Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

Электроснабжение промышленного предприятия

КонтрольнаяПомощь в написанииУзнать стоимостьмоей работы

Кроме того, некоторое оборудование имеет специфические условия проверки: высоковольтные выключатели проверяют на отключающую способность по току и мощности короткого замыкания. Для того чтобы обеспечить требуемый класс точности измерительных приборов, измерительные трансформаторы измеряют по допустимой вторичной нагрузке. Номинальный режим работы электроустановки характеризуется номинальными… Читать ещё >

Электроснабжение промышленного предприятия (реферат, курсовая, диплом, контрольная)

Задание

1. Выбрать электрическую схему главной понизительной подстанции.

2. Вычислить токи короткого замыкания для выбора оборудования.

3. Выбрать оборудование ГПП.

4. Выбрать и рассчитать комплекс защит линии, отходящей от ГПП к РП.

Исходные данные

1. Мощность системы SС=1500МВА.

2. Длина линии 110 кВ LЛ1= IЛ2=20 км.

3. Мощность трансформаторов 110/10кВ Sном т1= Sном т2=25МВ· А.

4. Напряжение короткого замыкания uк=10,5%.

5. Мощность, необходимая для собственных нужд подстанции 50кВ· А.

6. Максимальная нагрузка предприятия Sрм=25МВ· А.

7. Нагрузка РП РмрРП=5МВт.

8. cos ц = 0,95

Выберем схему ГПП с разъединителями и короткозамыкателями без выключателей и сборных шин на стороне высшего напряжения, так как такая схема является наиболее экономичной. На стороне низшего напряжения используем КРУ выкатного исполнения с двумя секциями шин.

Принципиальная силовая схема ГПП представлена на рис. 1.

Расчет токов короткого замыкания

Номинальный режим работы электроустановки характеризуется номинальными параметрами: Uном. Sном. Iном. Xном. Для того чтобы сопротивление схемы замещения были соизмеримы, ипользуют относительные единицы приведенные к базисным условиям Ввиду отсутствия данных о воздушной линии 110кВ, примем ее сечение ЗЧ95мм2.

Примем базисную мощность 100МВ· А.

Для точки к-1 базисное напряжение Uб1=115кВ.

Составим расчетную схему рис. 2

Рисунок — 2

Рисунок — 3

Вычислить базисные относительные сопротивления (для точки К-2):

Упрощаем схему замещения в точке К — 2 до вида:

Рисунок — 4

Определим результирующее полное сопротивление до точки к.з.

Определим ток короткого замыкания Определим ударный ток

Вычислив значение постоянной времени Та по рис. 3.2 определим значение ударного коэффициента: Ку=1,8.

Для точки к-2 базисное напряжение Uб2=10,5кВ.

Определим мощность короткого замыкания в момент отключения выключателя Вычислим базисные относительные сопротивления (для точки К-1)

Рисунок 4 — схема замещения для точки К-1

Упрощаем схему замещения в точке К — 1 до вида:

Рисунок — 6

2,47 < 3 => применяем графоаналитический метод расчета.

По расчетным кривым определяем кратность периодической составляющей I0 к.з. для моментов времени: 0с; 0,2с; ?.

Кп0 = 3,4; Кпф = 2,4; Кп? = 2,0.

Определим действующее значение периодического тока замыкания в различные моменты времени

I0 = Iном.u · Кп0 = 7,53 · 3,4 = 25,6 кА

Iф = Iном.u · Кпф = 7,53 · 2,4 = 18,1 кА

I? = Iном.u · Кп? = 7,53 · 2,0 = 15,1 кА Определим ток ударный в точке К — 1

iу = 1,41· I0 · Kу = 1,41 · 25,6 · 1,8 = 65,2 кА Определим мощность короткого замыканияв момент отключения выключателя

Sф = 1,73· Iф · Uб = 1,73 · 18,1 · 115 = 3605 МВ · А

Выбор высоковольтного оборудования

Все высоковольтное оборудование выбирают по номинальным параметрам:

— по номинальному току (по условию нагрева);

— по номинальному напряжению (пробой изоляции).

После того как выбрали оборудование, по этим параметрам проводят проверку на термическую и электродинамическую устойчивость току короткого замыкания.

