Π”ΠΈΠΏΠ»ΠΎΠΌ, курсовая, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°
ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚

Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… a7 Π½ΠΈΠΊΠΎΡ‚ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Π°Ρ†Π΅Ρ‚ΠΈΠ»Ρ…ΠΎΠ»ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ²

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π§ ΠΈΠ·Π±ΠΈΡ€Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ гистохимичСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π°7 нАΠ₯Π , основанного Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ флуорСсцСнтно-ΠΌΠ΅Ρ‡Π΅Π½ΠΎΠ³ΠΎ Π°-нСйротоксина Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… ΠΈ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΡ… Π°-нСйротоксинов Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ спСцифичСских ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Π°ΠΏΡ€ΠΎΠ±Π°Ρ†ΠΈΠ΅ΠΉ этого ΠΌΠ΅Ρ‚ΠΎΠ΄Π° для исслСдования экспрСссии ΠΈ Ρ‚ранспорта Π°7 нАΠ₯Π  Π½Π΅ΠΉΡ€ΠΎΠ½Π°ΠΌΠΈ спинномозговых Π³Π°Π½Π³Π»ΠΈΠ΅Π² крыс. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° диссСртации. ДиссСртационная… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок сокращСний

2

Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅.

3 ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ….

3.1 НикотиновыС Π°Ρ†Π΅Ρ‚ΠΈΠ»Ρ…ΠΎ Π»ΠΈΠ½ΠΎΠ²Ρ‹Π΅ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ (нАΠ₯Π ).

3.1.1 Π‘Ρ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ нАΠ₯Π .

3.1.1.1 Π­ΠΊΡΡ‚Ρ€Π°Ρ†Π΅Π»Π»ΡŽΠ»ΡΡ€Π½Ρ‹ΠΉ Π΄ΠΎΠΌΠ΅Π½.

3.1.1.1.1 АΠ₯-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ Π±Π΅Π»ΠΊΠΈ — модСль ΡΠΊΡΡ‚Ρ€Π°Ρ†Π΅Π»Π»ΡŽΠ»ΡΡ€Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° нАΠ₯Π .

3.1.1.1.2 Участки связывания Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ².

3.1.1.2 ВрансмСмбранный Π΄ΠΎΠΌΠ΅Π½.

3.1.1.3 Π’Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ Π΄ΠΎΠΌΠ΅Π½.

3.1.2 Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ нАΠ₯Π .

3.1.3 ΠœΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹ΠΉ Ρ‚ΠΈΠΏ нАΠ₯Π .

3.1.4 ΠΠ΅ΠΉΡ€ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ Ρ‚ΠΈΠΏ нАΠ₯Π .

3.1.4.1 ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ Π°7-су Π±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ нАΠ₯Π .

3.1.4.2 РаспространСниС Π°7 нАΠ₯Π .

3.1.4.2.1 Π’ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмС.

3.1.4.2.2 Π’Π½Π΅ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы.

3.1.4.3 Бвязь Π°7 нАΠ₯Π  с Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ.:.

3.1.4.3.1 ШизофрСния.

3.1.4.3.2 Π‘ΠΎΠ»Π΅Π·Π½ΡŒ ΠΠ»ΡŒΡ†Π³Π΅ΠΉΠΌΠ΅Ρ€Π°.

3.1.5 ДСтСкция нАΠ₯Π .

3.1.5.1 Испо льзов Π°Π½ΠΈΠ΅ Π°Π½Ρ‚ΠΈΡ‚Π΅Π».

3.1.5.1.1 Π˜ΠΌΠΌΡƒΠ½ΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… участков нАΠ₯Π .

3.1.5.1.2 АнтитСла, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π° Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€.

3.1.5.1.3 АнтитСла, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎ экспрСссированныС Π΄ΠΎΠΌΠ΅Π½Ρ‹ нАΠ₯Π .

3.1.5.1.4 АнтитСла, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π° ΡΠΈΠ½Ρ‚СтичСскиС ΠΏΠ΅Ρ‚ΠΈΠ΄Ρ‹.

3.1.5.1.5 ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ использования Π°Π½Ρ‚ΠΈΡ‚Π΅Π» для исслСдований.

3.1.5.1.6 Π₯арактСристика спСцифичности Π°Π½Ρ‚ΠΈΡ‚Π΅Π».

3.1.5.2 ИспользованиС токсинов.

3.1.5.2.1 Π°-ΠšΠΎΠ½ΠΎΡ‚ΠΎΠΊΡΠΈΠ½Ρ‹.

3.1.5.2.2 Π°-НСйротоксины Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°.

4 ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹.

4.1 БинтСтичСскиС ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Ρ‹.

4.2 По Π»ΠΈΡŽΡ‚ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°.

4.3 ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π°-кобратоксина (Π‘Π’Π₯).

4.4 ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ исслСдований:.

4.5 Π’Π²Π΅Ρ€Π΄ΠΎΡ„Π°Π·Π½Ρ‹ΠΉ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· (ИЀА).

4.6 Π’Π²Π΅Ρ€Π΄ΠΎΡ„Π°Π·Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π±ΠΈΠΎΡ‚-Π‘Π’Π₯.

4.7 ВСстСрн-Π±Π»ΠΎΡ‚Ρ‚ΠΈΠ½Π³.

4.7.1 ΠŸΠΎΠ»ΠΈΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°.4Π•

4.7.1.1 АнтигСны: ΡΠΊΡΡ‚Ρ€Π°Ρ†Π΅Π»Π»ΡŽΠ»ΡΡ€Π½Ρ‹ΠΉ Π΄ΠΎΠΌΠ΅Π½ Π°7(7—208) ΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ элСктричСского ΠΎΡ€Π³Π°Π½Π° ската Π’. саШΠͺгшса.

4.7.1.2 АнтигСны: ΡΠΊΡΡ‚Ρ€Π°Ρ†Π΅Π»Π»ΡŽΠ»ΡΡ€Π½Ρ‹ΠΉ Π΄ΠΎΠΌΠ΅Π½ Π°7(8−208), Π³ΠΎΠΌΠΎΠ³Π΅Π½Π°Ρ‚Ρ‹ ΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Π΅ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ Π½Π΅Ρ€Π²Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ.

4.7.2 Π‘ΠΈΠΎΡ‚ΠΈΠ½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π°-кобратоксин (Π±ΠΈΠΎΡ‚-Π‘Π’Π₯).

4.8 Π Π°Π΄ΠΈΠΎΠ»ΠΈΠ³Π°Π½Π΄Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ·.

4.8.1 ΠŸΡ€ΡΠΌΠΎΠ΅ связываниС.

