Π”ΠΈΠΏΠ»ΠΎΠΌ, курсовая, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°
ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚

ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ устойчивости ΠΊ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρƒ трансляции ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Ρƒ Π‘ ΠΈ родствСнным соСдинСниям

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Fersht, A.R. and C. Dingwall, Cysteinyl-tRNA synthetase from Escherichia coli does not need an editing mechanism to reject serine and alanine. High binding energy of small groups in specific molecular interactions. Biochemistry, 1979.18(7): p. 1245βˆ’9. Gentry, D.R., et al., Variable Sensitivity to Bacterial Methionyl-tRNA Synthetase Inhibitors Reveals Subpopulations of Streptococcus pneumoniae… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™
  • ΠžΠ‘Π©ΠΠ― Π₯ΠΠ ΠΠšΠ’Π•Π Π˜Π‘Π’Π˜ΠšΠ Π ΠΠ‘ΠžΠ’Π« ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹
  • Π¦Π΅Π»ΠΈ ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ Π½ΠΎΠ²ΠΈΠ·Π½Π° ΠΈ Π½Π°ΡƒΡ‡Π½Π°Ρ Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹
  • ΠŸΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ Π°ΠΏΡ€ΠΎΠ±Π°Ρ†ΠΈΡ Ρ€Π°Π±ΠΎΡ‚Ρ‹
  • Π›Π˜Π’Π•Π ΠΠ’Π£Π ΠΠ«Π™ ΠžΠ‘Π—ΠžΠ 

ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ устойчивости ΠΊ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρƒ трансляции ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΠ½Ρƒ Π‘ ΠΈ родствСнным соСдинСниям (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1) MccF являСтся сСриновой ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°Π·ΠΎΠΉ, которая обСспСчиваСт ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΊ ΠœΡΠ‘ Π·Π° ΡΡ‡Π΅Ρ‚ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° Π°ΠΌΠΈΠ΄Π½ΠΎΠΉ связи ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΎΠΉ ΠΈ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½ΠΎΠΉ частями Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ°. ΠšΡ€ΠΎΠΌΠ΅ МсБ MccF Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΡƒΠ΅Ρ‚ aaSA с ΠΏΠΎΠ»ΡΡ€Π½Ρ‹ΠΌΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ заряТСнными Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ.

2) ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° структура MccF ΠΈ Π²Ρ‹ΡΡΠ½Π΅Π½Π° молСкулярная ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π° узнавания субстрата. Π‘ΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ MccF ΠΊ Π°Π΄Π΅Π½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ субстратам опосрСдована остатком ароматичСской аминокислоты, располоТСнном Π² ΠΏΠ΅Ρ‚Π»Π΅ ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π΄ΠΎΠΌΠ΅Π½Π°ΠΌΠΈ Π±Π΅Π»ΠΊΠ°.

3) Π’ S66 сСмСйствС ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°Π· Π½Π°ΠΉΠ΄Π΅Π½Π° Π³Ρ€ΡƒΠΏΠΏΠ° Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΎΠ² MccF, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ содСрТат ΠΌΠ΅ΠΆΠ΄ΠΎΠΌΠ΅Π½Π½ΡƒΡŽ ΠΏΠ΅Ρ‚Π»ΡŽ с ΠΊΠΎΠ½ΡΠ΅Ρ€Π²Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌ ароматичСским остатком. Показано, Ρ‡Ρ‚ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ прСдставитСли этой Π³Ρ€ΡƒΠΏΠΏΡ‹ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΡƒΡŽΡ‚ МсБ ΠΈ aaSA. Π“ΠΎΠΌΠΎΠ»ΠΎΠ³ MccF ΠΈΠ· Π’. anthracis ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ сходной с MccF ΠΈΠ· Π•. coli структурой ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ дСйствия ΠΈ Π² Ρ„изиологичСских условиях Π·Π°Ρ‰ΠΈΡ‰Π°Π΅Ρ‚ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΎΡ‚ Ρ…имичСского Π°Π½Π°Π»ΠΎΠ³Π° МсБ.

ΠŸΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π² ΠΆΡƒΡ€Π½Π°Π»Π°Ρ…:

Tikhonov A, Kazakov Π’, Semenova Π•, Serebryakova М, Vondenhoff G, Van Aerschot A, Reader JS, Govorun VM, Severinov K. The mechanism of Microcin Π‘ resistance provided by the MccF peptidase. Journal of Biological Chemistry. 2010 Dec 3- 285(49): 37 944−52.

Agarwal V, Tikhonov A, Metlytskaya A, Severinov K, and Nair S. Structure and function of a serine carboxypeptidase adapted for degradation of the protein synthesis antibiotic microcin CI. Proceedings of the National Academy of Sciences USA. 2012 Mar 20- 109(12): 4425−30.

Nocek BTikhonov ABabnigg GMinyi GuZhou MMakarova KSVondenhoff GAerschot AVKwon KAnderson WFSeverinov KJoachimiak A. Structural and functional characterization of microcin Π‘ resistance peptidase MccF from Bacillus anthracis. Journal of Molecular Biology. 2012 Jul 20- 420(4−5): 366−83.

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

.

Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π±Ρ‹Π» ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ дСйствия МссР, Π·Π° ΡΡ‡Π΅Ρ‚ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°ΡŽΡ‚ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊ ΠœΡΠ‘. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π°ΠΌΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π°ΡΡˆΠΈΡ€ΡΡŽΡ‚ прСдставлСния ΠΎ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π΅ субстратной спСцифичности ΠΈ Π±ΠΈΠΎΡ…ΠΈΠΌΠΈΠΈ сСриновых ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°Π·. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΡ‹ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ»ΠΈ большоС количСство Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΎΠ² МссР срСди Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ· Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹Ρ… Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΎΠ² способны Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ субстраты МссР. Π­Ρ‚ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ косвСнно ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ распространСниС токсичных Π½Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†ΠΈΠ»-Π°Π΄Π΅Π½ΠΈΠ»Π°Ρ‚ΠΎΠ² Π² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… сообщСствах. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ физиологичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² прСдставляСтся интСрСсной Π½Π°ΡƒΡ‡Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ. !!" «!!» .

1. Klevens, R.M., et al., Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep, 2007.122(2): p. 160−6.

2. Kong, K.F., L. Schneper, and K. Mathee, Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS, 2010. 118(1): p. 1−36.

3. Nikaido, H., Multidrug resistance in bacteria. Annu Rev Biochem, 2009. 78: p. 119−46.

4. Auerbach, T., A. Bashan, and A. Yonath, Ribosomal antibiotics: structural basis for resistance, synergism and selectivity. Trends Biotechnol, 2004. 22(11): p. 570−6.

5. Drlica, K., et al., Quinolone-mediated bacterial death. Antimicrob Agents Chemother, 2008. 52(2): p. 385−92.

6. Poehlsgaard, J. and S. Douthwaite, The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol, 2005. 3(11): p. 870−81.

7. Hurdle, J.G., A.J. O’Neill, and I. Chopra, Prospects for Aminoacyl-tRNA Synthetase Inhibitors as New Antimicrobial Agents. Antimicrob Agents Chemother, 2005. 49(12): p. 4821−4833.

8. Ibba, M. and D. Soil, Aminoacyl-tRNA synthesis. Annu Rev Biochem, 2000. 69: p. 617−50.

9. Hong, K.W., et al., Transfer RNA-dependent cognate amino acid recognition by an aminoacyl-tRNA synthetase. EMBO J, 1996. 15(8): p. 1983;91.

10. Ruff, M., et al., Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA (Asp). Science, 1991. 252(5013): p. 1682−9.

11. Cusack, S., et al., A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature, 1990. 347(6290): p. 249−55.

12. Eriani, G., et al., Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature, 1990. 347(6289): p. 203−6.

13. Burbaum, J.J. and P. Schimmel, Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem, 1991. 266(26): p. 16 965−8.

14. Arnez, J.G. and D. Moras, Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci, 1997. 22(6): p. 211−6.

15. Beuning, P.J., et al., Specific atomic groups and RNA helix geometry in acceptor stem recognition by a tRNA synthetase. Proc Natl Acad Sci USA, 1997. 94(19): p. 10 150−4.

