., и Плотников, Е.Ю. (2005). Друзья или враги. Активные формы кислорода и азота. Биохимия 70, 265−272.
5. Лоран, О.Б., Синякова, Л.А., Косова, И.В., и Пирогов, Ю.С. (2006). Способ моделирования пиелонефрита. Патент на изобретение № 2 289 852.
6. Лукьянов, A.B., Долгих, В.Т., Потиевский, Э.Г., Рейс, Б.А., Соколова, Т.Ф., и Никонов, В.М. (2006). Моделирование острого пиелонефрита у животных различного вида. Бюллетень сибирской медицины, 42−47.
7. Маеда, X. и Акаике, Т. (1998). Оксид азота и кислородные радикалы при инфекции, воспалении и раке. Биохимия 63, 1007−1019.
8. Наумов, A.A. и Поцелуева, М.М. (2011). Влияние донора NO, субстрата и ингибитора NO-синтазы на АФК генерирующую активность фагоцитов в процессе роста асцитной опухоли. Цитология 53, 68−74.
9. Папаян, A.B., Аничкова, И.В., Кошелева, Л.Н., и Савенкова, Н.Д. (1997). Микробно-воспалительные заболевания органов мочевой системы. Клиническая нефрология детского возраста. Ст-Петербург: SOTIS, 450−501.
10. Репин, B.C., Ржанинова, A.A., и Шаменков, Д.А. (2002). Эмбриональные стволовые клетки: фундаментальная биология и медицина. М.: Реметэкс, 178.
11. Тейлор, Б.С., Апарсон, Л.Х., и Биллиар, Т.Р. (1998). Биохимия 63, 905 923.
12. Фриденштейн, А.Я., Петракова, К.В., Куролесова, А.И., и Фролова, Г. П. (1968). Клетки предшественники для остеогенной и кроветворной тканей.
13. Анализ гетеротопных трансплантантов костного мозга. Цитология 5, 557−567.
14. Abarbanell, A.M., Coffev, А.С., Fehrenbacher, J.W., Beckman, D.J., Herrmann, J.L., Weil, В., and Meldrum, D.R. (2009). Proinflammatory cytokine effects on mesenchymal stem cell therapy for the ischemic heart. Ann Thorac Surg 88, 1036−43.
15. Aggarwal, S. and Pittenger, M.F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815−22.
16. Akira, S. and Takeda, K. (2004). Toll-like receptor signalling. Nat Rev Immunol 4, 499−511.
17. Albina, J.E. and Reichner, J.S. (1998). Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis. Cancer Metastasis Rev 17, 39−53.
18. Amoah-Apraku, В., Chandler, L.J., Harrison, J.K., Tang, S.S., Ingelfinger, J R., and Guzman, N.J. (1995). NF-kappa В and transcriptional control of renal epithelial-inducible nitric oxide synthase. Kidney Int 48, 674−82.
19. Anders, H.J., Banas, В., and Schlondorff, D. (2004a). Signaling danger: tolllike receptors and their potential roles in kidney disease. J Am Soc Nephrol 15, 854−67.
20. Andersen-Nissen, E., Hawn, T.R., Smith, K.D., Nachman, A., Lampano, A.E., Uematsu, S., Akira, S., and Aderem, A. (2007). Cutting edge: Tlr5-/- mice are more susceptible to Escherichia coli urinary tract infection. J immunol 178, 4717−20.
21. Appel, D., Kershaw, D.B., Smeets, В., Yuan, G., Fuss, A., Frye, В., Elger, M., Kriz, W., Floege, J., and Moeller, M.J. (2009). Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 20, 333−43.
22. Aronoff, D.M., Canetti, C., Serezani, C.H., Luo, M., and Peters-Golden, M. (2005). Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol 174, 595−9.
23. Askari, A.T., Unzek, S., Popovic, Z.B., Goldman, C.K., Forudi, F.,.
24. Kiedrowski, M., Rovner, A., Ellis, S.G., Thomas, J.D., DiCorleto, P.E., Topol, E.J., and Penn, M.S. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362, 697−703.
25. Badr, K.F. (1997). Glomerulonephritis: roles for lipoxygenase pathways in pathophysiology and therapy. Curr Opin Nephrol Hypertens 6, 111−8.
26. Baeuerle, P.A. and Baltimore, D. (1988). I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242, 540−6.
27. Baggiolini, M. (1998). Chemokines and leukocyte traffic. Nature 392, 565−8.
28. Baggiolini, M., Dewald, B., and Moser, B. (1994). lnterleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Adv Immunol 55, 97−179.
29. Basnakian, A.G., Kaushal, G.P., and Shah, S.V. (2002). Apoptotic pathways of oxidative damage to renal tubular epithelial cells. Antioxid Redox Signal 4, 91 524.
30. Ben David, D., Reznick, A.Z., Srouji, S., and Livne. E. (2008). Exposure to pro-inflammatory cytokines upregulates MMP-9 synthesis by mesenchymal stem cells-derived osteoprogenitors. Histochem Cell Biol 129, 589−97.
31. Bennett, R.T., Mazzaccaro, R.J., Chopra, N., Melman, A., and Franco, I. (1999). Suppression of renal inflammation with vitamins A and E in ascending pyelonephritis in rats. J Urol 161, 1681−4.
32. Bergeron, M.G. (1995). Treatment of pyelonephritis in adults. Med Clin North Am 79, 619−49.
33. Beurel, E., Michalek, S.M., and Jope, R.S. (2010). Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 31, 24−31.
34. Bi, B., Schmitt, R., Israilova, M., Nishio, H., and Cantley, L.G. (2007). Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18, 2486−96.
35. Bille, J. and Glauser, M P. (1982). Protection against chronic pyelonephritis in rats by suppression of acute suppuration: effect of colchicine and neutropenia. J Infect Dis 146, 220−6.
36. Biyikli, N.K., Tugtepe, H., Sener, G., Velioglu-Ogunc, A., Cetinel, S., Midillioglu, S., Gedik, N., and Yegen, B.C. (2006). Oxytocin alleviates oxidative renal injury in pyelonephritic rats via a neutrophil-dependent mechanism. Peptides 27, 2249−57.
37. Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A., and Springer, T.A. (1996). A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184, 1101−9.
38. Bonventre, J.V. and Zuk, A. (2004). Ischemic acute renal failure: an inflammatory disease? Kidney Int 66, 480−5.
39. Brady, P.A. and Terzic, A. (1998). The sulfonylurea controversy: more questions from the heart. J Am Coll Cardiol 31, 950−6.