4.8.2 ΠšΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΎΠ΅ связываниС.

4.9 «Π€Π»ΡƒΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹ΠΉ» Π°Π½Π°Π»ΠΈΠ· ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ связывания.

4.10 Π“Π΅Π½ΠΎΡ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅.

4.11 ГистохимичСскоС ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅.

4.11.1 ΠžΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ фиксированных срСзов с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°Π½Ρ‚ΠΈΡ‚Π΅Π».

4.11.2 ΠžΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Ρ„ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… срСзов с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°Π½Ρ‚ΠΈΡ‚Π΅Π».

4.11.3 ΠžΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ фиксированных ΠΈ ΠΏΠ°Ρ€Π°Ρ„ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… срСзов с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π±ΠΈΠΎΡ‚-Π‘Π’Π₯.

4.11.4 ΠžΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ криостатных срСзов с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΈ Π±ΠΈΠΎΡ‚-Π‘Π’Π₯.

4.11.5 ΠžΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ криостатных срСзов с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΈ Π1Π΅Ρ…Π°

4.11.5.1 ΠŸΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° Ρ‚ΠΊΠ°Π½Π΅ΠΉ.

4.11.5.1.1 БвСТСзамороТСнная Ρ‚ΠΊΠ°Π½ΡŒ.

4.11.5.1.2 Ѐиксированная Ρ‚ΠΊΠ°Π½ΡŒ.

4.11.5.2 ГистохимичСскоС ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅.

4.12 ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π΄Π°Π½Π½Ρ‹Ρ….:.

4.13 Анализ гомологии.

4.14 ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ пространствСнной структуры ΡΠΊΡΡ‚Ρ€Π°Ρ†Π΅Π»Π»ΡŽΠ»ΡΡ€Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° нАΠ₯Π .

5 Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅.

5.1 ИсслСдования с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°Π½Ρ‚ΠΈΡ‚Π΅Π».

5.1 Π› ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π».

5.1.2 ВСстированиС Π°Π½Ρ‚ΠΈΡ‚Π΅Π» Π½Π° «ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… систСмах».

5.1.3 ВСстированиС Π°Π½Ρ‚ΠΈΡ‚Π΅Π» с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ².

5.2, ИсслСдов ания с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ токсинов.

5.2.1 Π™ΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π°Π•^.

5.2.2 Π‘ΠΈΠΎΡ‚ΠΈΠ½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π‘Π’Π₯.

5.2.3 ЀлуорСсцСнтно-ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ΠΉ Π°Π’^.

5.2.3.1 ΠœΠ΅Ρ‚ΠΎΠ΄ гистохимичСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ.

5.2.3.2 ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ флуорСсцСнтно-ΠΌΠ΅Ρ‡Π΅Π½ΠΎΠ³ΠΎ Π°

§ 1 для гистохимичСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π°7 нАΠ₯Π .

5.2.3.2.1 Π‘ΠΏΠΈΠ½Π½ΠΎΠΌΠΎΠ·Π³ΠΎΠ²Ρ‹Π΅ Π³Π°Π½Π³Π»ΠΈΠΈ.

5.2.3.2.2 Π₯арактСристика Π°7 нАΠ₯Π -ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² спинномозговых Π³Π°Π½Π³Π»ΠΈΠ΅Π².

5.2.3.2.3 НСйроны ΠΊΠ°ΠΊΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ‚ΠΈΠΏΠΎΠ² ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‚ Π°7 нАΠ₯Π ?.

5.2.3.2.4 ΠΠΊΡΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ транспорт Π°7 нАΠ₯Π .

6

Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

7

Π›ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π°.

1

Бписок сокращСний

Alexa-aBgt — Alexa Fluor 488 — ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ΠΉ aBgt

CGRP — calcitonin gene-related peptide — ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉΡΡ ΠΏΡ€ΠΈ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΌ сплайсингС Π³Π΅Π½Π° ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚ΠΎΠ½ΠΈΠ½Π°

Π‘Π’Π₯ — Π°-кобратоксин (Naja kaouthia)

DAPI — 4,6-Π΄ΠΈΠ°ΠΌΠΈΠ΄ΠΈΠ½ΠΎ-2-Ρ„Π΅Π½ΠΈΠ»ΠΈΠ½Π΄ΠΎΠ» Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ…Π»ΠΎΡ€ΠΈΠ΄

EAMG — ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ-индуцированная аутоиммунная миастСния

FITC — флуорСсцСинизотиоцианат

FITC-CTX — FITC-ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ΠΉ Π‘Π’Π₯

GFAP — glial fibrillary acidic protein — Π³Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ фибриллярный кислый Π±Π΅Π»ΠΎΠΊ IB4 — ΠΈΠ·ΠΎΠ»Π΅ΠΊΡ‚ΠΈΠ½ Π’

ΠœΠ’Π  — myelin basic protein — основной Π±Π΅Π»ΠΎΠΊ ΠΌΠΈΠ΅Π»ΠΈΠ½Π° MIR — main immunogenic region — Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ Ρ€Π΅Π³ΠΈΠΎΠ½ NF200 — высокомолСкулярный Π±Π΅Π»ΠΎΠΊ (200 ΠΊΠ”Π°) Π½Π΅ΠΉΡ€ΠΎΡ„ΠΈΠ»Π°ΠΌΠ΅Π½Ρ‚ΠΎΠ² NTII — Π°-нСйротоксин II (Naja oxiana)

PGP 9.5 — protein gene product 9.5 — цитоплазматичСский Π±Π΅Π»ΠΎΠΊ Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² PVDF — ΠΏΠΎΠ»ΠΈΠ²ΠΈΠ½ΠΈΠ»ΠΈΠ΄Π΅Π½Π΄ΠΈΡ„Ρ‚ΠΎΡ€ΠΈΠ΄