16. Ochsner, U.A., et al., Aminoacyl-tRNA synthetases: essential and still promising targets for new anti-infective agents. Expert Opin Investig Drugs, 2007. 16(5): p. 573−93.

17. Giege, R., M. Sissler, and C. Florentz, Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res, 1998. 26(22): p. 5017−35.

18. Giege, R., J.D. Puglisi, and C. Florentz, tRNA structure and aminoacylation efficiency. Prog Nucleic Acid Res Mol Biol, 1993. 45: p. 129−206.

19. Ling, J., N. Reynolds, and M. Ibba, Aminoacyl-tRNA synthesis and translational quality control. Annu Rev Microbiol, 2009. 63: p. 61−78.

20. Nicholas, H.B., Jr. and W.H. McClain, Searching tRNA sequences for relatedness to aminoacyl-tRNA synthetase families. J Mol Evol, 1995. 40(5): p. 482−6.

21. Ibba, M., et al., Transfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis. Nucleic Acids Res, 1999. 27(18): p. 3631−7.

22. Fersht, A.R. and C. Dingwall, Cysteinyl-tRNA synthetase from Escherichia coli does not need an editing mechanism to reject serine and alanine. High binding energy of small groups in specific molecular interactions. Biochemistry, 1979.18(7): p. 1245−9.

23. Schmidt, E. and P. Schimmel, Mutational isolation of a sieve for editing in a transfer RNA synthetase. Science, 1994. 264(5156): p. 265−7.

24. Ibba, M. and D. Soil, Quality control mechanisms during translation. Science, 1999. 286(5446): p. 1893−7.

25. Farrow, M.A., B.E. Nordin, and P. Schimmel, Nucleotide determinants for tRNA-dependent amino acid discrimination by a class I tRNA synthetase. Biochemistry, 1999. 38(51): p. 16 898−903.

26. Eldred, E.W. and P.R. Schimmel, Rapid deacylation by isoleucyl transfer ribonucleic acid synthetase of isoleucine-specific transfer ribonucleic acid aminoacylated with valine. J Biol Chem, 1972. 247(9): p. 2961−4.

27. Jakubowski, H. and E. Goldman, Editing of errors in selection of amino acids for protein synthesis. Microbiol Rev, 1992. 56(3): p. 412−29.

28. Jakubowski, H., Aminoacyl thioester chemistry of class II aminoacyl-tRNA synthetases. Biochemistry, 1997. 36(37): p. 11 077−85.

29. Calendar, R. and P. Berg, D-Tyrosyl RNA: formation, hydrolysis and utilization for protein synthesis. J Mol Biol, 1967. 26(1): p. 39−54.

30. Ferri-Fioni, M.L., et al., Identification in archaea of a novel D-Tyr-tRNATyr deacylase. J Biol Chem, 2006. 281(37): p. 27 575−85.

31. Wydau, S., et al., GEK1, a gene product of Arabidopsis thaliana involved in ethanol tolerance, is a D-aminoacyl-tRNA deacylase. Nucleic Acids Res, 2007. 35(3): p. 930−8.

32. An, S. and K. Musier-Forsyth, Trans-editing of Cys-tRNAPro by Haemophilus influenzae YbaK protein. J Biol Chem, 2004. 279(41): p. 42 359−62.

33. Ahel, I., et al., Trans-editing of mischarged tRNAs. Proc Natl Acad Sci USA, 2003. 100(26): p. 15 422−7.

34. Korencic, D., et al., A freestanding proofreading domain is required for protein synthesis quality control in Archaea. Proc Natl Acad Sci USA, 2004. 101(28): p. 10 260−5.

35. Wilcox, M., Gamma-glutamyl phosphate attached to glutamine-specific tRNA. A precursor of glutaminyl-tRNA in Bacillus subtilis. Eur J Biochem, 1969. 11(3): p. 405−12.

36. Schon, A., H. Hottinger, and D. Soil, Misaminoacylation and trans amidation are required for protein biosynthesis in Lactobacillus bulgaricus. Biochimie, 1988. 70(3): p. 391−4.

