Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

Активация опухолевого супрессора p53 при ингибировании III комплекса дыхательной цепи митохондрий

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Gong X, Kole L, Iskander K, Jaiswal AK (2007) NRH: quinone oxidoreductase 2 and NAD (P)H:quinone oxidoreductase 1 protect tumor suppressor p53 against 20S proteasomal degradation leading to stabilization and activation of p53. Cancer Res. 67:5380−5388. Причиной индукции р53 в ответ на ингибирование III комплекса ДЦ митохондрий является нарушение работы ЭНСЮН и пути биосинтеза пиримидинов. Хочется… Читать ещё >

Содержание

  • I. ВВЕДЕНИЕ
  • II. ОБЗОР ЛИТЕРАТУРЫ Структура онкосупрессора р
  • Механизмы деградации и стабилизации р53 в клетке
  • Причины индукции р
  • Последствия индукции р
  • III. МАТЕРИАЛЫ И МЕТОДЫ
  • IV. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ Индукция р53 в ответ на ингибирование III комплекса ДЦМ
  • Последствия ингибирования III комплекса ДЦМ
  • Причина индукции р53 в ответ на ингибирование III комплекса ДЦМ
  • Механизм стабилизации р53 при ингибировании III комплекса ДЦМ
  • V. ВЫВОДЫ

Активация опухолевого супрессора p53 при ингибировании III комплекса дыхательной цепи митохондрий (реферат, курсовая, диплом, контрольная)

V. Выводы.

1. Ингибирование III комплекса дыхательной цепи митохондрий, но не I, II или IV комплексов, приводит к увеличению уровня и активности опухолевого супрессора р53 в различных линиях эпителиальных раковых клеток человека.

2. Причиной индукции р53 в ответ на ингибирование III комплекса ДЦ митохондрий является нарушение работы ЭНСЮН и пути биосинтеза пиримидинов.

3. В стабилизацию р53 при ингибировании III комплекса ДЦ вносят вклад хинон оксидоредуктазы N0)01 и N (^02.

4. В ответ на ингибирование III комплекса ДЦ митохондрий происходит индукция р53-зависимого апоптоза.

1. Sonveaux P, et al. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930−3942.

2. Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes Dev 23:537−548.

3. Olovnikov IA, Kravchenko JE, Chumakov PM (2009) Homeostatic functions of the p53 tumor suppressor: Regulation of energy metabolism and antioxidant defense. Semin Cancer Biol 19:3241.

4. Gottlieb E, Vousden KH (2010) p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol 2(4):a001040.

5. Tsvetkov P, Reuven N, Shaul Y (2010) Ubiquitin-independent p53 proteasomal degradation. Cell Death Differ. 17:103−108.

6. Gong X, Kole L, Iskander K, Jaiswal AK (2007) NRH: quinone oxidoreductase 2 and NAD (P)H:quinone oxidoreductase 1 protect tumor suppressor p53 against 20S proteasomal degradation leading to stabilization and activation of p53. Cancer Res. 67:5380−5388.

7. Romer L., Klein C., Dehner A., Kessler H., Buchner J. (2006) p53 a natural cancer killer: structural insights and therapeutic concepts. Angew Chem Int Ed Engl. 45(39):6440−60.

8. Scoumanne A., Harms K.L., Chen X. (2005) Structural Basis for Gene Activation by p53 Family Members. Cancer Biol Ther. 4(11): 1178−85.

9. Harms K.L., Chen X. (2006) The functional domains in p53 family proteins exhibit both common and distinct properties. Cell Death Differ. 13(6):890−7.

10. Laptenko O., Prives C. (2006) Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13(6):951−61.

11. Asher G, Shaul Y. (2005) p53 proteasomal degradation: poly-ubiquitination is not the whole story. Cell Cycle. 4(8): 1015−8.

12. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. (2002) The Molecular Biology of the Cell. Garland Science, pp. 889−892, 379−382.

13. Asher G, Shaul Y. (2006) Ubiquitin-independent degradation: lessons from the p53 model. Isr Med Assoc J. 8(4):229−32.

14. Asher G, Lotem J, Sachs L, Kahana C, Shaul Y. (2002) Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQOl. PNAS. 99(20):13 125−30.