Кроме того, некоторое оборудование имеет специфические условия проверки: высоковольтные выключатели проверяют на отключающую способность по току и мощности короткого замыкания. Для того чтобы обеспечить требуемый класс точности измерительных приборов, измерительные трансформаторы измеряют по допустимой вторичной нагрузке.

Выбор электрооборудования на 10кВ:

— шины;

— опорные изоляторы;

— вакуумный выключатель;

— трансформаторы тока;

— трансформатор напряжения.

Выбор электрооборудования на 110кВ:

— разъединитель.

Выбор шин

Шины выбирают по условию нагрева:

Iдл.доп.? Iм.р.,

Определяем максимально расчетный ток, кА:

где Uном. — номинальное напряжение на низшей стороне трансформатора, кВ.

Iдл.доп = 2820А? Iм.р.= 2020А.

По выбираем коробчатые шины.

Данные сечения шин проверяем на термоустойчивость к току короткого замыкания (q) находим по [2]: q = 775 мм2; б = 11.

Определяем минимально допустимое сечение:

qmin = б • I? • v tп,

qmin= 11 • 15,1 • = 105,5 мм2

где qmin — минимально допустимое сечение, при котором ток короткого замыкания не нагревает шину выше допустимой температуры, мм2;

Определяем приведенное время короткого замыкания:

tn = tn.n + tn,

tn = 0,39 + 0,014? 0,4

где tn.n — периодическая составляющая приведенного времени;

tn — апериодическая составляющая приведенного времени;

Определяем апериодическую составляющую приведенного времени:

tn 0,005 • (в'')2,

tn = 0,005 • (1,7) 2 = 0,014

Определяем кратность тока:

в'' =

Io = I'',

где I'' - переходный ток;

в'' - кратность тока.

q min < q

105,5 < 775

Выбранные шины по нагреву проходят, так как выполнятся условие.

Проверяем выбранные шины на электродинамическую устойчивость к токам короткого замыкания:

Gдоп.? Gрасч.,

где Gдоп — дополнительное механическое напряжение в материале шин, (справочная величина зависит от материала шин);

Gрасч. — расчетное механическое напряжение в шинной конструкции, в результате действия электромагнитных сил при коротком замыкании.

где Fрасч — расчетная сила, действующая на шинную конструкцию, на изгиб, в момент протекания ударного тока;

W — момент сопряжения шины, по W =48,6 • 10-6 м3.

где l — длина пролета: в КРУ l = 1 м;

а — расстояние между соседними фазами: в КРУ, а =0,45 м;

80 МПа > =3,15 МПа.

Так как Gдоп = 80 МПа, а Gрасч = 3,15 МПа, то выбранные шины по электродинамической устойчивости проходят.

Выбираем опорные изоляторы

Выбираем изоляторы по номинальному напряжению, Uном., кВ:

Uном.? Uуст.,

Uном. = 6кВ; = Uуст = 6кВ По выбираем опорные изоляторы типа ИО — 10−3.75 У3.

Выбранные изоляторы проверяем на электродинамическую активность к токам короткого замыкания:

Fдоп.? Fрасч.,

где Fдоп — дополнительная сила, Н;

Fрасч — расчетная сила, действующая на изолятор, на изгиб, в момент протекания ударного тока;

По определяем дополнительную силу:

Fдоп. = 0,6 • Fразр. = 0,6 • 3675 = 2205Н;

Fразр = 9,8 • 375 =3675 Н;

Fрасч =1526 Н

Fдоп. = 2205Н > Fрасч = 1526 Н Следовательно, условие на электродинамическую активность к тока короткого замыкания выполняется Таблица 4 — Выбор опорных изоляторов

Тип оборудования

Условие выбора

Каталожные данные

Расчетные данные

ИО-10−3.75У3

Uном.? Uуст

Fдоп.? Fразр

Uном 10 кВ

Fдоп = 2205 Н

Uуст. = 10 кВ

Fрасч.= 1526 Н

Выбираем высоковольтный выключатель

По условиям технико — экономических показателей выбираем вакуумный выключатель. Преимуществами вакуумного выключателя являются: высокая электрическая прочность вакуума и быстрое восстановление электрической прочности; быстродействие и большой срок службы, допускающий большое число отключении номинального тока без замены камеры; малые габариты, бесшумность работы, удобство обслуживания; пригодность для частых операций.