37. Schon, A., et al., Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature, 1988. 331(6152): p. 187−90.

38. Stanzel, M., A. Schon, and M. Sprinzl, Discrimination against misacylated tRNA by chloroplast elongation factor Tu. Eur J Biochem, 1994. 219(1−2): p. 435−9.

39. Curnow, A.W., M. Ibba, and D. Soli, tRNA-dependent asparagine formation. Nature, 1996. 382(6592): p. 589−90.

40. Schulze, J.O., et al., Crystal structure of a non-discriminating glutamyl-tRNA synthetase. J Mol Biol, 2006. 361(5): p. 888−97.

41. Withey, J.H. and D.I. Friedman, A salvage pathway for protein structures: tmRNA and transtranslation. Annu Rev Microbiol, 2003. 57: p. 101−23.

42. Meinnel, T., Y. Mechulam, and S. Blanquet, Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli. Biochimie, 1993. 75(12): p. 1061−75.

43. Amberg, R., et al., Selenocysteine synthesis in mammalia: an identity switch from tRNA (Ser) to tRNA (Sec). J Mol Biol, 1996. 263(1): p. 8−19.

44. Putzer, H., et al., Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis: induction, repression and growth-rate regulation. Mol Microbiol, 1995.16(4): p. 709−18.

45. Sankaranarayanan, R., et al., The structure of threonyl-tRNA synthetase-tRNA (Thr) complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell, 1999. 97(3): p. 371−81.

46. Rho, S.B., T.L. Lincecum, Jr., and S.A. Martinis, An inserted region of leucyl-tRNA synthetase plays a critical role in group I intron splicing. EMBO J, 2002. 21(24): p. 6874−81.

47. Wakasugi, K. and P. Schimmel, Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science, 1999. 284(5411): p. 147−51.

48. Chain, E.B. and G. Mellows, Pseudomonic acid. Part 1. The structure of pseudomonic acid A, a novel antibiotic produced by Pseudomonas fluorescens. J Chem Soc Perkin 1, 1977(3): p. 294−309.

49. Hughes, J. and G. Mellows, Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid. Biochem J, 1978. 176(1): p. 305−18.

50. Kim, S., et al., Aminoacyl-tRNA synthetases and their inhibitors as a novel family of antibiotics. Appl Microbiol Biotechnol, 2003. 61(4): p. 278−288.

51. Hurdle, J.G., et al., Analysis of mupirocin resistance and fitness in Staphylococcus aureus by molecular genetic and structural modeling techniques. Antimicrob Agents Chemother, 2004. 48(11): p. 4366−76.

52. Sutherland, R., et al., Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother, 1985. 27(4): p. 495−498.

53. Cookson, B.D., The emergence of mupirocin resistance: a challenge to infection control and antibiotic prescribing practice. J Antimicrob Chemother, 1998. 41(1): p. 11−8.

54. Davey, P., Eradication of nasal carriage of Staphylococcus aureus~is it cost-effective? J Hosp Infect, 1998. 40 Suppl B: p. S31−7.

55. Fujimura, S. and A. Watanabe, Survey of highand low-level mupirocin-resistant strains of methicillin-resistant Staphylococcus aureus in 15 Japanese hospitals. Chemotherapy, 2003. 49(1−2): p. 36−8.

56. Gilbart, J., C.R. Perry, and B. Slocombe, High-level mupirocin resistance in Staphylococcus aureus: evidence for two distinct isoleucyl-tRNA synthetases. Antimicrob Agents Chemother, 1993. 37(1): p. 32−8.

57. Brown, J.R., et al., Horizontal transfer of drug-resistant aminoacyl-transfer-RNA synthetases of anthrax and Gram-positive pathogens. EMBO Rep, 2003. 4(7): p. 692−8.

58. Beaulieu, D. and K.A. Ohemeng, Patents on bacterial tRNA synthetase inhibitors: January 1996 to March 1999. Expert Opinion on Therapeutic Patents, 1999. 9(8): p. 1021−1028.

59. Kanamaru, T., et al., In vitro and in vivo antibacterial activities of TAK-083, an agent for treatment of Helicobacter pylori infection. Antimicrob Agents Chemother, 2001. 45(9): p. 2455−9.