TRPV1 — капсаицин-Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²Π°Π½ΠΈΠ»ΠΎΠΈΠ΄Π½Ρ‹ΠΉ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ YR1, относящийся ΠΊ ΡΠ΅ΠΌΠ΅ΠΉΡΡ‚Π²Ρƒ нСсСлСктивных ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² TRP Π°7-/— ΠΌΡ‹ΡˆΠΈ — ΠΌΡ‹ΡˆΠΈ, Π³ΠΎΠΌΠΎΠ·ΠΈΠ³ΠΎΡ‚Π½Ρ‹Π΅ ΠΏΠΎ Π½ΠΎΠΊΠ°ΡƒΡ‚Π½ΠΎΠΌΡƒ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρƒ Π³Π΅Π½Π° Π°7-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ нАΠ₯Π  Π°7+/+ ΠΌΡ‹ΡˆΠΈ — ΠΌΡ‹ΡˆΠΈ, Π³ΠΎΠΌΠΎΠ·ΠΈΠ³ΠΎΡ‚Π½Ρ‹Π΅ ΠΏΠΎ Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΌΡƒ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρƒ Π³Π΅Π½Π° Π°7-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ нАΠ₯Π  aBgt — Π°-бунгаротоксин (Bungarus multicinctus) aBgt-BP — aBgt-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ Π±Π΅Π»ΠΎΠΊ АΠ₯ — Π°Ρ†Π΅Ρ‚ΠΈΠ»Ρ…ΠΎΠ»ΠΈΠ½

АΠ₯Π‘ — Π°Ρ†Π΅Ρ‚ΠΈΠ»Ρ…ΠΎΠ»ΠΈΠ½ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ Π±Π΅Π»ΠΎΠΊ Π±ΠΈΠΎΡ‚-Π‘Π’Π₯ — Π±ΠΈΠΎΡ‚ΠΈΠ½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π‘Π’Π₯ ББА — Π±Ρ‹Ρ‡ΠΈΠΉ ΡΡŒΡ‚ΠΎΡ€ΠΎΡ‚ΠΎΡ‡Π½Ρ‹ΠΉ Π°Π»ΡŒΠ±ΡƒΠΌΠΈΠ½ Π“ΠΠœΠš — Ρƒ-аминомасляная кислота Π—Π€ — зубчатая фасция

ИЀА — Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ„Π°Π·Π½Ρ‹ΠΉ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠšΠ—Π­ — ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-зависимый эпитоп мАВ — ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π° нАΠ₯Π  — Π½ΠΈΠΊΠΎΡ‚ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Π°Ρ†Π΅Ρ‚ΠΈΠ»Ρ…ΠΎΠ»ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€

ΠŸΠΠΠ“ — ΠΏΠΎΠ»ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°ΠΌΠΈΠ΄Π½Ρ‹ΠΉ гСль пАВ — ΠΏΠΎΠ»ΠΈΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π° ПЦР — полимСразная цСпная рСакция Π’Π‘Π£ — токсин-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ участок ЀНО — Ρ„Π°ΠΊΡ‚ΠΎΡ€ Π½Π΅ΠΊΡ€ΠΎΠ·Π° ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ЦНБ — Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Π°Ρ нСрвная систСма

Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… a7 Π½ΠΈΠΊΠΎΡ‚ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Π°Ρ†Π΅Ρ‚ΠΈΠ»Ρ…ΠΎΠ»ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹. Π‘Ρ€Π΅Π΄ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π½ΠΈΠΊΠΎΡ‚ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Π°Ρ†Π΅Ρ‚ΠΈΠ»Ρ…ΠΎΠ»ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² (нАΠ₯Π ) особоС мСсто Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ‚ Π³ΠΎΠΌΠΎΠΏΠ΅Π½Ρ‚Π°ΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π°7 нАΠ₯Π . Π”Π°Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ‚ΠΈΠΏ, вСроятно, являСтся Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСнным нАΠ₯Π  Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅, Π³Π΄Π΅ ΠΎΠ½ Π²ΡΡ‚рСчаСтся ΠΊΠ°ΠΊ Π² Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмС, Ρ‚Π°ΠΊ ΠΈ Π·Π° Π΅Π΅ ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ. Он Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠ½ΠΈΠΊΠ°Π»Π΅Π½ своСй аминокислотной ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ, фармакологичСским ΠΏΡ€ΠΎΡ„ΠΈΠ»Π΅ΠΌ ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ высокой ΠΏΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΠΎΡΡ‚ΡŒΡŽ для ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ. ИзмСнСниС уровня Π°7 нАΠ₯Π  Π² Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠΌ ΠΌΠΎΠ·Π³Π΅ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈ ΡˆΠΈΠ·ΠΎΡ„Ρ€Π΅Π½ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ связано с Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ холинСргичСской ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ ΠΈ ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½Ρ‹Ρ… способностСй ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΈΡ… Π½Π΅ΠΉΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… заболСваниях ΠΊΠ°ΠΊ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠΠ»ΡŒΡ†Π³Π΅ΠΉΠΌΠ΅Ρ€Π° ΠΈ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π° Π’ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ врСмя появились Ρ€Π°Π±ΠΎΡ‚Ρ‹, ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ измСнСния уровня нАΠ₯Π  Π½Π° Ρ„ΠΎΡ€ΠΌΠ΅Π½Π½Ρ‹Ρ… элСмСнтах ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… патологичСских состояниях. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΊΠ°ΠΊ для диагностики, Ρ‚Π°ΠΊ ΠΈ Π΄Π»Ρ исслСдования ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² возникновСния ΠΈ ΠΏΡ€ΠΎΡ‚Скания Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π°Π΄Π΅ΠΆΠ½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² для обнаруТСния ΠΈ ΠΊΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΠΎΠ³ΠΎ опрСдСлСния уровня Π°7 нАΠ₯Π .

ΠŸΡ€ΠΈ постановкС ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ классичСским ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ являСтся использованиС Π°Π½Ρ‚ΠΈΡ‚Π΅Π», ΠΎΠ΄Π½Π°ΠΊΠΎ Π½Π΅Π΄Π°Π²Π½ΠΈΠ΅ исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π°7-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ нАΠ₯Π  нСспСцифичСски ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°ΡŽΡ‚ Ρ‚ΠΊΠ°Π½ΠΈ Π½ΠΎΠΊΠ°ΡƒΡ‚Π½Ρ‹Ρ… ΠΏΠΎ Π΄Π°Π½Π½ΠΎΠΌΡƒ Π³Π΅Π½Ρƒ ΠΌΡ‹ΡˆΠ΅ΠΉ (Π°7-/—). Для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ надёТности Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π² ΡΠΎΡ‡Π΅Ρ‚Π°Π½ΠΈΠΈ с Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°ΠΌΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ Π°-нСйротоксины ΠΈΠ· ΡΠ΄ΠΎΠ² Π·ΠΌΠ΅ΠΉ, ΡΠ²Π»ΡΡŽΡ‰ΠΈΠ΅ΡΡ высокоаффинными спСцифичСскими Π»ΠΈΠ³Π°Π½Π΄Π°ΠΌΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠ΄Ρ‚ΠΈΠΏΠΎΠ² нАΠ₯Π . Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя токсины Ρ€Π΅Π΄ΠΊΠΎ ΠΈΠΌΠ΅ΡŽΡ‚ сродство Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΏΠΎΠ΄Ρ‚ΠΈΠΏΡƒ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ², Ρ‡Ρ‚ΠΎ часто затрудняСт ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΡŽ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², особСнно, учитывая ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π³ΠΎΠ΄Ρ‹ нАΠ₯Π  Π² Π½Π΅Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Ρ… для Π½ΠΈΡ… тканях, Π° Ρ‚Π°ΠΊΠΆΠ΅ большСС Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ ΠΈΡ… ΠΏΠΎΠ΄Ρ‚ΠΈΠΏΠΎΠ², Ρ‡Π΅ΠΌ Ρ€Π°Π½Π΅Π΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΎΡΡŒ. Π’ ΡΠ²ΡΠ·ΠΈ с ΡΡ‚ΠΈΠΌ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ являСтся Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠ·Π±ΠΈΡ€Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π°7 нАΠ₯Π .

ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. ЦСль настоящСго исслСдования состояла Π² Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² спСцифичСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°7 нАΠ₯Π  с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΈ Ρ‚оксинов. Π—Π°Π΄Π°Ρ‡Π°ΠΌΠΈ прСдставлСнной Ρ€Π°Π±ΠΎΡ‚Ρ‹ стали ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ Ρ‚СстированиС Π½Π°Π±ΠΎΡ€Π° ΠΏΠΎΠ»ΠΈΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΏΡ€ΠΎΡ‚ΠΈΠ² синтСтичСских Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π°7-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ нАΠ₯Π , Π° Ρ‚Π°ΠΊΠΆΠ΅ использованиС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… Π°-нСйротоксинов ΠΈΠ· ΡΠ΄ΠΎΠ² Π·ΠΌΠ΅ΠΉ, Π² Ρ‚ΠΎΠΌ числС ΠΈΡ… ΠΊΠΎΠΌΠΌΠ΅Ρ€Ρ‡Π΅ΡΠΊΠΈ доступных ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚ΠΎΠ². ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΡΡ‚ΡŒ этих инструмСнтов для поставлСнной Ρ†Π΅Π»ΠΈ исслСдовалась Π² Ρ€ΡΠ΄Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠ°ΠΊ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ…, Ρ‚Π°ΠΊ ΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… Π°7 нАΠ₯Π . Π“Π»Π°Π²Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ стала Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°.

β€’-Π§ ΠΈΠ·Π±ΠΈΡ€Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ гистохимичСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π°7 нАΠ₯Π , основанного Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ флуорСсцСнтно-ΠΌΠ΅Ρ‡Π΅Π½ΠΎΠ³ΠΎ Π°-нСйротоксина Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… ΠΈ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΡ… Π°-нСйротоксинов Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ спСцифичСских ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Π°ΠΏΡ€ΠΎΠ±Π°Ρ†ΠΈΠ΅ΠΉ этого ΠΌΠ΅Ρ‚ΠΎΠ΄Π° для исслСдования экспрСссии ΠΈ Ρ‚ранспорта Π°7 нАΠ₯Π  Π½Π΅ΠΉΡ€ΠΎΠ½Π°ΠΌΠΈ спинномозговых Π³Π°Π½Π³Π»ΠΈΠ΅Π² крыс.

Научная Π½ΠΎΠ²ΠΈΠ·Π½Π° ΠΈ ΠΏΡ€Π°ΠΊΡ‚ичСская Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π’ Π½Π°ΡΡ‚оящСй Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½Π°Π±ΠΎΡ€ ΠΏΠΎΠ»ΠΈΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΏΡ€ΠΎΡ‚ΠΈΠ² синтСтичСских Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π°7-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ нАΠ₯Π  ΠΈ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ комплСксноС тСстированиС ΠΈΡ… ΡΠΏΠ΅Ρ†ΠΈΡ„ичности с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… ΡΠΊΡΡ‚Ρ€Π°Ρ†Π΅Π»Π»ΡŽΠ»ΡΡ€Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Π°7-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ нАΠ₯Π  ΠΈ ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π°7 нАΠ₯Π , ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… источников Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΌΡ‹ΡˆΠ΅ΠΉ, Π½ΠΎΠΊΠ°ΡƒΡ‚Π½Ρ‹Ρ… ΠΏΠΎ Π³Π΅Π½Ρƒ Π°7-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ нАΠ₯Π . ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° получСния ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΈ ΠΈΡ… ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ для ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ количСствСнной ΠΎΡ†Π΅Π½ΠΊΠΈ содСрТания Π°7 нАΠ₯Π  ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΈΠ³Π°Π½Π΄Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ установлСно, Ρ‡Ρ‚ΠΎ Π±ΠΈΠΎΡ‚ΠΈΠ½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π°-кобратоксин ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован для Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π°7 нАΠ₯Π  Π² ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°Ρ… Π½Π΅Ρ€Π²Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠ·Π±ΠΈΡ€Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ гистохимичСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π°7 нАΠ₯Π , основанный Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ флуорСсцСнтно-ΠΌΠ΅Ρ‡Π΅Π½ΠΎΠ³ΠΎ Π°-нСйротоксина Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… ΠΈ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΡ… Π°-нСйротоксинов Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ спСцифичСских ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ². Π‘ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π±Ρ‹Π»ΠΈ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π½Π΅ΠΉΡ€ΠΎΠ½Ρ‹ спинномозговых Π³Π°Π½Π³Π»ΠΈΠ΅Π², ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΈ Ρ‚Ρ€Π°Π½ΡΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π°7 нАΠ₯Π . ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠΎ ΠΌΠ΅Π½ΡŒΡˆΠ΅ΠΉ ΠΌΠ΅Ρ€Π΅ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ ΠΈΠ· Π½ΠΈΡ… ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½ΠΎΡ†ΠΈΡ†Π΅ΠΏΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π°ΠΌΠΈ. Π’ ΠΏΡ€Π°ΠΊΡ‚ичСском ΠΏΠ»Π°Π½Π΅ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π²Π°ΠΆΠ½Ρ‹ для изучСния Ρ€ΠΎΠ»ΠΈ Π°7 нАΠ₯Π  Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… патологичСских состояниях.