Выбираем выключатель максимальному току:

Iном? Iм.р,

3150А > 2020 А.

По выбираем тип вакуумного выключателя: ВВЭ — 10 — 31,5 / 3150 У3.

Выбираем выключатель по напряжению:

Uном.? Uп/ст,

Uном.=10 кВ = Uп/ст =10 кВ Проверяем выключатель термоустойчивость к токам короткого замыкания:

где Iном т.у — номинальный ток термоустойчивости, кА;

tт.с. — время срабатывания, с; tт.с = 3

По номинальный ток термоустойчивости, Iном т.у = 31,5 А

Iном т.у =31,5 кА > 5,4 кА Условие проверки на термоустойчивость к токам короткого замыкания выполняется.

Проверяем выбранный выключатель на электродинамическую устойчивость к токам короткого замыкания:

iм? iу,

где iм — предельный сквозной ток, кА;

iу — ударный ток, (62,5кА).

По предельный сквозной ток, iм = 80 кА.

iм = 80 кА > iу = 62,5кА.

Условие проверки на электродинамическую устойчивость к токам короткого замыкания выполняется.

Проверяем выбранный выключатель на отключающую способность по току и мощности короткого замыкания:

Iном.откл? Iф,

S ном.откл? Sф,

где S ном.откл — номинальная мощность отключения, МВ • А;

Iном.откл — номинальный ток отключения, кА.

Определяем номинальную мощность отключения, МВ • А:

S ном.откл = • Iном.откл • Uср.1 = • 31,5 •10,5 = 572 МВ•А По Iном.откл =31,5 кА. Следовательно:

Iном.откл =31,5 кА > Iф=18,1 кА;

S ном.откл = 572 МВ •А > Sф= 188,5 МВ •А Условия на отключающую способность по току и мощности короткого замыкания выполняется.

Таблица 5. Выбор вводного вакуумного выключателя

Тип выключателя

Условие выбора

Каталожные данные

Расчетные данные

ВВЭ-10 31,5/3150 У3

Iном? Iм.р

Uном.? Uп/ст

iм? iу

Iном.откл? Iф

S ном.откл? Sф

Iном = 3150 А

Uном. = 10 кВ

Iном т.с = 31,5 кА

iм = 80 кА

Iном.откл=31,5кА

Sном.отк=572МВ•А

Iм.р = 2020А

Uп/ст = 10 кВ

tn= 0,4с

I? = 15,1 кА

iу = 62,5 кА

Iф = 18,1 кА

Sф = 3605 МВ•А

Выбор трансформатора тока

Рисунок — 7. Подключение измерительных приборов к трансформатору напряжения Выбираем трансформатор тока по номинальному току

Iном? Iм.р,

Iном = 3000 > Iм.р = 2020 А Выбираем трансформатор тока по номинальному напряжению:

Uном.? Uп/ст,

По определяем номинальное напряжение:

Uном = 10 кВ = Uп/ст = 10 кВ По выбираем трансформатор тока типа: ТШЛ-10/3000.

Выбранный трансформатор тока проверяем на термоустойчивость к токам короткого замыкания:

где Iном1 — номинальный ток первичной цепи, кА;

Кт.с. — коэффициент термической стойкости;

tт.с — время термической стойкости.

По Кт.с = 35. Следовательно:

35 > 6,6

Условие проверки на термоустойчивость к токам короткого замыкания выполняется.

Выбранный трансформатор тока проверяем на электродинамическую устойчивость к токам короткого замыкания:

где Кдин. — кратность динамической устойчивости;

Iном.1 — номинальный ток, кА.

По кратность динамической устойчивости, Кдин = 100 А.

Кдин = 100 А > Кдин.расч = 14,7 кА.

Условие по электродинамической устойчивости к токам короткого замыкания выполняется.

Выполним проверку по допустимой вторичной нагрузке:

Z2доп. Z2,

где Z2доп — полное допустимое сопротивление вторичной нагрузки для класса точности равный 0,5, Ом;

Z2 — полное расчетное сопротивление вторичной цепи.