60. Werner, R.G., Uptake of indolmycin in gram-positive bacteria. Antimicrob Agents Chemother, 1980.18(6): p. 858−62.

61. Werner, R.G. and W. Reuter, Interaction of indolmycin in the metabolism of tryptophan in rat liver. Arzneimittelforschung, 1979. 29(1): p. 59−63.

62. Hurdle, J.G., A.J. O’Neill, and I. Chopra, Anti-staphylococcal activity of indolmycin, a potential topical agent for control of staphylococcal infections. J Antimicrob Chemother, 2004. 54(2): p. 549−52.

63. Brown, M.J., et al., The antimicrobial natural product chuangxinmycin and some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase. Bioorg Med Chem Lett, 2002.12(21): p. 3171−4.

64. Hutter, R., et al., Metabolic products of microorganisms. 51. On the mechanism of action of borrelidin-inhibition of the threonine incorporation in sRNAJ. Biochem Z, 1966. 344(2): p. 190−6.

65. Otoguro, K., et al., In vitro and in vivo antimalarial activities of a non-glycosidic 18-membered macrolide antibiotic, borrelidin, against drug-resistant strains of Plasmodia. J Antibiot (Tokyo), 2003. 56(8): p. 727−9.

66. Habibi, D., et al., Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia. Invest New Drugs, 2011.

67. Ruan, B., et al., A unique hydrophobic cluster near the active site contributes to differences in borrelidin inhibition among threonyl-tRNA synthetases. J Biol Chem, 2005. 280(1): p. 571−7.

68. Paetz, W. and G. Nass, Biochemical and immunological characterization of threonyl-tRNA synthetase of two borrelidin-resistant mutants of Escherichia coli K12. Eur J Biochem, 1973. 35(2): p. 331−7.

69. Oki, T., et al., Cispentacin, a new antifungal antibiotic. II. In vitro and in vivo antifungal activities. J Antibiot (Tokyo), 1989. 42(12): p. 1756−62.

70. Konishi, M., et al., Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J Antibiot (Tokyo), 1989. 42(12): p. 1749−55.

71. Snipes, C.E., C.-J. Chang, and H.G. Floss, Biosynthesis of the antibiotic granaticin. J Am Chem Soc, 1979.101(3): p. 701−706.

72. Chang, C.J., et al., Identity of the antitumor antibiotic litmomycin with granaticin A. J Antibiot (Tokyo), 1975. 28(2): p. 156.

73. Katagiri, K., et al., A new antibiotic. Furanomycin, an isoleucine antagonist. J Med Chem, 1967. 10(6): p. 1149−54.

74. Kohno, T., et al., Nonprotein amino acid furanomycin, unlike isoleucine in chemical structure, is charged to isoleucine tRNA by isoleucyl-tRNA synthetase and incorporated into protein. Journal of Biological Chemistry, 1990. 265(12): p. 6931−5.

75. Larsen, T.O., A. Svendsen, and J. Smedsgaard, Biochemical characterization of ochratoxin A-producing strains of the genus Penicillium. Appl Environ Microbiol, 2001. 67(8): p. 3630−5.

76. Moss, M.O., Mycotoxin review 1. Aspergillus and Penicillium. Mycologist, 2002. 16(03): p. 116−119.

77. Dirhaimer, G., Creppy, E.E., Mechanism of action ochratoxin A. IARC Sci Publ, 1991. 115: p. 171−86.

78. Bennett, I., et al., Synthesis and antibacterial properties of beta-diketone acrylate bioisosteres ofpseudomonic acid A. Bioorg Med Chem Lett, 1999. 9(13): p. 1847−52.

79. Broom, N.J.P., et al., The Chemistry of Pseudomonic Acid. 17. Dual-Action C-l Oxazole Derivatives of Pseudomonic Acid Having an Extended Spectrum of Antibacterial Activityf. J Med Chem, 1996. 39(18): p. 3596−3600.

80. Barker, J.J., Antibacterial drug discovery and structure-based design. Drug Discov Today, 2006.11(9−10): p. 391−404.

81. Ziegelbauer, K., P. Babczinski, and W. Schonfeld, Molecular mode of action of the antifungal beta-amino acid BAY 10−8888. Antimicrob Agents Chemother, 1998. 42(9): p. 2197−205.