15. Asher G, Tsvetkov P, Kahana C, Shaul Y. (2005) A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev. 19(3):316−21.

16. Leung KK, Litchfield DW, Shilton BH. (2012) Flavin adenine dinucleotide content of quinone reductase 2: analysis and optimization for structure-function studies. Anal Biochem. 420(l):84−9.

17. Karine Reybier, Pierre Perio, Gilles Ferry, Jalloul Bouajila, Philippe Delagrange, Jean A. Boutin, Francoise Nepveu. (2011) Insights into the redox cycle of human quinone reductase 2. Free Radical Research, 45(10): 1184−1195.

18. Long DJ 2nd, Jaiswal AK. (2000) NRH: quinone oxidoreductase2 (NQ02). Chem Biol Interact. 129(l-2):99-l 12.

19. Wang W, Le WD, Pan T, Stringer JL, Jaiswal AK. (2008) Association of NRH: quinone oxidoreductase 2 gene promoter polymorphism with higher gene expression and increased susceptibility to Parkinson’s disease. J Gerontol A Biol Sci Med Sci. 63(2): 127−34.

20. Hashimoto T, Nakai M. (2011) Increased hippocampal quinone reductase 2 in Alzheimer’s disease. Neurosci Lett. 8−502(1):10−2.

21. Shen J, Barrios RJ, Jaiswal AK. (2010) Inactivation of the quinone oxidoreductases NQOl and NQ02 strongly elevates the incidence and multiplicity of chemically induced skin tumors. Cancer Res. 1−70(3):1006−14.

22. Iskander K, Barrios RJ, Jaiswal AK. (2009) NRH: quinone oxidoreductase 2-deficient mice are highly susceptible to radiation-induced B-cell lymphomas. Clin Cancer Res. 1- 15(5): 1534−42.

23. Hsieh TC, Wang Z, Hamby CV, Wu JM. (2005) Inhibition of melanoma cell proliferation by resveratrol is correlated with upregulation of quinone reductase 2 and p53. Biochem Biophys Res Commun. 19−334(l):223−30.

24. Horn H.F., Vousden K.H. (2007) Coping with stress: multiple ways to activate p53. Oncogene. 26(9): 1306−16.

25. Vousden K.H. (2006) Outcomes of p53 activation-spoilt for choice. J Cell Sci. 119(Pt 24):5015−20.

26. Xu Y. (2003) Regulation of p53 responses by post-translational modifications. Cell Death Differ. 10(4):400−3.

27. Toledo F., Wahl G.M. (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo Veritas. Nat Rev Cancer. 6(12):909−23.

28. Efeyan A., Serrano M. (2007) p53: guardian of the genome and policeman of the oncogenes. Cell Cycle. 6(9): 1006−10.

29. Clark P.A., Llanos S., Peters G. (2002) Multiple interacting domains contribute to pl4ARF mediated inhibition of MDM2. Oncogene. 21(29):4498−507.

30. Sherr C.J., Bertwistle D., DEN Besten W., Kuo M.L., Sugimoto M., Tago K., Williams R.T., Zindy F., Roussel M.F. (2005) p53-Dependent andindependent functions of the Arf tumor suppressor. Cold Spring Harb Symp Quant Biol. 70:129−37.

31. Zhang Y, Lu H. (2009) Signaling to p53: Ribosomal Proteins Find Their Way. Cancer Cell. 16(5):369−77.

32. Nicholls DG, Ferguson SJ. Bioenergetics 3. (2002) Elsevier Science Ltd., 2 ed., pp. 90−92.

33. Lenaz G, Genova ML. (2009) Mobility and function of coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. Biochim Biophys Acta. 1787(6):563−73.

34. Karawajew L, Rhein P, Czerwony G, Ludwig WD. (2005) Stress-induced activation of the p53 tumor suppressor in leukemia cells and normal lymphocytes requires mitochondrial activity and reactive oxygen species. Blood. 105(12):4767−75.

35. Wang J, Biju MP, Wang MH, Haase VH, Dong Z. (2006) Cytoprotective effects of hypoxia against cisplatin-induced tubular cell apoptosis: involvement of mitochondrial inhibition and p53 suppression. J Am Soc Nephrol. 17(7): 1875−85.