Z2? R2? 0,28 Ом;

R2 = Rпров.+ Rконт.+ R приб,

где Rпров — сопротивление соединительных проводов;

Rконт — сопротивление контакта, (0,1 Ом);

R приб — сопротивление приборов.

R2 = 0,073 + 0,1 + 0,104 = 0,28 Ом;

Определяем сопротивление проводов:

где l — длина соединительных проводов, (? 10 м);

q — сечение соединительных проводов.

Определяем сопротивление приборов:

где Sприб — мощность приборов, В А;

Iном.2 — номинальный ток вторичной нагрузки, А

Таблица 7. Расчет мощности приборов трансформатора тока

Тип прибора

S, В • А

Амперметр Э-335

0,1

Счетчик активной нагрузки

2,5

Итого

2,6

По находим Z2доп. = 0,4 Ом.

Z2доп. = 0,4 Ом > Z2 = 0,28 Ом.

Условие по допустимой вторичной нагрузке выполняется.

Таблица 8. Выбор трансформатора тока

Тип оборудования

Условие выбора

Каталожные данные

Расчетные данные

ТШЛ-10/3000

Uном.? Uп/ст

Iном? Iм.р

Z2доп.? Z2

Uном =10кВ

Iном = 3000 А

Z2доп. = 120 В • А К т.с = 35

Кдин. = 100

Uп/ст = 6кВ

Iм.р = 2600 А

Z2. = 28,5 В • А Кт.с = 6,3

Кдин = 10,4

Выбор трансформатора напряжения

Выбираем трансформатор напряжения по номинальному напряжению:

Uном Uп/ст,

По определяем номинальное напряжение

Uном. = 10кВ = Uп/ст = 10кВ Для обеспечения требуемого класса точности измерительных приборов выполняем проверку по допустимой вторичной нагрузке:

S2доп. Sприб.,

где S2доп. — допустимая вторичная нагрузка, В • А;

Sприб — мощность измерительных приборов, В • А.

По определяем допустимую вторичную нагрузку S2доп = 75 В • А;

Таблица 9. Расчет мощности измерительных приборов

Наименование и тип прибора

Р, Вт

Q, В А

Вольтметр Э-375

2,0

;

Ваттметр

3,0

;

Счетчик активной энергии

4,0

9,7

Счетчик реактивной энергии

6,0

14,7

Итого

15,0

24,2

Определяем мощность измерительных приборов, Sприб, В • А:

S2доп = 75 В • А > S2приб = 28,5 В • А Условие по допустимой вторичной нагрузке выполняется.

Таблица 10. Выбор трансформатора напряжения

Тип оборудования

Условие выбора

Каталожные данные

Расчетные данные

НТМИ-10−66

Uном.? Uп/ст

S2доп.? Sприб.

Uном =10кВ

S2доп. = 75 В• А

Uп/ст = 10кВ

S2приб. = 28,5 В• А

Выбираем высоковольтный разъединитель 110 кВ

Выбираем разъединитель по номинальному току:

Iном. Iм.р.,

Определим максимальный расчетный ток:

По выбираем разъединитель типа РДНЗ -1 — 630 У3, номинальный ток которого Iном. = 630А.

Iном. = 630А > Iм.р.= 183,7А Выбираем разъединитель по номинальному напряжению:

Uном. Uп/ст

110 = 110

Проверяем разъединитель на термоустойчивость к токам короткого замыкания:

;

;

Iном.т.у = 31,5 кА > 6,6 кА Условие на термоустойчивость к токам короткого замыкания выполняется.

Проверяем разъединитель на электродинамическую устойчивость к токам короткого замыкания:

iм iу,

По iм = 80 кА, iу = 62,5 кА

iм = 80 > iу = 62,5

Условие на электродинамическую устойчивость к токам короткого замыкания выполняется.