40. Brown, K., Gerstberger, S., Carlson, L., Franzoso, G., and Siebenlist, U. (1995). Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485−8.
41. Bussolati, B., Bruno, S., Grange, C., Buttiglieri, S., Deregibus, M.C., Cantino, D., and Camussi, G. (2005). Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166, 545−55.
42. Bussolati, B., Hauser, P.V., Carvalhosa, R., and Camussi, G. (2009). Contribution of stem cells to kidney repair. Curr Stem Cell Res Ther 4, 2−8.
43. Cadenas, E. and Sies, H. (1985). Oxidative stress: excited oxygen species and enzyme activity. Adv Enzyme Regul 23, 217−37.
44. Carosella, E.D., Moreau, P., Le Maoult, J., Le Discorde, M., Dausset, J., and Rouas-Freiss, N. (2003). HLA-G molecules: from maternal-fetal tolerance to tissue c acceptance. Adv Immunol 81, 199−252.
45. Challen, G.A., Bertoncello, I., Deane, J.A., Ricardo, S.D., and Little, M.H. (2006). Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity. J Am Soc Nephrol 17, 1896−912.
46. Chatterjee, P.K., Patel, N.S., Kvale, E.O., Cuzzocrea, S., Brown, P.A., Stewart, K.N., Mota-Filipe, H., and Thiemermann, C. (2002). Inhibition of inducible nitric oxide synthase reduces renal ischemia/reperfusion injury. Kidney Int 61, 86 271.
47. Chen, F.M., Wu, L.A., Zhang, M., Zhang, R., and Sun, H.H. (2011). Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials 32, 3189−209.
48. Chen, J., Du, X., and Zhang, K. (2009). Effects of stromal-derived factor 1 preconditioning on apoptosis of rat bone mesenchymal stem cells. J Huazhong Univ Sci Technolog Med Sci 29, 423−6.
49. Chen, J., Park, H.C., Addabbo, F" Ni, J., Pelger, E" Li, H., Plotkin, M., and Goligorsky, M.S. (2008). Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int 74, 879−89.
50. Chili, C.T. and Chuang, D.M. (2010). Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 128, 281−304.
51. Chromek, M., Tullus, K., Hertting, O., Jaremko, G., Khalil, A., Li, Y.H., and Brauner, A. (2003). Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinases-1 in acute pyelonephritis and renal scarring. Pediatr Res 53, 698−705.
52. Chromek, M., Tullus, K., Lundahl, J., and Brauner, A. (2004). Tissue inhibitor of metalloproteinase 1 activates normal human granulocytes, protects them from apoptosis, and blocks their transmigration during inflammation. Infect Immun 72, 82−8.
53. Cohen, M.V., Baines, C.P., and Downey, J.M. (2000). Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol 62, 79−109.
54. Copland, I.B., Lord-Dufour, S., Cuerquis, J., Coutu, D.L., Annabi, B., Wang,.
55. E., and Galipeau, J. (2009). Improved autograft survival of mesenchymal stromal cells by plasminogen activator inhibitor 1 inhibition. Stem Cells 27, 467−77.
56. Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti,.
57. F., Risso, M., Gualandi, F., Mancardi, G.L., Pistoia, V., and Uccelli, A. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood 107, 367−72.
58. Cornacchia, F., Fornoni, A., Plati, A.R., Thomas, A., Wang, Y., Inverardi, L., Striker, L.J., and Striker, G.E. (2001). Glomerulosclerosis is transmitted by bone marrow-derived mesangial cell progenitors. J Clin Invest 108, 1649−56.
59. Daley, G.Q. and Scadden, D.T. (2008). Prospects for stem cell-basedtherapy. Cell 132, 544−8.
60. Dana, A. and Yellon, D.M. (1999). ATP dependent K+ channel: a novel therapeutic target in unstable angina. Eur Heart J 20, 2−5.
61. Deans, R.J. and Moseley, A.B. (2000). Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28, 875−84.
62. Deng, W., Han, Q., Liao, L., You, S., Deng, H., and Zhao, R.C. (2005). Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol 24, 458−63.
63. Ding, Y., Xu, D., Feng, G., Bushell, A., Muschel, R.J., and Wood, K.J. (2009). Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 58, 1797−806.
64. Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noel, D., and Jorgensen, C. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102, 3837−44.
65. Doetschman, T., Williams, P., and Maeda, N. (1988). Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev Biol 127, 224−7.
66. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D.j., and Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International.
67. Society for Cellular Therapy position statement. Cytotherapy 8, 315−7.
68. Duymelinck, C., Dauwe, S.E., De Greef, K.E., Ysebaert, D.K., Verpooten, G.A., and De Broe, M.E. (2000). TIMP-1 gene expression and PAI-1 antigen after unilateral ureteral obstruction in the adult male rat. Kidney Int 58, 1186−201.
69. Dvorak, H.F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315, 1650−9.
70. El-Achkar, T.M., Huang, X., Plotkin, Z., Sandoval, R.M., Rhodes, G.J., and Dagher, P.C. (2006). Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am J Physiol Renal Physiol 290, F1034−43.
71. English, K" Barry, F.P., Field-Corbett, C.P., and Mahon, B.P. (2007). IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett 110, 91−100.
72. Erices, A., Conget, P., and Minguell, J.J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109, 235−42.
73. Evans, M.J. and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154−6.
74. Fedyk, E.R., Jones, D., Critchley, H.O., Phipps, R.P., Blieden, T.M., and Springer, T.A. (2001). Expression of stromal-derived factor-1 is decreased by IL-1 and TNF and in dermal wound healing. J Immunol 166, 5749−54.
75. Feng, W.G., Wang, Y.B., Zhang, J.S., Wang, X.Y., Li, C.L., and Chang, Z.L. (2002). cAMP elevators inhibit LPS-induced IL-12 p40 expression by interfering with phosphorylation of p38 MAPK in murine peritonea! macrophages. Cell Res 12, 331−7.
76. Fioretto, P., Steffes, M.W., Sutherland, D.E., Goetz, F.C., and Mauer, M. (1998). Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 339, 69−75.
77. Fischer, H., Yamamoto, M., Akira, S., Beutler, B., and Svanborg, C. (2006). Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. Eur J Immunol 36, 267−77.