36. Behrend L., Mohr A., Dick T., Zwacka R.M. (2005) Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol 25:7758−7769.

37. Achanta G, Sasaki R, Feng L, Carew JS, Lu W, Pelicano H, Keating MJ, Huang P. (2005) Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J. 24(19):3482−92.

38. Compton S, Kim C, Griner NB, Potluri P, Scheffler IE, Sen S, Jerry DJ, Schneider S, Yadava N. (2011) Mitochondrial dysfunction impairs tumor suppressor p53 expression/function. J Biol Chem. 286(23):20 297−312.

39. Gonzalez-Aragon D, Ariza J, Villalba JM. (2007) Dicoumarol impairs mitochondrial electron transport and pyrimidine biosynthesis in human myeloid leukemia HL-60 cells. Biochem Pharmacol. 73(3):427−39.

40. Gattermann N, Dadak M, Hofhaus G, Wulfert M, Berneburg M, Loeffler ML, Simmonds HA. (2004) Severe Impairment of Nucleotide Synthesis Through Inhibition of Mitochondrial Respiration. Nucleosides Nucleotides Nucleic Acids 23(8−9): 1275−9.

41. Huang M, Graves LM. (2003) De novo synthesis of pyrimidine nucleotidesemerging interfaces with signal transduction pathways. Cell Mol Life Sei. 60(2):321−36.

42. Cui Z, Houweling M, Chen MH, Record M, Chap H, Vance DE, Terce F. (1996) A genetic defect in phosphatidylcholine biosynthesis triggers apoptosis in Chinese hamster ovary cells. J Biol Chem. 1996 271 (25): 14 668−71.

43. Gibellini F, Smith TK. (2010) The Kennedy pathway-De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 62(6):414−28.

44. Jamil H, Yao ZM, Vance DE. (1990) Feedback regulation of CTPphosphocholine cytidylyltransferase translocation. J Biol Chem. 265(8):4332−9.

45. Zhang XH, Zhao C, Seleznev K, Song K, Manfredi JJ, Ma ZA. (2006) Disruption of Gi-phase phospholipid turnover by inhibition of Ca2±independent phospholipase A2 induces a p53-dependent cell-cycle arrest in Gi phase. J Cell Sci. 119(Pt 6):1005−15.

46. Choy PC, Paddon HB, Vance DE. (1980) An increase in cytoplasmic CTP accelerates the reaction catalyzed by CTPphosphocholine cytidylyltransferase in poliovirus-infected HeLa cells. J Biol Chem. 255(3): 1070−3.

47. Gehrig K, Morton CC, Ridgway ND. (2009) Nuclear export of the rate-limiting enzyme in phosphatidylcholine biosynthesis is mediated by its membrane binding domain. J Lipid Res. 50(5):966−76.

48. Lagace TA, Ridgway ND. (2005) Induction of apoptosis by lipophilic activators of CTP: phosphocholine cytidylyltransferase alpha (CCTalpha). Biochem J. 392(Pt 3):449−56.

49. Pruschy M, Resch H, Shi YQ, Aalame N, Glanzmann C, Bodis S. (1999) Ceramide triggers p53-dependent apoptosis in genetically defined fibrosarcoma tumour cells. Br J Cancer. 80(5−6):693−8.

50. Yao ZM, Jamil H, Vance DE. (1990) Choline deficiency causes translocation of CTPphosphocholine cytidylyltransferase from cytosol to endoplasmic reticulum in rat liver. J Biol Chem. 265(8):4326−31.

51. Zeisel SH, Albright CD, Shin OH, Mar MH, Salganik RI, da Costa KA. (1997) Choline deficiency selects for resistance to p53-independent apoptosis. Carcinogenesis. 18(4):731−8.

52. Murph MM, Hurst-Kennedy J, Newton V, Brindley DN, Radhakrishna H. (2007) Lysophosphatidic Acid Decreases the Nuclear Localization and Cellular Abundance of the p53 Tumor Suppressor in A549 Lung Carcinoma Cells. Mol Cancer Res. 5(11): 1201−11.

53. Lyo D, Xu L, Foster DA. (2010) Phospholipase D stabilizes HDM2 through an mTORC2SGKl pathway. Biochem Biophys Res Commun. 396(2):562−5.