82. Rock, F.L., et al., An Antifungal Agent Inhibits an Aminoacyl-tRNA Synthetase by Trapping tRNA in the Editing Site. Science, 2007. 316(5832): p. 1759−1761.

83. Nare, B., et al., Discovery of Novel Orally Bioavailable Oxaborole 6-Carboxamides That Demonstrate Cure in a Murine Model of Late-Stage Central Nervous System African Trypanosomiasis. Antimicrob Agents Chemother, 2010. 54(10): p. 4379−4388.

84. Jarvest, R.L., et al., Nanomolar Inhibitors of Staphylococcus aureus Methionyl tRNA Synthetase with Potent Antibacterial Activity against Gram-Positive Pathogens. J Med Chem, 2002. 45(10): p. 1959;1962.

85. Critchley, I.A., et al., Antibacterial Activity of REP8839, a New Antibiotic for Topical Use. Antimicrob Agents Chemother, 2005. 49(10): p. 4247−4252.

86. Kim, S.Y. and J. Lee, 3-D-QSAR study and molecular docking of methionyl-tRNA synthetase inhibitors. Bioorganic &Medicinal Chemistry, 2003.11(24): p. 5325−5331.

87. Gentry, D.R., et al., Variable Sensitivity to Bacterial Methionyl-tRNA Synthetase Inhibitors Reveals Subpopulations of Streptococcus pneumoniae with Two Distinct Methionyl-tRNA Synthetase Genes. Antimicrob Agents Chemother, 2003. 47(6): p. 1784−1789.

88. Beyer, D., et al., New Class of Bacterial Phenylalanyl-tRNA Synthetase Inhibitors with High Potency and Broad-Spectrum Activity. Antimicrob Agents Chemother, 2004. 48(2): p. 525−532.

89. Isono, K., et al., Ascamycin and dealanylascamycin, nucleoside antibiotics from Streptomyces sp. J Antibiot (Tokyo), 1984. 37(6): p. 670−2.

90. Osada, H. and K. Isono, Mechanism of action and selective toxicity of ascamycin, a nucleoside antibiotic. Antimicrob Agents Chemother, 1985. 27(2): p. 230−3.

91. Osada, H. and K. Isono, Purification and characterization of ascamycin-hydrolysing aminopeptidase from Xanthomonas citri. Biochem J, 1986. 233(2): p. 459−63.

92. Uramoto, M., et al., Isolation and characterization of phosmidosine. A new antifungal nucleotide antibiotic. J Antibiot (Tokyo), 1991. 44(4): p. 375−81.

93. Phillips, D.R., et al., Structure of the antifungal nucleotide antibiotic phosmidosine. The Journal of Organic Chemistry, 1993. 58(4): p. 854−859.

94. Sekine, M., et al., Synthesis of Chemically Stabilized Phosmidosine Analogues and the Structure-Activity Relationship of Phosmidosine. The Journal of Organic Chemistry, 2003. 69(2): p. 314−326.

95. Gause, G.F., Recent studies on albomycin, a new antibiotic. Br Med J, 1955. 2(4949): p. 11 779.

96. Benz, G., et al., Constitution of the Deferriform of the Albomycins SI, 62 and e. Angewandte Chemie International Edition in English, 1982. 21(7): p. 527−528.

97. Pramanik, A., et al., Albomycin is an effective antibiotic, as exemplified with Yersinia enterocolitica and Streptococcus pneumoniae. International Journal of Medical Microbiology, 2007. 297(6): p. 459−469.

98. Braun, V., et al., Sideromycins: tools and antibiotics. Biometals, 2009. 22(1): p. 3−13.

99. Braun, V., et al., Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium. J Bacterid, 1983. 156(1): p. 308−315.

100. Stefanska, A.L., et al., A potent seryl tRNA synthetase inhibitor SB-217 452 isolated from a Streptomyces species. J Antibiot (Tokyo), 2000. 53(12): p. 1346−53.

101. Tate, M.E., et al., Adenine N6-substituent of agrocin 84 determines its bacteriocin-like specificity. Nature, 1979. 280(5724): p. 697−9.