Апробация Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΈ прСдставлСны Π½Π° ΠΊΠΎΠ½Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ «ΠΠ΅ΠΉΡ€ΠΎΡ…имия: Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Π΅ аспСкты» (Москва, 2005), Π½Π° Π’осточноСвропСйском симпозиумС «Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Π°Ρ ΠΈ ΠΏΠ΅Ρ€ΠΈΡ„СричСская синаптичСская ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π°» (Π’Π°Ρ€Π½Π°, Болгария, 2006), ΠΊΠΎΠ½Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ «Π˜ΠΎΠ½Π½Ρ‹Π΅ ΠΊΠ°Π½Π°Π»Ρ‹: структура ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ» (Π‘.ΠŸΠ΅Ρ‚Π΅Ρ€Π±ΡƒΡ€Π³, 2009), IV Ρ€ΠΎΡΡΠΈΠΉΡΠΊΠΎΠΌ симпозиумС «Π‘Π΅Π»ΠΊΠΈ ΠΈ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Ρ‹» (Казань, 2009), Π½Π° 4-ΠΉ ΠΊΠΎΠ½Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ ЕвропСйского нСйрохимичСского общСства (Π›Π΅ΠΉΠΏΡ†ΠΈΠ³, ГСрмания, 2009), Π½Π° ΠΊΠΎΠ½Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ НСйробиологичСского общСства ΠΏΠΎ Π½ΠΠ₯Π  (Π§ΠΈΠΊΠ°Π³ΠΎ, БША, 2009), Π½Π° ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ ΠΏΠΎ Π±ΠΈΠΎΠΎΡ€Π³Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΎΠΉ Ρ…ΠΈΠΌΠΈΠΈ, Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π±ΠΈΠΎΠ½Π°Π½ΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ (Москва-ΠŸΡƒΡ‰ΠΈΠ½ΠΎ, 2009), Π½Π° ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΌ конгрСссС «ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ нСврологичСских ΠΈ ΠΏΡΠΈΡ…ичСских расстройств» (ΠœΠ°Ρ€Ρ‚ΠΈΠ½, Бловакия, 2009), Π½Π° 4-ΠΉ ΠΊΠΎΠ½Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ нСйрохимичСского общСства.

Π­Ρ€ΠΈΡ‡Π΅, Π˜Ρ‚Π°Π»ΠΈΡ, 2010), Π½Π° Π½Π΅ΠΌΠ΅Ρ†ΠΊΠΎ-российском симпозиумС «ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ нСйробиология сСгодня ΠΈ Π·Π°Π²Ρ‚Ρ€Π°» (Π‘Π΅Ρ€Π»ΠΈΠ½, ГСрмания, 2010). По Ρ‚Π΅ΠΌΠ΅ диссСртации ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ 5 статСй Π² Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΆΡƒΡ€Π½Π°Π»Π°Ρ….

Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° диссСртации. ДиссСртационная Ρ€Π°Π±ΠΎΡ‚Π° ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π° Π½Π° 130 страницах машинописного тСкста ΠΈ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ 48 рисунков ΠΈ 6 Ρ‚Π°Π±Π»ΠΈΡ†, состоит ΠΈΠ· Π²Π²Π΅Π΄Π΅Π½ΠΈΡ, Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ ΠΎΠ±Π·ΠΎΡ€Π°, ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΡ, Π²Ρ‹Π²ΠΎΠ΄ΠΎΠ² ΠΈ ΡΠΏΠΈΡΠΊΠ° Ρ†ΠΈΡ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎ 323 наимСнования.

6 Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ Π½Π°Π±ΠΎΡ€ ΠΏΠΎΠ»ΠΈΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΏΡ€ΠΎΡ‚ΠΈΠ² синтСтичСских Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π°7-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ нАΠ₯Π  ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΡ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΡ для Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²: ΡΠΊΡΡ‚Ρ€Π°Ρ†Π΅Π»Π»ΡŽΠ»ΡΡ€Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Π°7-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ нАΠ₯Π  ΠΈ ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°.

2. «Π£ΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π±ΠΈΠΎΡ‚ΠΈΠ½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π°-кобратоксин ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован для Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π°7 нАΠ₯Π  Π² ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°Ρ… Π½Π΅Ρ€Π²Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π΅Π³ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΡΡ‚ΡŒ для гистохимичСских исслСдований ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π°.

3. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠ·Π±ΠΈΡ€Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ гистохимичСской Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ Π°7 нАΠ₯Π , основанный Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ флуорСсцСнтно-ΠΌΠ΅Ρ‡Π΅Π½ΠΎΠ³ΠΎ Π°-нСйротоксина Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… ΠΈ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΡ… Π°-нСйротоксинов Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ спСцифичСских ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ².

4. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΡ€ΠΈ использовании Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² установлСна экспрСссия ΠΈ Ρ‚ранспорт Π°7 нАΠ₯Π  Π½ΠΎΡ†ΠΈΡ†Π΅ΠΏΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π°ΠΌΠΈ спинномозговых Π³Π°Π½Π³Π»ΠΈΠ΅Π² крыс.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. V. Tsetlin, D. Kuzmin, 1. Kasheverov, Assembly of nicotinic and other Cys-loop receptors, J Neurochem 116 (2011) 734−741.
  2. G.B. Wells, Structural answers and persistent questions about how nicotinic receptors work, Front Biosci 13 (2008) 5479−5510.
  3. A. Tasneem, L.M. Iyer, E. Jakobsson, L. Aravind, Identification of the prokaiyotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels, Genome Biol 6 (2005) R4.
  4. N. Bocquet, L. Prado de Carvalho, J. Cartaud, J. Neyton, C. Le Poupon, A. Taly, T. Grutter, J.P. Changeux, P.J. Corringer, A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family, Nature 445 (2007) 116−119.
  5. A.C. Missias, G.C. Chu, B.J. Klocke, J.R. Sanes, J.P. Merlie, Maturation of the acetylcholine receptor in skeletal muscle: regulation of the AChR gamma-to-epsilon switch, DevBiol 179 (1996) 223−238.
  6. J.M. Lindstrom, Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology, Ann N Y Acad Sci 998 (2003) 41−52.
  7. R.C. Drisdel, W.N. Green, Neuronal alpha-bungarotoxin receptors are alpha7 subunit homomers, JNeurosci 20 (2000) 133−139.
  8. C. Gotti, F. Clementi, Neuronal nicotinic receptors: from structure to pathology, Prog Neurobiol 74 (2004) 363−396.
  9. C. Gotti, M. Zoli, F. Clementi, Brain nicotinic acetylcholine receptors: native subtypes and their relevance, Trends Pharmacol Sci 27 (2006) 482−491.
  10. F. Hucho, Weise, C., Ligand-gated ion channels, Angew.Chem.Int.Ed. 40 (2001) 31 003 116.
  11. N. Le Novere, J.P. Changeux, Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells, J Mol Evol 40 (1995) 155 172.
  12. P.J. Corringer, M. Baaden, N. Bocquet, M. v Delarue, V. Dufresne, H. Nuiy, M. Prevost, C. Van Renterghem, Atomic structure and dynamics of pentameric ligand-gated ion. channels: new insight1 from bacterial homologues, J Physiol 588 (2010) 565−572
  13. N. Unwin, Acetylcholine receptor channel imaged in the open state, Nature 373 (1995) 37−43.
  14. N. Unwin, Refined structure of the nicotinic acetylcholine receptor at 4A resolution, J Mol Biol 346 (2005) 967−989.
  15. F. Hucho, V.I. Tsetlin, J. Machold, The emerging three-dimensional structure of a receptor. The nicotinic acetylcholine receptor, Eur J Biochem 239 (1996) 539−557.
  16. A. Strecker, P. Franke, C. Weise, F. Hucho, All potential glycosylation sites of the nicotinic acetylcholine receptor delta subunit from Torpedo californica are utilized, Eur J Biochem 220 (1994) 1005−1011.
  17. C.D. Dellisanti, Y. Yao, J.C. Stroud, Z Z. Wang, L. Chen, Crystal structure of the extracellular domain of nAChR alphal bound to alpha-bungarotoxin at 1.94 A resolution, NatNeurosci 10 (2007) 953−962
  18. C.J. daCosta, D: E. Kaiser, J.E. Baenziger, Role of glycosylation and membrane environment in nicotinic acetylcholine receptor stability, Biophys J 88 (2005) 1755−1764.
  19. A. Miyazawa, Y. Fujiyoshi, M. Stowell, N. Unwin, Nicotinic acetylcholine receptor at 4.6 A resolution: transverse tunnels in the channel wall, J Mol Biol 288 (1999) 765−786.
  20. K. Brejc, W.J. van Dijk, R.V. Klaassen, M. Schuurmans, J. van Der Oost, A.B. Smit, T.K. Sixma, Crystal structure of an ACh-binding protein reveals the hgand-binding domain of nicotinic receptors, Nature 411 (2001) 269−276.
  21. S.B. Hansen, T.T. Talley, Z. Radic, P. Taylor, Structural and ligand recognition characteristics of an acetylcholine-binding protein from Aplysia californica, J Biol Chem 279 (2004) 24 197−24 202.
  22. P.H. Celie, S.E. van Rossum-Fikkert, W.J. van Dijk, K. Brejc, A.B. Smit, T.K. Sixma, Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures, Neuron 41 (2004) 907−914.
  23. S.B. Hansen, G. Sulzenbacher, T. Huxford, P. Marchot, P. Taylor, Y. Bourne, Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations, EMBO J 24 (2005) 3635−3646.
  24. R. Lape, D. Colquhoun, L.G. Sivilotti, On the nature of partial agonism in the nicotinic receptor superfamily, Nature 454 (2008) 722−727
  25. J Machold, C. Weise, Y. Utkin, V. Tsetlin, F. Hucho, The handedness of the subunit arrangement of the nicotinic acetylcholine receptor from Torpedo californica, Eur J Biochem 234 (1995) 427−430.
  26. S. Amiri, K. Tai, O. Beckstein, P.C. Biggin, M.S. Sansom, The alpha7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics, Mol Membr Biol 22(2005) 151−162.
  27. N. Le Novere, T. Grutter, J.P. Changeux, Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2±binding sites, Proc Natl Acad Sci U S A 99 (2002) 3210−3215.
  28. K.C. Chou, Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor, Biochem Biophys Res Commun 319 (2004) 433 438.
  29. D.Y. Mordvitsev, Y.L. Polyak, D.A. Kuzmin, O.V. Levtsova, Y.V. Tourleigh, Y.N. Utkin, K.V. Shaitan, V.I. Tsetlin, Computer modeling of binding of diverse weak toxins to nicotinic acetylcholine receptors, ComputBiol Chem 31 (2007) 72−81.
  30. H.R. Arias, P. Bhumireddy, C. Bouzat, Molecular mechanisms and binding site locations for noncompetitive antagonists of nicotinic acetylcholine receptors, Int J Biochem Cell Biol 38 (2006) 1254−1276. Β¦ β€’
  31. L. Curtis, B. Buisson, S. Bertrand, D. Bertrand, Potentiation of human alpha4beta2 neuronal nicotinic acetylcholine receptor by estradiol, Mol Pharmacol 61 (2002) 127 135.
  32. S. Nirthanan, G. Garcia, 3rd, D.C. Chiara, S.S. Husain, IB. Cohen, Identification of binding sites in the nicotinic acetylcholine receptor for TDBzl-etomidate, a photoreactive positive allosteric effector, J Biol Chem 283 (2008) 22 051−22 062.