78. Fox, J.M., Chamberlain, G., Ashton, B.A., and Middleton, J. (2007). Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 137, 491−502.
79. Foxman, B. (2003). Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis Mon 49, 53−70.
80. Frendeus, B., Godaly, G., Hang, L., Karpman, D., Lundstedt, A.C., and Svanborg, C. (2000). Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J Exp Med 192, 881−90.
81. Frendeus, B., Wachtier, C., Hedlund, M., Fischer, H., Samuelsson, P., Svensson, M., and Svanborg, C. (2001). Escherichia coli P fimbriae utilize the Tolllike receptor 4 pathway for cell activation. Mol Microbiol 40, 37−51.
82. Friedenstein, A.J. (1976). Precursor cells of mechanocytes. Int Rev Cytol 47, 327−59.
83. Friedenstein, A.J., Piatetzky-Shapiro, 1.1., and Petrakova, K.V. (1966). Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16, 38 190.
84. Fu, X., Han, B., Cai, S., Lei, Y., Sun, T., and Sheng, Z. (2009). Migration of bone marrow-derived mesenchymal stem cells induced by tumor necrosis factor-alpha and its possible role in wound healing. Wound Repair Regen 17, 185−91.
85. Ganz, T. (2003). Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3, 710−20.
86. Gbadegesin, R.A., Cotton, S.A., Coupes, B.M., Awan, A., Brenchley, P.E., and Webb, N.J. (2002). Plasma and urinary soluble adhesion molecule expression is increased during first documented acute pyelonephritis. Arch Dis Child 86, 21 821.
87. Ge, W" Jiang, J., Arp, J., Liu, W" Garcia, B" and Wang, H. (2010). Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation 90, 1312−20.
88. Ghannam, S., Pene, J., Torcy-Moquet, G., Jorgensen, C., and Yssel, H. (2010). Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185, 302−12.
89. Gilstrap, L.C. and Ramin, S.M. (2001). Urinary tract infections during pregnancy. Obstet Gynecol Clin North Am 28, 581−91.
90. Giustarini, D., Rossi, R., Milzani, A., and Dalle-Donne, I. (2008). Nitrite and nitrate measurement by Griess reagent in human plasma: evaluation of interferences and standardization. Methods Enzymol 440, 361−80.
91. Glennie, S., Soeiro, I., Dyson, P.J., Lam, E.W., and Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105, 2821−7.
92. Godaly, G., Hang, L., Frendeus, B., and Svanborg, C. (2000). Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol 165, 5287−94.
93. Goligorsky, M.S., Brodsky, S.V., and Noiri, E. (2002). Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int 61, 855−61.
94. Gonzalez, M.A., Gonzalez-Rey, E., Rico, L., Buscher, D., and Delgado, M. (2009). Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60, 1006−19.
95. Goode, H.F., Cowley, H.C., Walker, B.E., Howdle, P.D., and Webster, N.R. (1995). Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit Care Med 23, 646−51.
96. Graves, K.H. and Moreadith, R.W. (1993). Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Mol Reprod Dev 36, 424−33.
97. Groh, M.E., Maitra, B., Szekely, E., and Koc, O.N. (2005). Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 33, 928−34.
98. Gronthos, S" Franklin, D.M., Leddy, H.A., Robey, P.G., Storms, R.W., and Gimble, J.M. (2001). Surface protein characterization of human adipose tissue-derived stroma! cells. J Cell Physio! 189, 54−63.
99. Guan, J.L. and Hynes, R.O. (1990). Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor alpha 4 beta 1. Cell 60, 5361.
100. Gupta, A., Sharma, N., Sharma, B.K., Sharma, S., and Ganguly, N.K. (1996a). Oxygen-dependent andindependent mechanisms of renal injury in experimental ascending pyelonephritis. FEMS Immunol Med Microbiol 13, 35−42.
101. Gupta, A., Sharma, S., Nain, C.K., Sharma, B.K., and Ganguly, N.K. (1996b). Reactive oxygen species-mediated tissue injury in experimental ascending pyelonephritis. Kidney Int 49, 26−33.
102. Gupta, N., Su, X., Popov, B., Lee, J.W., Serikov, V., and Matthay, M.A. (2007). Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179, 1855−63.
103. Gupta, R., Gupta, S., Joshi, K., and Ganguly, N.K. (1997). Role of iron and iron chelation therapy in oxygen free radical mediated tissue injury in an ascending mouse model of chronic pyelonephritis. Comp Immunol Microbiol Infect Dis 20, 299−307.
104. Gupta, R., Verma, I., Sharma, S., and Ganguly, N.K. (2004). Prevention of tissue injury in an ascending mouse model of chronic pyelonephritis-role of free radical scavengers. Comp Immunol Microbiol Infect Dis 27, 225−34.
105. Gupta, S., Verfaillie, C., Chmielewski, D., Kim, Y., and Rosenberg, M.E. (2002). A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int 62, 1285−90.
106. Haider, K.H., Idris, N.M., Kim, H.W., Ahmed, R.P., Shujia, J., and Ashraf, M. (2010). MicroRNA-21 is a key determinant in IL-11/Stat3 anti-apoptotic signalling pathway in preconditioning of skeletal myoblasts. Cardiovasc Res 88, 168−78.
107. Haraoka, M., Matsumoto, T., Takahashi, K., Kubo, S., Tanaka, M., and Kumazawa, J. (1994). Suppression of renal scarring by prednisolone combined with ciprofloxacin in ascending pyelonephritis in rats. J Urol 151, 1078−80.
108. Herzog, E.L., Chai, L" and Krause, D.S. (2003). Plasticity of marrow-derived stem cells. Blood 102, 3483−93.
109. Hooton, T.M. and Stamm, W.E. (1997). Diagnosis and treatment of uncomplicated urinary tract infection. Infect Dis Clin North Am 11, 551−81.
110. Imamoglu, M., Cay, A., Cobanoglu, U., Bahat, E., Karahan, C., Tosun, I., and Sarihan, H. (2006). Effects of melatonin on suppression of renal scarring in experimental model of pyelonephritis. Urology 67, 1315−9.
111. Imhof, B.A. and Aurrand-Lions, M. (2004). Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol 4, 432−44.
112. Ip, J.E., Wu, Y" Huang, J., Zhang, L" Pratt, R.E., and Dzau, V.J. (2007). Mesenchymal stem cells use integrin betal not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell 18, 2873−82.