54. Attardi L.D., DePinho R.A. (2004) Conquering the complexity of p53. Nature Genetics 36: 78.

55. Menendez D., Inga A., Jordan J.J., Resnick M.A. (2007) Changing the p53 master regulatory network: ELEMENTary, my dear Mr Watson. Oncogene. 26(15):2191−201.

56. Clarke PR, Allan LA. (2009) Cell-cycle control in the face of damage a matter of life or death. Trends Cell Biol. 19(3):89−98.

57. Blagosklonny MV. (2001) Cell Cycle Checkpoints and Cancer. Landes Bioscience, pp.52−72.

58. Ko LJ, Prives C. (1996) p53: puzzle and paradigm. Genes Dev. 10(9): 1054−72.

59. De Falco M, De Luca A. (2010) Cell Cycle as a Target of Antineoplastic Drugs. Curr Pharm 16(12): 1417−26.

60. Agarwal M.K., Hastak K., Jackson M.W., Breit S.N., Stark G.R., Agarwal M.L. (2006) Macrophage inhibitory cytokine 1 mediates a p53-dependent protective arrest in S phase in response to starvation for DNA precursors. PNAS. 103(44): 16 278−83.

61. Huang M., Wang Y., Collins M., Mitchell B.S., Graves L.M. (2002) A77 1726 induces differentiation of human myeloid leukemia K562 cells by depletion of intracellular CTP pools. Mol Pharmacol. 62(3):463−72.

62. Jackowski S. (1994) Coordination of Membrane Phospholipid Synthesis with the Cell Cycle. J Biol Chem. 269(5):3858−67.

63. Lagace T.A., Miller J.R., Ridgway N.D. (2002) Caspase processing and nuclear export of CTP: phosphocholine cytidylyltransferase alpha during farnesol-induced apoptosis. Mol Cell Biol. 22(13):4851 -62.

64. Leist M, Jaattela M. (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2(8):589−98.

65. Igney FH, Krammer PH. (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2(4):277−88.

66. Zhou F, Yang Y, Xing D. (2011) Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J. 278(3):403−13.

67. Schmitz I, Kirchhoff S, Krammer PH. (2000) Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol. 32: 1123−36.

68. Pradelli LA, Beneteau M, Ricci JE. (2010) Mitochondrial control of caspase-dependent andindependent cell death. Cell Mol Life Sei. 67: 1589−97.

69. Acehan D., Jiang X., Morgan D.G., Heuser J.E., Wang X., Akey C.W. (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell. 9: 423−432.

70. Yoshida К, Miki Y. (2010). The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci. 101: 831−835.

71. Li YZ, Lu DY, Tan WQ, Wang JX, Li PF. (2008) p53 initiates apoptosis by transcriptionally targeting the antiapoptotic protein ARC. Мої Cell Biol. 28: 564−74.

72. Чумаков П. М. (2007) Белок p53 и его универсальные функции в многоклеточном организме. Успехи биологической химии, 47: 3−52.

73. Jose J. Fuster, Silvia M. Sanz-Gonzales, Ute M. Moll and Vicente Andres (2007) Classic and novel roles of p53: prospects for anticancer therapy. Trends Мої Med. 13:192−197.

74. Shieh SY, Ikeda M, Taya Y, Prives C. (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325−334.

75. Marchenko ND, Wolff S, Erster S, Becker K, Moll UM. (2007) Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J. 26: 923−34.

76. Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem., 72, 248−254.

77. Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259):680−5.

78. Захарова Н. И., Соколов В. В., Рудько В. В., Мельников С. В., Вартапетян А. Б., Евстафьева А. Г. (2008) Влияние протимозина, а м его мутантов на активность опухолевого супрессора р53. Молекулярная Биология, 42(4):673−684.

79. Hunte С., Palsdottir Н., Trumpower B.L. (2003) Protonmotive pathways and mechanisms in the cytochrome bcl complex. FEBS Lett., 545(l):39−46.

80. Sherr C.J., Roberts J.M. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev., 13(12):1501−12.

81. Nithipongvanitch R, Ittarat W, Cole MP, Tangpong J, Clair DK, Oberley TD. (2007) Mitochondrial and nuclear p53 localization in cardiomyocytes: redox modulation by doxorubicin (Adriamycin)? Antioxid Redox Signal. 9(7): 1001−8.