  33. H.R. Arias, P. Bhumireddy, G. Spitzmaul, J.R. Trudell, C. Bouzat, Molecular mechanisms and binding site location for the noncompetitive antagonist crystal violet on nicotinic acetylcholine receptors, Biochemistry 45 (2006) 2014−2026.
  34. G. Akk, J. H Steinbach, Galantamine activates muscle-type nicotinic acetylcholine receptors without binding to the acetylcholine-binding site, J Neurosci 25 (2005) 19 922 001.
  35. L. Zhang, W. Xiong, Modulation of the Cys-loop ligand-gated ion channels by fatty acid and cannabinoids, Vitam Horm 81 (2009) 315−335.
  36. B. Hsiao, K.B. Mihalak, S.E. Repicky, D. Everhart, A.H. Mederos, A. Malhotra, C.W. Luetje, Determinants of zinc potentiation on the alpha4 subunit of neuronal nicotinic receptors, Mol Pharmacol 69 (2006) 27−36.
  37. S. Seo, J.T. Henry, A.H. Lewis, N. Wang, M.M. Levandoski, The positive allosteric modulator morantel binds at noncanonical subunit interfaces of neuronal nicotinic acetylcholine receptors, J Neurosci 29 (2009) 8734−8742.
  38. H. Nury, C. Van Renterghem, Y. Weng, A. Tran, M. Baaden, V. Dufresne, J P. Changeux, J.M. Sonner, M. Delarue, P.J. Corringer, X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel, Nature 469 (2011) 428−431.
  39. G.T. Young, R Zwart, A.S. Walker, E Sher, N.S. Millar, Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site, Proc Natl Acad Sci USA 105 (2008) 14 686−14 691.
  40. M. Samochocki, M Zerlin, R. Jostock, P.J. Groot Kormelink, W.H. Luyten, EX. Albuquerque, A. Maelicke, Galantamine is an allosterieally potentiating ligand of the human alpha4/beta2 nAChR, Acta Neurol Scand Suppl 176 (2000) 68−73.
  41. A. Schrattenholz, E.F. Pereira, U. Roth, K.H. Weber, E.X. Albuquerque, A. Maelicke, Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterieally acting ligands, Mol Pharmacol 49 (1996) 1−6.
  42. S.B. Hansen, P. Taylor, Galanthamine and non-competitive inhibitor binding to ACh-binding protein: evidence for a binding site on non-alpha-subunit interfaces of heteromeric neuronal nicotinic receptors, J Mol Biol 369 (2007) 895−901.
  43. I. Ivanov, X. Cheng, S.M. Sine, J. A. McCammon, Barriers to ion translocation in cationic and anionic receptors from the Cys-loop family, J Am Chem Soc 129 (2007) 8217−8224.
  44. G. Spitzmaul, J. Corradi, C. Bouzat, Mechanistic contributions of residues in the Ml transmembrane domain of the nicotinic receptor to channel gating, Mol Membr Biol 21 (2004) 39−50.
  45. V. Kukhtina, D. Kottwitz, H. Strauss, B. Heise, N. Chebotareva, V. Tsetlin, F. Hucho, Intracellular domain of nicotinic acetylcholine receptor: the importance of being unfolded, J Neurochem 97 Suppl 1 (2006) 63−67.
  46. J. Mukherjee, A. Kuryatov, S J. Moss, J.M. Lindstrom, R Anand, Mutations of cytosolic loop residues impair assembly and maturation of alpha7 nicotinic acetylcholine receptors, J Neurochem 110 (2009) 1885−1894.
  47. X.M. Yu, Z.W. Hall, A sequence in the main cytoplasmic loop of the alpha subunit is required for assembly of mouse muscle nicotinic acetylcholine receptor, Neuron 13 (1994) 247−255.
  48. Y.P. Kuo, L. Xu, J.B. Eaton, L. Zhao,'J. Wu, R.J. Lukas, Roles for nicotinic acetylcholine receptor subunit large cytoplasmic loop sequences in receptor expression and function, J Pharmacol Exp Ther 314 (2005) 455−466.
  49. J. Xu, Y. Zhu, S.F. Heinemann, Identification of sequence motifs that target neuronal nicotinic receptors to dendrites and axons, J Neurosci 26 (2006) 9780−9793.
  50. M.A. Pacheco, T.E. Pastoor, L. Wecker, Phosphorylation of the alpha4 subunit of human alpha4beta2 nicotinic receptors: role of cAMP-dependent protein kinase (PKA) and protein kinase C (PKC), Brain Res Mol Brain Res 114 (2003) 65−72.
  51. A. Wiesner, C. Fuhrer, Regulation of nicotinic acetylcholine receptors by tyrosine kinases in the peripheral and central nervous system: same players, different roles, Cell Mol Life Sci 63 (2006) 2818−2828.
  52. C.P. Fenster, M.L. Beckman, J.C. Parker, E.B. Sheffield, T.L. Whitworth, M.W. Quick, R.A. Lester, Regulation of alpha4beta2 nicotinic receptor desensitization by calcium and protein kinase C, Mol Pharmacol 55 (1999) 432−443.
  53. M. Colledge, S.C. Froehner, Tyrosine phosphorylation of nicotinic acetylcholine receptor mediates Grb2 binding, J Neurosci 17 (1997) 5038−5045.
  54. C.H. Cho, W. Song, K. Leitzell, E. Teo, A.D. Meleth, M.W. Quick, R.A. Lester, Rapid upregulation of alpha7 nicotinic acetylcholine receptors by tyrosine dephosphorylation, J Neurosci 25 (2005) 3712−3723.
  55. K. Wang, J.T. Hackett, M.E. Cox, M. Van Hoek, J.M. Lindstrom, S.J. Parsons, Regulation of the neuronal nicotinic acetylcholine receptor by SRC family tyrosine kinases, J Biol Chem 279 (2004) 8779−8786.
  56. N. Unwin, A. Miyazawa, J. Li, Y. Fujiyoshi, Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the alpha subunits, J Mol Biol 319 (2002) 1165−1176.
  57. Y. Paas, G. Gibor, R. Grailhe, N. Savatier-Duclert, V. Dufresne, M. Sunesen, L.P. de Carvalho, J.P. Changeux, B. Attali, Pore conformations and gating mechanism of a Cys-loop receptor, ProcNatl Acad Sci U S A 102 (2005) 15 877−15 882.
  58. X. Cheng, B. Lu, B. Grant, R.J. Law, J.A. McCammon, Channel opening motion of alpha7 nicotinic acetylcholine receptor as suggested by normal mode analysis, J Mol Biol 355 (2006)310−324.
  59. R.J. Hilf, R. Dutzler, X-ray structure of a prokaryotic pentameric ligand-gated ion channel, Nature 452 (2008) 375−379.
  60. N. Bocquet, H. Nury, M. Baaden, C. Le Poupon, J.P. Changeux, M. Delarue, P.J. Corringer, X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation, Nature 457 (2009) 111−114.
  61. R.J. Hilf, R Dutzler, Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel, Nature 457 (2009) 115−118.
  62. R.J. Hilf, R. Dutzler, A prokaryotic perspective on pentameric ligand-gated ion channel structure, Curr Opin Struct Biol 19 (2009) 418−424.