113. Ishimura, T., Fujisawa, M., Isotani, S., lijima, K., Yoshikawa, N., and Kamidono, S. (2002). Endothelial nitric oxide synthase expression in ischemia-reperfusion injury after living related-donor renal transplantation. Transpl Int 15, 635−40.
114. Isling, L.K., Aalbaek, B., Birck, M.M., Heegaard, P.M., and Leifsson, P. S. (2011). Host response to porcine strains of Escherichia coli in a novel pyelonephritis model. J Comp Pathol 144, 257−68.
115. Isling, L.K., Aalbaek, B., Schroder, M., and Leifsson, P. S. (2010). Pyelonephritis in slaughter pigs and sows: morphological characterization and aspects of pathogenesis and aetiology. Acta Vet Scand 52, 48.
116. Ito, T., Suzuki, A., Imai, E., Okabe, M., and Hori, M. (2001). Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12, 2625−35.
117. Iwatani, H., Ito, T., Imai, E., Matsuzaki, Y., Suzuki, A., Yamato, M., Okabe, M., and Hori, M. (2004). Hematopoietic and nonhematopoietic potentials of Hoechst (low)/side population cells isolated from adult rat kidney. Kidney Int 65, 1604−14.
118. Jakobsson, B. and Svensson, L. (1997). Transient pyelonephritic changes on 99mTechnetium-dimercaptosuccinic acid scan for at least five months after infection. Acta Paediatr 86, 803−7.
119. Jiang, X.X., Zhang, Y., Liu, B" Zhang, S.X., Wu, Y" Yu, X.D., and Mao, N. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105, 4120−6.
120. Johnson, C.E. (1999). New advances in childhood urinary tract infections. Pediatr Rev 20, 335−42- quiz 343.
121. Johnson, G.B., Brunn, G.J., and Piatt, J.L. (2004). Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J Immunol 772, 20−4.
122. Johnson, T.S., Haylor, J.L., Thomas, G.L., Fisher, M., and El Nahas, A.M. (2002). Matrix metalloproteinases and their inhibitions in experimental renal scarring. Exp Nephrol 10, 182−95.
123. Kaack, M.B., Martin, L.N., Svenson, S.B., Baskin, G., Steele, R.H., and Roberts, J.A. (1993). Protective anti-idiotype antibodies in the primate model of pyelonephritis. Infect Immun 61, 2289−95.
124. Kabore, A.F., Simard, M., and Bergeron, M.G. (1999). Local production of inflammatory mediators in an experimental model of acute obstructive pyelonephritis. J Infect Dis 179, 1162−72.
125. Kale, S., Karihaloo, A., Clark, P.R., Kashgarian, M., Krause, D.S., and Cantley, L.G. (2003). Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112, 42−9.
126. Kallenius, G., Svenson, S.B., Hultberg, H., Mollby, R., Winberg, J., and Roberts, J .A. (1983). P-fimbriae of pyelonephritogenic Escherichia coli: significance for reflux and renal scarring-a hypothesis. Infection 11, 73−6.
127. Kawasaki, K., Akashi, S., Shimazu, R., Yoshida, T., Miyake, K., and Nishijima, M. (2000). Mouse toll-like receptor 4. MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J Biol Chem 275, 2251−4.
128. Khalil, A., Brauner, A., Bakhiet, M., Burman, L.G., Jaremko, G., Wretlind, B., and Tullus, K. (1997). Cytokine gene expression during experimental Escherichia coli pyelonephritis in mice. J Urol 158, 1576−80.
129. Khalil, A., Tullus, K., Bartfai, T., Bakhiet, M., Jaremko, G., and Brauner, A. (2000). Renal cytokine responses in acute Escherichia coli pyelonephritis in IL-6-deficient mice. Clin Exp Immunol 122, 200−6.
130. Khan, M" Akhtar, S" Mohsin, S" N Khan, S., and Riazuddin, S. (2011). Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells Dev 20, 67−75.
131. Kiel, M.J. and Morrison, S.J. (2008). Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8, 290−301.
132. Kim, D. and Dressier, G.R. (2005). Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol 16, 3527−34.
133. Kitamura, S., Yamasaki, Y., Kinomura, M., Sugaya, T., Sugiyama, H., Maeshima, Y., and Makino, H. (2005). Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J 19, 1789−97.
134. Ko, K.H., Holmes, T., Palladinetti, P., Song, E." Nordon, R., O’Brien, T.A., and Dolnikov, A. (2011). GSK-3beta inhibition promotes engraftment of ex vivo-expanded hematopoietic stem cells and modulates gene expression. Stem Cells 29, 108−18.
135. Kobayashi, H., Wang, Y., and Puri, P. (1997). Increased levels of circulating endothelial leukocyte adhesion molecule-1 (ELAM-1) in children with reflux nephropathy. Eur Urol 31, 343−6.
136. Krampera, M., Glennie, S., Dyson, J., Scott, D., Laylor, R., Simpson, E., and Dazzi, F. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101, 3722−9.
137. Kucia, M., Jankowski, K., Reca, R., Wysoczynski, M., Bandura, L., Allendorf, D.J., Zhang, J., Ratajczak, J., and Ratajczak, M.Z. (2004). CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35, 233−45.
138. Kucuk, H.F., Bingul, S.M., Kurt, N., Kaptanoglu, L., Akyol, H., Torlak, O.A., and Colak, E. (2006). Effect of a selective cyclooxygenase-2 inhibitor on renal scarring. Eur Surg Res 38, 451−7.
139. Kunter, U., Rong, S., Djuric, Z., Boor, P., Muller-Newen, G., Yu, D., and Floege, J. (2006). Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 17, 2202−12.
140. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680−5.
141. Lane, M.C. and Mobley, H.L. (2007). Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int 72, 19−25.
142. Lange, C., Togel, F., Ittrich, H., Clayton, F., Nolte-Ernsting, C., Zander, A.R., and Westenfelder, C. (2005). Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68, 1613−7.
143. Lauffenburger, D.A. and Horwitz, A.F. (1996). Cell migration: a physicallyintegrated molecular process. Cell 84, 359−69.
144. Le Blanc, K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M., and Ringden, O. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 143 941.
145. Le Blanc, K. and Ringden, O. (2007). Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262, 509−25.
146. LeDoux, S.P., Driggers, W.J., Hollensworth, B.S., and Wilson, G.L. (1999). Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat.Res. 434, (Abstract).