82. Wang F, Fu X, Chen X, Chen X, Zhao Y. (2010) Mitochondrial uncoupling inhibits p53 mitochondrial translocation in TPA-challenged skin epidermal JB6 cells. PLoS One. 5(10):el 3459.

83. Galluzzi L, Morselli E, Kepp O, Vitale I, Pinti M, Kroemer G. (2011) Mitochondrial liaisons of p53. Antioxid Redox Signal. 15(6):1691−714.

84. Boehme SA, Lenardo MJ. (1993) Propriocidal apoptosis of mature T lymphocytes occurs at S phase of the cell cycle. Eur J Immunol. 23(7): 1552−60.

85. Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F. (1992) Features of apoptotic cells measured by flow cytometry. Cytometry. 13(8):795−808.

86. Lo S., Tolner B., Taanman J.W., Cooper J.M., Gu M., Hartley J.A., Schapira A.H., Hochhauser D. (2005) Assessment of the significance of mitochondrial DNA damage by chemotherapeutic agents. Int J Oncol., 27(2):337−44.

87. Park W.H., Han Y.W., Kim S.H., Kim S.Z. (2007) An ROS generator, antimycin A, inhibits the growth of HeLa cells via apoptosis. J Cell Biochem., 102(1):98−109.

88. Moghaddas S., Hoppel C.L., Lesnefsky E.J. (2003) Aging defect at the QO site of complex III augments oxyradical production in rat heart interfibrillar mitochondria. Arch Biochem Biophys., 414(l):59−66.

89. Young T.A., Cunningham C.C., Bailey S.M. (2002) Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol. Arch Biochem Biophys., 405(l):65−72.

90. Pletjushkina O.Y., Lyamzaev K.G., Popova E.N., Nepryakhina O.K., Ivanova O.Y., Domnina L.V., Chernyak B.V., Skulachev V.P. (2006) Effect of oxidative stress on dynamics of mitochondrial reticulum. Biochim Biophys Acta., 1757(5−6):518−24.

91. Muller F.L., Roberts A.G., Bowman M.K., Kramer D.M. (2003) Architecture of the Qo site of the cytochrome bcl complex probed by superoxide production. Biochemistry., 42(21):6493−9.

92. Fox RI, Herrmann ML, Frangou CG, Wahl GM, Morris RE, Strand V, Kirschbaum BJ. (1999) Mechanism of action for leflunomide in rheumatoid arthritis. Clin Immunol 93:198−208.

93. Jang JH, Lee CS, Hwang D, Ryu SH. (2012) Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog Lipid Res. 51 (2):71 -81.

94. Lee S.J., Yun C.C. (2010) Colorectal cancer cells Proliferation, survival and invasion by lysophosphatidic acid. Int J Biochem Cell Biol. 42(12): 1907;10.

95. Foster D.A. (2009) Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim Biophys Acta. 1791(9):949−55.

96. Lee CH, Inoki K, Karbowniczek M, Petroulakis E, Sonenberg N, Henske EP, Guan KL. (2007) Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage via p53. EMBO J. 26(23):4812−23.

97. Favale NO, Fernandez-Tome MC, Pescio LG, Sterin-Speziale NB. (2010) The rate-limiting enzyme in phosphatidylcholine synthesis is associated with nuclear speckles under stress conditions. Biochim Biophys Acta. 1801 (11): 1184−94.1. Благодарности.

98. Выражаю искреннюю благодарность своему научному руководителю Александре Георгиевне Евстафьевой за организацию работы, грамотное руководство и всестороннюю поддержку.

99. Хочется выразить глубокую благодарность моим коллегам, которые принимали участие в данной работе: Рудько В., Далиной А., Александровой А.

100. Отдельная благодарность И. М. Теренину, Андрееву Д. Е. и Дмитриеву С. Е. за теоретическую поддержку и стимуляцию научной деятельности.

101. Также хочу выразить свою благодарность Б. В. Черняку за теоретическу и практическую поддержку в проведении работы.

102. И эта работа не была бы возможна без неоценимого содействия П. М. Чумакова.

Показать весь текст
Заполнить форму текущей работой