102. Gelvin, S.B., AGROBACTERIUM AND PLANT GENES INVOLVED IN T-DNA TRANSFER AND INTEGRATION. Annual Review of Plant Physiology and Plant Molecular Biology, 2000. 51(1): p. 223−256.

103. Kim, H. and S.K. Farrand, Characterization of the acc operon from the nopaline-type Ti plasmidpTiC58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84. J Bacterid, 1997. 179(23): p. 7559−72.

104. Ellis, J.G. and P.J. Murphy, Four new opines from crown gall tumours —Their detection and properties. Molecular and General Genetics MGG, 1981.181(1): p. 36−43.

105. MURPHY, P.J. and W.P. ROBERTS, A Basis for Agrocin 84 Sensitivity in Agrobacterium radiobacter. Journal of General Microbiology, 1979.114(1): p. 207−213.

106. Reader, J.S., et al., Major Biocontrol of Plant Tumors Targets tRNA Synthetase. Science, 2005. 309(5740): p. 1533.

107. Penyalver, R., B. Vicedo, and M.M. Lopez, Use of the Genetically Engineered Agrobacterium Strain K1026 for Biological Control of Crown Gall. European Journal of Plant Pathology, 2000. 106(9): p. 801−810.

108. Garcia-Bustos, J.F., N. Pezzi, and E. Mendez, Structure and mode of action of microcin 7, an antibacterial peptide produced by Escherichia coli. Antimicrob Agents Chemother, 1985. 27(5): p. 791−797.

109. Cursino, L., et al., Exoproducts of the Escherichia coli strain H22 inhibiting some enteric pathogens both in vitro and in vivo. Journal of Applied Microbiology, 2006.100(4): p. 821−829.

110. Kurepina, N.E., et al., Cloning and mapping of the genetic determinants for microcin C51 production and immunity. Molecular and General Genetics MGG, 1993. 241(5): p. 700−706.

111. Guijarro, J.I., et al., Chemical Structure and Translation Inhibition Studies of the Antibiotic Microcin C7. Journal of Biological Chemistry, 1995. 270(40): p. 23 520−23 532.

112. Gonzalez-Pastor, J.E., et al., Structure and organization of plasmid genes required to produce the translation inhibitor microcin C7. J Bacteriol, 1995. 177(24): p. 7131−40.

113. Smajs, D., et al., Complete sequence of low-copy-number plasmid MccC7-H22 of probiotic Escherichia coli H22 and the prevalence of mcc genes among human E. coli. Plasmid, 2008. 59(1): p. 1−10.

114. Fomenko, D.E., et al., Microcin C51 plasmid genes: possible source of horizontal gene transfer. Antimicrob Agents Chemother, 2003. 47(9): p. 2868−74.'.

115. Gonzalez-Pastor, J.E., J.L. San Millan, and F. Moreno, The smallest known gene. Nature, 1994. 369(6478): p. 281.

116. Roush, R.F., et al., Maturation of an Escherichia coli Ribosomal Peptide Antibiotic by ATP-Consuming N-P Bond Formation in Microcin C7. J Am Chem Soc, 2008. 130(11): p. 3603−3609.

117. Metlitskaya, A., et al., Maturation of the Translation Inhibitor Microcin C. J Bacteriol, 2009. 191(7): p. 2380−2387.

118. Regni, C.A., et al., How the MccB bacterial ancestor of ubiquitin El initiates biosynthesis of the microcin C7 antibiotic. EMBO J, 2009. 28(13): p. 1953;1964.

119. Severinov, K. and S.K. Nair, Microcin C: biosynthesis and mechanisms of bacterial resistance. Future Microbiol, 2012. 7(2): p. 281−289.

120. Novikova, M., et al., The Escherichia coli Yej Transporter Is Required for the Uptake of Translation Inhibitor Microcin C. J Bacteriol, 2007. 189(22): p. 8361−8365.

121. Eswarappa, S.M., et al., The yejABEF operon of Salmonella confers resistance to antimicrobial peptides and contributes to its virulence. Microbiology, 2008.154(2): p. 666−678.