147. Lee, J.A., Kim, B.I., Jo, C.H., Choi, C.W., Kim, E.K., Kim, H.S., Yoon, K.S., and Choi, J.H. (2010). Mesenchymal stem-cell transplantation for hypoxic-ischemic brain injury in neonatal rat model. Pediatr Res 67, 42−6.
148. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973−83.
149. Li, B., Cohen, A., Hudson, T.E., Motlagh, D., Amrani, D.L., and Duffield, J.S. (2010). Mobilized human hematopoietic stem/progenitor cells promote kidney repair after ischemia/reperfusion injury. Circulation 121, 2211−20.
150. Li, B., Morioka, T., Uchiyama, M., and Oite, T. (2006). Bone marrow cell infusion ameliorates progressive glomerulosclerosis in an experimental rat model. Kidney Int 69, 323−30.
151. Li, L" Zhang, Y" Li, Y" Yu, B" Xu, Y., Zhao, S" and Guan, Z. (2008). Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated withisoproterenol-induced global heart failure. Transpl Int 21, 1181−9.
152. Lim, S.Y., Dilley, R.J., and Dusting, G.J. (2011). Cytoprotection and Preconditioning for Stem Cell Therapy. Advances in Regenerative Medicine (ed. Wislet-Gendebien, S.) 89−118.
153. Lin, F., Moran, A., and Igarashi, P. (2005). Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115, 1756−64.
154. Lomberg, H., de Man, P., and Svanborg Eden, C. (1989). Bacterial and host determinants of renal scarring. APMIS 97, 193−9.
155. Lu, G., Haider, H.K., Jiang, S., and Ashraf, M. (2009). Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43. Circulation 119, 2587−96.
156. Mackay, F., Loetscher, H., Stueber, D., Gehr, G., and Lesslauer, W. (1993). Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J Exp Med 177, 1277−86.
157. Madec, A.M., Mallone, R., Afonso, G., Abou Mrad, E., Mesnier, A., Eljaafari, A., and Thivolet, C. (2009). Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia 52, 1391−9.
158. Maeshima, A., Yamashita, S., and Nojima, Y. (2003). Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 14, 3138−46.
159. Markewitz, B.A., Michael, J.R., and Kohan, D.E. (1993). Cytokine-induced expression of a nitric oxide synthase in rat renal tubule cells. J Clin Invest 91, 2138−43.
160. Matsumoto, K. and Nakamura, T. (2001). Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int 59, 202 338.
161. Matsumoto, T., Mitzunoe, Y., Ogata, N., Tanaka, M., Takahashi, K., and Kumazawa, J. (1992). Antioxidant effect on renal scarring following infection of mannose-sensitive-piliated bacteria. Nephron 60, 210−5.
162. Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L.S.,.
163. Nguemo, F., Menke, S., Haustein, M., Hescheler, J., Hasenfuss, G., and Martin, U. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118, 507−17.
164. Maximow, A. (1909). Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Saugetiere. Folia Haematologica 8,125−134.
165. Meinen, C.L., Knatternd, G.L., Prout, T.E., and Klimt, C.R. (1970). A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 19, Suppl:789−830.
166. Meisel, R., Zibert, A., Laryea, M., Gobel, U., Daubener, W., and Dilloo, D. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103, 461 921.
167. Meylan, P.R., Markert, M., Bille, J., and Glauser, M.P. (1989). Relationship between neutrophil-mediated oxidative injury during acute experimental pyelonephritis and chronic renal scarring. Infect Immun 57, 2196−202.
168. Mihara, M. and Uchiyama, M. (1978). Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86, 271−8.
169. Miller, T.E., Findon, G., Rainer, S.P., and Gavin, J.B. (1992). The pathobiology of subclinical pyelonephritis-an experimental evaluation. Kidney Int 41, 1356−65.
170. Mintz, B. and lllmensee, K. (1975). Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sei U S A 72, 3585−9.
171. Moodley, Y., Atienza, D., Manuelpillai, U., Samuel, C.S., Tchongue, J., Ilancheran, S., Boyd, R., and Trounson, A. (2009). Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 175, 303−13.
172. Mooney, D.J. and Vandenburgh, H. (2008). Cell delivery mechanisms for tissue repair. Cell Stem Cell 2, 205−13.
173. Moretta, A., Bottino, C., Vitale, M., Pende, D., Cantoni, C., Mingari, M.C., Biassoni, R., and Moretta, L. (2001). Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19, 197−223.
174. Mundi, H., Bjorksten, B., Svanborg, C., Ohman, L., and Dahlgren, C. (1991). Extracellular release of reactive oxygen species from human neutrophils upon interaction with Escherichia coli strains causing renal scarring. Infect Immun 59, 4168−72.
175. Murdoch, C., Giannoudis, A., and Lewis, C.E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224−34.
176. Murry, C.E., Jennings, R.B., and Reimer, K.A. (1986). Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 112 436.
177. Nagano, T. and Yoshimura, T. (2002). Bioimaging of nitric oxide. Chem Rev 102, 1235−70.
178. Narazaki, G., Uosaki, H., Teranishi, M., Okita, K., Kim, B., Matsuoka, S., Yamanaka, S., and Yamashita, J.K. (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118, 498−506.
179. Nassar, G.M. and Badr, K.F. (1998). Novel approaches to treatment of glomerulonephritis. J Nephrol 11, 177−84.
180. Nauta, A.J., Kruisselbrink, A.B., Lurvink, E., Willemze, R., and Fibbe, W.E. (2006). Mesenchymal stem cells inhibit generation and function of both CD34±derived and monocyte-derived dendritic cells. J Immunol 177, 2080;7.
181. Nussler, A.K. and Billiar, T.R. (1993). Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54, 171−8.
182. O’Neill, L.A. and Bowie, A.G. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7, 353−64.
183. Ogawa, T., Nussler, A.K., Tuzuner, E., Neuhaus, P., Kaminishi, M., Mimura, Y., and Beger, H.G. (2001). Contribution of nitric oxide to the protective effects of ischemic preconditioning in ischemia-reperfused rat kidneys. J Lab Clin Med 138, 50−8.
184. Ohnishi, S., Sumiyoshi, H., Kitamura, S., and Nagaya, N. (2007). Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett 581, 3961−6.
185. Oliver, J.A., Maarouf, O., Cheema, F.H., Martens, T.P., and Al-Awqati, Q. (2004). The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114, 795−804.