Выбор сечения отходящей кабельной линии 10 кВ

Согласно [4], длительно допустимый ток кабеля напряжением 10 кВ определится:

Iдл.доп? IмрРП / (k1 • k2)

где к1 — поправочный коэффициент, учитывающий удельное тепловое сопротивление почвы, определяется по табл. 1.3.23 (примем к1=0,87);

к2 — поправочный коэффициент, учитывающий количество работающих кабельных линий, лежащих рядом в земле, и расстояние в свету, определяется по табл. 1.3.26 (примем к=0,92);

По табл. 1.3.16 выбираем два кабеля (параллельное соединение) с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой или алюминиевой оболочке сечением q=(ЗЧ120) мм2 при Iдл. доп = 2Ч240А.

Рассчитаем экономически целесообразное сечение qэк.

где j,к=1,2А/мм нормированное значение экономической плотности тока для заданных условий работы (примем более 5000 максимума нагрузки в год) по табл. 1.3.36 |4|.

Принимаем два кабеля сечением q=(3Ч150) мм2.

Проверяем условие пригодности выбранного кабеля по потерям напряжения (L — 0,4 км):

R0(20)=0,2070 м/км; Х0=0,0990 м/км — активное (при 20 °С) и индуктивное сопротивления трехжильной кабельной линии по табл. 3.5. cоsц — значение коэффициента мощности в период максимальных нагрузок за наиболее загруженную смену (примем соs ц=0,95).

Таким образом, к качестве линии, питающей РП, принимаем два параллельных кабеля с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестскающей массами изоляцией в свинцовой или алюминиевой оболочке сечением q = (ЗЧ150) мм2; при Iдл. доп = 2Ч275А.

Выбор защиты линии, отходящей от ГПП к РП

В качестве защиты кабельной линии 10 кВ выберем двухступенчатую токовую защиту, первая ступень которой выполнена виде токовой отсечки, а вторая — в виде максимальной токовой защиты с независимой выдержкой времени.

Электрическая схема такой защиты приведена на рисунке 4.

Рисунок — 8

Чтобы рассчитать ток срабатывания реле КА1, КА2 и вычислить коэффициент чувствительности необходимо рассчитать ток короткого замыкания в конце кабельной линии, для этого составим схему замещения (см. рис. 5).

Вычислим базисные относительные сопротивления кабельной линии:

Рисунок — 9

Базисный ток (для точки К-З):

Ток КЗ в точке К — 3:

Вычислив значение постоянной времени Та по рис. 3.2 определим значение ударного коэффициента куд:

Ударный ток в точке К-З Уставку срабатывания реле КА1. КА2 (токовая отсечка) определим согласно (11.10) [2]:

где кнад — коэффициент надежности (примем 1,25); ксх — коэффициент схемы (для неполной звезды ксх=1); ктт — коэффициент трансформатора тока (ктт=400/5).

Согласно рекомендациям § 11.1 в данном случае ток срабатывания реле КАЗ, КА4 следует рассчитать следующим образом:

Для вычисления коэффициентов чувствительности защит рассчитаем ток двухфазного короткого замыкания (как минимальный ток КЗ) в конце кабельной линии.

При расчете режима двухфазного КЗ расчетное сопротивление цепи может быть получено путем удвоения расчетного сопротивления, вычисленного для трехфазного КЗ в конце кабельной линии. Это связано с тем, что эквивалентное сопротивление схем прямой и обратной последовательности можно считать одинаковыми.

Таким образом:

Коэффициент чувствительности токовой отсечки:

5 Коэффициент чувствительности МТЗ:

1. Справочник по электроснабжению промышленных предприятий, под ред. А. А. Фёдорова, Москва, изд. Энергия, 1973 г.

2. Князевский Б. А., Липкин Б. Ю., Электроснабжение промышленных предприятий. 3-е издание, Москва, Металлургия, 1986 г.

3. Зелинский А. А., Старкова Л. Е. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий: Учебное пособие для вузов. — М.: Энергоатомиздат, 1987 г.

4. Правила устройств электроустановок 6-е издание пер. и доп. с изм., Москва, Главгосэнергонадзор, 1998 г.

5. Липкин Б. Ю. Электроснабжение промышленных предприятий и установок. — М: Высшая школа, 1990;360 с.

6. Неклепаев Б. Н. Электрическая часть станций и подстанций — М: Энергоатомиздат, 1989 — 608 с.

Показать весь текст
Заполнить форму текущей работой