122. Kazakov, T., et al., Escherichia coli Peptidase A, B, or N Can Process Translation Inhibitor Microcin C. J Bacteriol, 2008. 190(7): p. 2607−2610.

123. Metlitskaya, A., et al., Aspartyl-tRNA Synthetase Is the Target of Peptide Nucleotide Antibiotic Microcin C. Journal of Biological Chemistry, 2006. 281(26): p. 18 033−18 042.

124. Novoa, M.A., et al., Cloning and mapping of the genetic determinants for microcin C7 production and immunity. J Bacterid, 1986.168(3): p. 1384−1391.

125. Novikova, M., et al., MccE Provides Resistance to Protein Synthesis Inhibitor Microcin C by Acetylating the Processed Form of the Antibiotic. Journal of Biological Chemistry, 2010. 285(17): p. 12 662−12 669.

126. Agarwal, V., et al., Structural Basis for Microcin C7 Inactivation by the MccE Acetyltransferase. Journal of Biological Chemistry, 2011. 286(24): p. 21 295−21 303.

127. Fomenko, D., A. Veselovskii, and I. Khmel, Regulation of microcin C51 operon expression: the role of global regulators of transcription. Res Microbiol, 2001.152(5): p. 469−479.

128. Moreno, F., et al., The regulation of microcin B, C and J operons. Biochimie, 2002. 84(5−6): p.

129. Severinov, K., et al., Low-molecular-weight post-translationally modified microcins. Mol Microbiol, 2007. 65(6): p. 1380−1394.

130. Forrest, A.K., et al., Aminoalkyl adenylate and aminoacyl sulfamate intermediate analogues differing greatly in affinity for their cognate Staphylococcus aureus aminoacyl tRNA synthetases. Bioorg Med Chem Lett, 2000. 10(16): p. 1871−4.

131. Belrhali, H., et al., Crystal structures at 2.5 angstrom resolution of seryl-tRNA synthetase complexed with two analogs of seryl adenylate. Science, 1994. 263(5152): p. 1432−1436.

132. Cisar, J.S., et al., Exploiting Ligand Conformation in Selective Inhibition of Non-Ribosomal Peptide Synthetase Amino Acid Adenylation with Designed Macrocyclic Small Molecules. J Am Chem Soc, 2007. 129(25): p. 7752−7753.

133. Schimmel, P., J. Tao, and J. Hill, Aminoacyl tRNA synthetases as targets for new anti-infectives. The FASEB Journal, 1998. 12(15): p. 1599−1609.

134. Ubukata, M.O., H.- Isodo, K., Synthesis and biological activity of nucleoside antibiotics, ascamycin and its amino acid analogs. Nucleic Acids Symp Ser, 1985(16): p. 81−3.

135. Van de Vijver, P., et al., Antibacterial 5 P., et al., 1.,): p. 81−3.adenosines. Bioorganic &Medicinal Chemistry, 2009.17(1): p. 260−269.

136. Van de Vijver, P., et al., Synthetic Microcin C Analogs Targeting Different Aminoacyl-tRNA Synthetases. J Bacterid, 2009.191(20): p. 6273−6280.

137. Vondenhoff, G.H.M., et al., Extended targeting potential and improved synthesis of Microcin C analogs as antibacterials. Bioorganic &Medicinal Chemistry, 2011. 19(18): p. 5462−5467.

138. Vondenhoff, G.H.M., et al., Characterization of Peptide Chain Length and Constituency Requirements for YejABEF-Mediated Uptake of Microcin C Analogues. J Bacteriol, 2011. 193(14): p.

139. Korza, H.J. and M. Bochtler, Pseudomonas aeruginosa LD-Carboxypeptidase, a Serine Peptidase with a Ser-His-Glu Triad and a Nucleophilic Elbow. Journal of Biological Chemistry, 2005. 280(49): p. 40 802−40 812.

140. Page, M. and E. Di Cera, Serine peptidases: Classification, structure and function. Cellular and Molecular Life Sciences, 2008. 65(7): p. 1220−1236.

141. Schechter, I. and A. Berger, On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun, 1967. 27(2): p. 157−62.521.529.3618−3623.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