186. Oyagi, S., Hirose, M., Kojima, M., Okuyama, M., Kawase, M., Nakamura, T., Ohgushi, H., and Yagi, K. (2006). Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCI4-injured rats. J Hepatol 44, 742−8.
187. Palecek, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A., and Horwitz, A.F. (1997). Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537−40.
188. Panettieri, R.A. Jr, Lazaar, A.L., Pure, E., and Albelda, S.M. (1995). Activation of cAMP-dependent pathways in human airway smooth muscle cells inhibits TNF-alpha-induced ICAM-1 and VCAM-1 expression and T lymphocyte adhesion. J Immunol 154, 2358−65.
189. Pasha, Z" Wang, Y" Sheikh, R" Zhang, D" Zhao, T., and Ashraf, M. (2008). Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77, 134−42.
190. Pavenstadt, H., Kriz, W" and Kretzler, M. (2003). Cell biology of the glomerular podocyte. Physiol Rev 83, 253−307.
191. Pawar, R.D., Patole, P. S., Zecher, D" Segerer, S., Kretzler, M., Schlondorff, D., and Anders, H.J. (2006). Toll-like receptor-7 modulates immune complex glomerulonephritis. J Am Soc Nephrol 17, 141−9.
192. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R" Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Muitiiineage poientiai of aauii human mesenchymal stem cells. Science 284, 1437.
193. Pittenger, M.F. and Martin, B.J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95, 9−20.
194. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S., and Beutler, B. (2000). Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci U S A 97, 2163−7.
195. Potian, J.A., Aviv, H., Ponzio, N.M., Harrison, J.S., and Rameshwar, P. (2003). Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 171, 3426−34.
196. Prigione, I., Benvenuto, F., Bocca, P., Battistini, L., Uccelli, A., and Pistoia, V. (2009). Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells 27, 693−702.
197. Prockop, D.J., Kota, D.J., Bazhanov, N., and Reger, R.L. (2010). Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med 14, 2190−9.
198. Ramasamy, R., Fazekasova, H., Lam, E.W., Soeiro, I., Lombardi, G., and Dazzi, F. (2007)' Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83, 71−6.
199. Rasmusson, I. (2006). Immune modulation by mesenchymal stem cells. Exp Cell Res 372, 2169−79.
200. Rasmusson, I., Ringden, O., Sundberg, B., and Le Blanc, K. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76, 120 813.
201. Reinders, M.E., Fibbe, W.E., and Rabelink, T.J. (2010). Multipotent mesenchymal stromal cell therapy in renal disease and kidney transplantation. Nephrol Dial Transplant 25, 17−24.
202. Ridger, V.C., Wagner, B.E., Wallace, W.A., and Hellewell, P.G. (2001). Differential effects of CD18, CD29, and CD49 integrin subunit inhibition on neutrophil migration in pulmonary inflammation. J Immunol 766, 3484−90.
203. Roberts, J.A. (1995). Mechanisms of renal damage in chronic pyelonephritis (reflux nephropathy). Curr Top Pathol 88, 265−87.
204. Roberts, J.A., Kaack, M.B., and Baskin, G. (1990). Treatment of experimental pyelonephritis in the monkey. J Urol 143, 150−4.
205. Rojas, M., Xu, J., Woods, C.R., Mora, A.L., Spears, W., Roman, J., and Brigham, K.L. (2005). Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 33, 145−52.
206. Roufosse, C. and Cook, H.T. (2008). Stem cells and renal regeneration. Nephron Exp Nephrol 109, e39−45.
207. Rowe, M.K. and Chuang, D.M. (2004). Lithium neuroprotection: molecular mechanisms and clinical implications. Expert Rev Mol Med 6, 1−18.
208. Rowe, M.K., Wiest, С., and Chuang, D.M. (2007). GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder. Neurosci Biobehav Rev 31, 920−31.
209. Ruoslahti, E. (1984). Fibronectin in cell adhesion and invasion. Cancer Metastasis Rev 3, 43−51.
210. Ruster, В., Gottig, S., Ludwig, R.J., Bistrian, R., Muller, S., Seifried, E., Gille, J., and Henschler, R. (2006). Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108, 3938−44.
211. Ryan, J.M., Barry, F., Murphy, J.M., and Mahon, B.P. (2007). Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149, 353−63.
212. Sackstein, R. (2005). The lymphocyte homing receptors: gatekeepers of the multistep paradigm. Curr Opin Hematol 12, 444−50.
213. Samuelsson, P., Hang, L., Wullt, В., Irjala, H., and Svanborg, C. (2004). Tolllike receptor 4 expression and cytokine responses in the human urinary tract mucosa. Infect Immun 72, 3179−86.
214. Saren, P., Welgus, H.G., and Kovanen, P.T. (1996). TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol 157, 4159−65.
215. Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, Т., Muroi, K., and Ozawa, K. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109, 228−34.
216. Savill, J. (1997). Apoptosis in resolution of inflammation. J Leukoc Biol 61, 375−80.
217. Scaffidi, P., Misteli, Т., and Bianchi, M.E. (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191−5.
218. Scherberich, J.E. and Hartinger, A. (2008). Impact of Toll-like receptor signalling on urinary tract infection. Int J Antimicrob Agents 31 Suppl 1, S9−14.
219. Schilling, J.D., Martin, S.M., Hung, C.S., Lorenz, R.G., and Hultgren, S.J. (2003). Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 100, 42 038.
220. Schilling, J.D., Mulvey, M.A., Vincent, C.D., Lorenz, R.G., and Hultgren, S.J. (2001). Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J Immunol 166, 1148−55.
221. Schrepfer, S., Deuse, T., Reichenspurner, H., Fischbein, M.P., Robbins, R.C., and Pelletier, M.P. (2007). Stem cell transplantation: the lung barrier. Transplant Proc 39, 573−6.
222. Sener, G., Tugtepe, H., Velioglu-Ogunc, A., Cetinel, S., Gedik, N., and Yegen, B.C. (2006). Melatonin prevents neutrophil-mediated oxidative injury in Escherichia coli-induced pyelonephritis in rats. J Pineal Res 41, 220−7.
223. Sheng, H., Wang, Y" Jin, Y., Zhang, Q" Zhang, Y., Wang, L., Shen, B., Yin,.
224. S., Liu, W., Cui, L., and Li, N. (2008). A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res 18, 846−57.
225. Shi, M., Liu, Z.W., and Wang, F.S. (2011). Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol 164, 1−8.
226. Shibata, T., Nagata, K., and Kobayashi, Y. (2011). Apoptotic neutrophils and nitric oxide regulate cytokine production by IFN-gamma-stimulated macrophages. Cytokine 53, 191−5.
