Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

Применение динамических систем

РефератПомощь в написанииУзнать стоимостьмоей работы

Теоретическое исследование динамического поведения реального объекта требует создания его математической модели. Во многих случаях процедура разработки модели состоит в составлении математических уравнений на основе физических законов. Обычно эти законы формулируются на языке дифференциальных уравнений. В результате координаты состояния системы и ее параметры оказываются связанными между собой… Читать ещё >

Применение динамических систем (реферат, курсовая, диплом, контрольная)

Современная теория динамических систем является собирательным названием для исследований, где широко используются и эффективным образом сочетаются методы из различных разделов математики: топологии и алгебры, алгебраической геометрии и теории меры, теории дифференциальных форм, теории особенностей и катастроф.

Весьма тесно примыкает к таким современным разделам естествознания как неравновесная термодинамика, теория динамического хаоса, синергетика.

Задачей качественной теории динамических систем является нахождение стационарных решений — особых точек и предельных циклов, исследование их устойчивости, выделение областей притяжения устойчивых стационарных режимов в фазовом пространстве. Таким образом выясняется фазовый портрет системы при фиксированных значениях параметров.

Теория бифуркаций помогает в рассмотрении параметрического портрета системы, определяющего, как зависит от параметров расположение бифуркационных границ, на которых происходит изменение числа и типа стационарных решений, а значит, и изменение фазового портрета.

С позиций теории бифуркаций можно выделить две характерные группы систем. К первой отнесем системы, работающие в определенном стационарном режиме. Бифуркационная ситуация для таких систем аномальна, а опасные бифуркации представляют потенциально аварийные ситуации.

Для второй группы систем изменения фазовых портретов в результате бифуркаций — обычная штатная ситуация в процессе работы. Именно изменение числа возможных стационарных режимов делает работу системы эффективной в изменяющихся внешних условиях. Вместе с тем оказалось, что в таких системах могут возникать случаи необычного поведения, связанные с рождением области заторможенного движения в результате опасных бифуркаций.

Проиллюстрируем применения общих закономерностей, полученных при теоретическом исследовании поведения динамических систем в окрестности опасных бифуркационных границ, к решению прикладных задач в конкретных динамических системах второй группы.

Теоретическое исследование динамического поведения реального объекта требует создания его математической модели. Во многих случаях процедура разработки модели состоит в составлении математических уравнений на основе физических законов. Обычно эти законы формулируются на языке дифференциальных уравнений. В результате координаты состояния системы и ее параметры оказываются связанными между собой, что позволяет приступить к решению дифференциальных уравнений при различных начальных условиях и параметрах.

Вообще говоря, получение хорошей математической модели является искусством. Дело в том, что математическую модель динамической системы желательно максимально упростить. В то же время при упрощении уравнений не должно исчезнуть описание тех особенностей поведения, которые предстоит исследовать (недопустимо выплеснуть воду вместе с ребенком).

Главным критерием здесь является соответствие математической модели описываемым реальным процессам. Это определяется сравнением результатов теоретического расчета с результатами эксперимента на конкретном объекте. Модель заслуживает особого признания, если с ее помощью удается теоретически обнаружить новые особенности поведения, которые затем подтверждаются экспериментально. Может оказаться, что математическая модель разработана специалистами по прикладным наукам, а новые явления в поведении этой модели (и соответствующей реальной системы) обнаружены специалистами по теории динамических систем.

Показать весь текст
Заполнить форму текущей работой