227. Shimamura, T. (1981). Mechanisms of renal tissue destruction in an experimental acute pyelonephritis. Exp Mol Pathol 34, 34−42.
228. Silva, M.T. (2010). When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukoc Biol 87, 93−106.
229. Silva, M.T., do Vale, A., and dos Santos, N.M. (2008). Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 13, 463−82.
230. Sioud, M., Mobergslien, A., Boudabous, A., and Floisand, Y. (2010). Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scand J Immunol 71, 267−74.
231. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C. (1985). Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76−85.
232. Solter, D., Skreb, N., and Damjanov, I. (1970). Extrauterine growth of mouse egg-cylinders results in malignant teratoma. Nature 227, 503−4.
233. Sotiropoulou, P.A., Perez, S.A., Gritzapis, A.D., Baxevanis, C.N., and Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24, 74−85.
234. Spitkovsky, D. and Hescheler, J. (2008). Adult mesenchymal stromal stem cells for therapeutic applications. Minim Invasive Ther Allied Technol 17, 79−90.
235. Springall, T., Sheerin, N.S., Abe, K., Holers, V.M., Wan, H., and Sacks, S.H. (2001). Epithelial secretion of C3 promotes colonization of the upper urinary tract by Escherichia coli. Nat Med 7, 801−6.
236. Springer, T.A. (1990). Adhesion receptors of the immune system. Nature 346, 425−34.
237. Spurlino, J.C., Smallwood, A.M., Carlton, D.D., Banks, T.M., Vavra, K.J., Johnson, J.S., Cook, E.R., Falvo, J., Wahl, R.C., Pulvino, T.A., and et, a.l. (1994). 1.56 A structure of mature truncated human fibroblast collagenase. Proteins 19, 98−109.
238. Stadtman, E.R. and Levine, R.L. (2000). Protein oxidation. Ann N Y Acad Sci 899, 191−208.
239. Standeven, K.F., Ariens, R.A., and Grant, P.J. (2005). The molecular physiology and pathology of fibrin structure/function. Blood Rev 19, 275−88.
240. Steingen, C., Brenig, F., Baumgartner, L., Schmidt, J., Schmidt, A., and Bloch, W. (2008). Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. J Mol Cell Cardiol 44, 1072−84.
241. Stevens, L.C. (1962). The biology of teratomas including evidence indicating their origin form primordial germ cells. Annee Biol 1, 585−610.
242. Stevens, L.C. (1970). The development of transplantable teratocarcinomas from intratesticular grafts of preand postimplantation mouse embryos. Dev Biol 21, 364−82.
243. Sugimoto, H., Mundel, T.M., Sund, M., Xie, L., Cosgrove, D., and Kalluri, R. (2006). Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci U S A 103, 7321−6.
244. Suzuki, Y., Kim, H.W., Ashraf, M., and Haider, H.K.h. (2010). Diazoxide potentiates mesenchymal stem cell survival via NF-kappaB-dependent miR-146a expression by targeting Fas. Am J Physiol Heart Circ Physiol 299, H1077−82.
245. Szczypka, M.S., Westover, A.J., Clouthier, S.G., Ferrara, J.L., and Humes, H.D. (2005). Rare incorporation of bone marrow-derived cells into kidney after folic acid-induced injury. Stem Cells 23, 44−54.
246. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861−72.
247. Takahashi, K. and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663−76.
248. Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335−76.
249. Tamama, K., Fan, V.H., Griffith, L.G., Blair, H.C., and Wells, A. (2006). Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells 24, 686−95.
250. Tancheva, S., Valcheva-Kuzmanova, S.V., Radev, R.Z., Marinov, M.D., Boychev, B., Stoeva, T., Boyadjieva, S.K., and Nenov, K.S. (2011). A model of experimental acute hematogenous pyelonephritis in the rat. Folia Med (Plovdiv) 53, 63−8.
251. Terada, Y., Tomita, K., Nonoguchi, H., and Marumo, F. (1992). Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments. J Clin Invest 90, 659−65.
252. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145−7.
253. Thomson, J.A., Kalishman, J., Golos, T.G., Durning, M., Harris, C.P., Becker, R.A., and Hearn, J.P. (1995). Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92, 7844−8.
254. Tipnis, S., Viswanathan, C., and Majumdar, A.S. (2010). Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunol Cell Biol 88, 795−806.
255. Tittel, A.P., Heuser, C., Ohliger, C., Knolle, P.A., Engel, D.R., and Kurts, C.2011). Kidney dendritic cells induce innate immunity against bacterial pyelonephritis. J Am Soc Nephrol 22, 1435−41.
256. Togel, F., Cohen, A., Zhang, P., Yang, Y., Hu, Z., and Westenfelder, C. (2009). Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem Cells Dev 18, 475−85.
257. Togel, F., Hu, Z., Weiss, K., Isaac, J., Lange, C., and Westenfelder, C. (2005). Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289, F31−42.
258. Tomchuck, S.L., Zwezdaryk, K.J., Coffelt, S.B., Waterman, R.S., Danka, E.S., and Scandurro, A.B. (2008). Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26, 99 107.
259. Towbin, H., Staehelin, T., and Gordon, J. (1992). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. Biotechnology 24, 145−9.
260. Trowbridge, J.J., Xenocostas, A., Moon, R.T., and Bhatia, M. (2006). Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 12, 89−98.
261. Tsai, L.K., Wang, Z., Munasinghe, J., Leng, Y., Leeds, P., and Chuang, D.M. (2011). Mesenchymal stem cells primed with valproate and lithium robustly migrate to infarcted regions and facilitate recovery in a stroke model. Stroke 42, 2932−9.
262. Tse, W.T., Pendleton, J.D., Beyer, W.M., Egalka, M.C., and Guinan, E.C. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75, 389−97.
263. Tsuboi, N., Yoshikai, Y., Matsuo, S., Kikuchi, T., Iwami, K., Nagai, Y., Takeuchi, O., Akira, S., and Matsuguchi, T. (2002). Roles of toll-like receptors in CC chemokine production by renal tubular epithelial cells. J Immunol 169, 2026;33.
264. Tugtepe, H., Sener, G., Cetinel, S., Velioglu-Ogunc, A., and Yegen, B.C. (2007). Oxidative renal damage in pyelonephritic rats is ameliorated by montelukast, a selective leukotriene CysLTI receptor antagonist. Eur J Pharmacol 557, 69−75.
265. Tullus, K., Escobar-Billing, R., Fituri, O., Lu, Y., and Brauner, A. (1997). Soluble receptors to tumour necrosis factor and interleukin-6 in urine during acute pyelonephritis. Acta Paediatr 86, 1198−202.
266. Tyndall, A. and Gratwohl, A. (2009). Adult stem cell transplantation in autoimmune disease. Curr Opin Hematol 16, 285−91.
267. Uccelli, A., Moretta, L., and Pistoia, V. (2006). Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 36, 2566−73.
268. Vabulas, R.M., Wagner, H., and Schild, H. (2002). Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol 270, 169−84.
269. Valenick, L.V., Hsia, H.C., and Schwarzbauer, J.E. (2005). Fibronectin fragmentation promotes alpha4beta1 integrin-mediated contraction of a fibrin-fibronectin provisional matrix. Exp Cell Res 309, 48−55.
270. Vanden Hoek, T., Becker, L.B., Shao, Z.H., Li, C.Q., and Schumacker, P.T. (2000). Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion. Circ Res 86, 541−8.
271. Vandewalle, A. (2008). Toll-like receptors and renal bacterial infections. Chang Gung Med J 31, 525−37.
272. Vinas, J.L., Sola, A., and Hotter, G. (2006). Mitochondrial NOS upregulation during renal l/R causes apoptosis in a peroxynitrite-dependent manner. Kidney Int 69, 1403−9.
273. Wahl, S.M., Allen, J.B., Weeks, B.S., Wong, H.L., and Klotman, P.E. (1993). Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes. Proc Natl Acad Sci U S A 90, 4577−81.
274. Wang, J.A., Chen, T.L., Jiang, J., Shi, H., Gui, C., Luo, R.H., Xie, X.J., Xiang, M.X., and Zhang, X. (2008). Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Acta Pharmacol Sin 29, 74−82.
275. Wang, Y., Hu, X., Xie, X., He, A., Liu, X., and Wang, J.A. (2011). Effects of mesenchymal stem cells on matrix metalloproteinase synthesis in cardiacfibroblasts. Exp Biol Med (Maywood) 236, 1197−204.
276. Wasilewska, A., Taranta-Janusz, K., Zoch-Zwierz, W., Rybi-Szuminska, A., and Kolodziejczyk, Z. (2009). Role of matrix metalloproteinases (MMP) and their tissue inhibitors (TIMP) in nephrology. Przegl Lek 66, 485−90.
277. Waterman, R.S., Tomchuck, S.L., Henkle, S.L., and Betancourt, A.M. (2010). A new mesenchymal stem cell (MSC) paradigm: polarization into a proinflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5, e10088.
278. Webb, N.J. and Brenchley, P.E. (2004). Cytokines and cell adhesion molecules in the inflammatory response during acute pyelonephritis. Nephron Exp Nephrol 96, e1−6.
279. Weiss, S.J. (1989). Tissue destruction by neutrophils. N Engl J Med 320, 365−76.
280. Weng, Y.S., Lin, H.Y., Hsiang, Y.J., Hsieh, C.T., and Li, W.T. (2003). The effects of different growth factors on human bone marrow stromal cells differentiating into hepatocyte-like cells. Adv Exp Med Biol 534, 119−28.
281. Werr, J., Xie, X., Hedqvist, P., Ruoslahti, E" and Lindbom, L. (1998). betal integrins are critically involved in neutrophil locomotion in extravascular tissue In vivo. J Exp Med 187, 2091;6.
282. Woessner, J.F. Jr (1995). Quantification of matrix metalloproteinases in tissue samples. Methods Enzymol 248, 510−28.
283. Woodbury, D., Schwarz, E.J., Prockop, D.J., and Black, I.B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61, 364−70.
284. Wu, T.C. (2007). The role of vascular cell adhesion molecule-1 in tumor immune evasion. Cancer Res 67, 6003−6.
285. Wu, Y., Wang, J., Scott, P.G., and Tredget, E.E. (2007). Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen 15 Suppl 1, S18−26.
286. Yagi, H., Soto-Gutierrez, A., Parekkadan, B., Kitagawa, Y., Tompkins, R.G., Kobayashi, N., and Yarmush, M.L. (2010). Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplant 19, 667−79.
287. Yang, C.W., Hung, C.C., Wu, M.S., Tian, Y.C., Chang, C.T., Pan, M.J., and Vandewalle, A. (2006). Toll-like receptor 2 mediates early inflammation by leptospiral outer membrane proteins in proximal tubule cells. Kidney Int 69, 815−22.
288. Yao, Y., Zhang, F., Wang, L., Zhang, G., Wang, Z., Chen, J., and Gao, X. (2009). Lipopolysaccharide preconditioning enhances the efficacy of mesenchymal stem cells transplantation in a rat model of acute myocardial infarction. J Biomed Sci 16, 74.
289. Yokoo, A., Hirose, T., Matsukawa, M., Hotta, H., Kunishima, Y., and Takahashi, S. (1998). Expression of intercellular adhesion molecule-1 in mice with Pseudomonas-induced pyelonephritis. J Urol 160, 592−6.
290. Zaugg, M., Lucchinetti, E., Uecker, M., Pasch, T., and Schaub, M.C. (2003). Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth 91, 551−65.
291. Zhang, A., Wang, Y., Ye, Z" Xie, H" Zhou, L" and Zheng, S. (2010). Mechanism of TNF-alpha-induced migration and hepatocyte growth factor production in human mesenchymal stem cells. J Cell Biochem 111, 469−75.
292. Zhang, D., Zhang, G., Hayden, M.S., Greenblatt, M.B., Bussey, C., Flavell, R.A., and Ghosh, S. (2004). A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522−6.
293. Zhang, F.B. and Yang, H.T. (2006). Plasticity of bone marrow mesenchymal stem cells differentiating into cardiomyocytes and the potential of cardiactherapeutics. Sheng Li Ke Xue Jin Zhan 37, 199−204.
294. Zhang, R., Brennan, M.L., Fu, X., Aviles, R.J., Pearce, G.L., Penn, M.S., Topol, E.J., Sprecher, D.L., and Hazen, S.L. (2001). Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 286, 2136−42.