  63. G.B. Banks, C. Fuhrer, M.E. Adams, S.C. Froehner, The postsynaptic submembrane machinery at the neuromuscular junction: requirement for rapsyn and the utrophin/dystrophin-associated complex, J Neurocytol 32 (2003) 709−726.
  64. Y. Lee, J. Rudell, M. Ferns, Rapsyn interacts with the muscle acetylcholine receptor via alpha-helical domains in the alpha, beta, and epsilon subunit intracellular loops, Neuroscience 163 (2009) 222−232.
  65. B. Zhang, S. Luo, Q. Wang, T. Suzuki, W.C. Xiong, L. Mei, LRP4 serves as a coreceptor of agrin, Neuron 60 (2008) 285−297.
  66. N. Kim, A.L. Stiegler, T.O. Cameron, P.T. Hallock, A.M. Gomez, J.H. Huang, S.R. Hubbard, M.L. Dustin, S.J. Burden, Lrp4 is a receptor for Agrin and forms a complex with MuSK, Cell 135 (2008) 334−342.
  67. D.J. Glass, D.C. Bowen, T.N. Stitt, C. Radziejewski, J. Bruno, T.E. Ryan, D.R. Gies, S. Shah, K. Mattsson, S.J. Burden, P. S. DiStefano, D.M. Valenzuela, T.M. DeChiara, G.D. Yancopoulos, Agrin acts via a MuSK receptor complex, Cell 85 (1996) 513−523.
  68. O.L. Gervasio, P.F. Armson, W.D. Phillips, Developmental increase in the amount of rapsyn per acetylcholine receptor promotes postsynaptic receptor packing and stability, Dev Biol 305 (2007) 262−275.
  69. M.B. Friese, C.S. Blagden, S.J. Burden, Synaptic differentiation is defective in mice lacking acetylcholine receptor beta-subunit tyrosine phosphorylation, Development 134 (2007) 4167−4176.
  70. A.A. Osman, A.D. Schrader, A.J. Hawkes, O. Akil, A. Bergeron, L.R. Lustig, D.D. Simmons, Muscle-like nicotinic receptor accessory molecules in sensory hair cells of the inner ear, Mol Cell Neurosci 38 (2008) 153−169.
  71. S. Heinemann, J. Boulter, J. Connolly, E. Deneris, R. Duvoisin, M. Hartley, I. Hermans-Borgmeyer, M. Hollmann, A. O’Shea-Greenfield, R. Papke, et aL, The nicotinic receptor genes, Clin Neuropharmacol 14 Suppl 1 (1991) S45−61.
  72. R. Schoepfer, W.G. Conroy, P. Whiting, M. Gore, J. Lindstrom, Brain alpha-bungarotoxiri binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily, Neuron 5 (1990) 35−48.
  73. E.S. Dene ris, J. Connolly, J. Boulter, E. Wada, K. Wada, L.W. Swanson, J. Patrick, S. Heinemann, Primary structure and expression of beta 2: a novel subunit of neuronal nicotinic acetylcholine receptors, Neuron 1 (1988) 45−54.
  74. S. Vernino, M. Amador, C.W. Luetje, J. Patrick, J. A. Dani, Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors, Neuron 8 (1992) 127 134.
  75. P. Seguela, J. Wadiche, K. Dineley-Miller, J.A. Dani, J.W. Patrick, Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium, J Neurosci 13 (1993) 596−604.
  76. S. Fucile, M. Renzi, P. Lax, F. Eusebi, Fractional Ca (2+) current through human neuronal alpha7 nicotinic acetylcholine receptors, Cell Calcium 34 (2003) 205−209.
  77. S.S. Khiroug, P.C. Harkness, P.W. Lamb, S.N. Sudweeks, L. Khiroug, N.S. Millar, J.L. Yakel, Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels, J Physiol 540 (2002) 425−434.
  78. E. Palma, L. Maggi, B. Barabino, F. Eusebi, M. Ballivet, Nicotinic acetylcholine receptors assembled from the alpha7 and beta3 subunits, J Biol Chem 274 (1999) 1 833 518 340.
  79. J. Lindstrom, Autoimmune diseases involving nicotinic receptors, J Neurobiol 53 (2002) 656−665.
  80. M Alkondon, E.X. Albuquerque, Diversity of nicotinic acetylcholine receptors in rat hippocampa! neurons. I. Pharmacological and functional evidence for distinct structural subtypes, J Pharmacol Exp Ther 265 (1993) 1455−1473. ^
  81. M. Alkondon, E.F. Pereira, W.S. Cortes, A. Maelicke, E.X. Albuquerque, Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons, Eur J Neurosci 9 (1997) 2734−2742.
  82. R.L. Papke, M. Bencherif, P. Lippiello, An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compounds indicates that choline is selective for the alpha 7 subtype, Neurosci Lett 213 (1996) 201−204.
  83. V.V. Uteshev, E.M. Meyer, R.L. Papke, Regulation of neuronal function by choline and 40H-GTS-21 through alpha 7 nicotinic receptors, J Neurophysiol 89 (2003) 1797−1806.
  84. E.D. Levin, C. Bettegowda, J. Blosser, J. Gordon, AR-R17779, and alpha7 nicotinic agonist, improves learning and memory in rats, Behav Pharmacol 10 (1999) 675−680.
  85. M. Hajos, R.S. Hurst, W.E. Hoffmann, M. Krause, T.M. Wall, N.R. Higdon, V.E. Groppi, The selective alpha7 nicotinic acetylcholine receptor agonist PNU-282 987 N-[(3R)-1 -Azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride] enhances
  86. GABAergic synaptic activity in brain slices and restores auditory gating deficits in anesthetized rats, J Pharmacol Exp Ther 312 (2005) 1213−1222.
  87. D. Feuerbach, J. Nozulak, K. Lingenhoehl, K. McAllister, D. Hoyer, JN403, in vitro characterization of a novel nicotinic acetylcholine receptor alpha7 selective agonist, Neurosci Lett 416 (2007) 61−65.
  88. H. Kitagawa, T. Takenouchi, R Azuma, K.A. Wesnes, W.G. Kramer, D.E. Clody, A.L. Burnett, Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers, Neuropsychopharmacology 28 (2003) 542−551.
  89. M.N. Sabbagh, Drug development for Alzheimer’s disease: where are we now and where are we headed?, Am J Geriatr Pharmacother 7 (2009) 167−185.
  90. K. Hashimoto, M. Iyo, R. Freedman, K.E. Stevens, Tropisetron improves deficient inhibitory auditory processing in DBA/2 mice: role of alpha 7 nicotinic acetylcholine receptors, Psychopharmacology (Berl) 183 (2005) 13−19.
  91. K. Hashimoto, Y. Fujita, T. Ishima, H. Hagiwara, M. Iyo, Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of tropisetron: role of alpha7 nicotinic receptors, Eur J Pharmacol 553 (2006) 191−195.
  92. J. Toyohara, J. Wu, K. Hashimoto, Recent development of radioligands for imaging alpha7 nicotinic acetylcholine receptors in the brain, Curr Top Med Chem 10 (2010) 1544−1557.
  93. K. Hashimoto, S. Nishiyama, H. Ohba, M. Matsuo, T. Kobashi, M. Takahagi, M. Iyo, T. Kitashoji, H. Tsukada, 11C]CHIBA-1001 as a novel PET ligand for alpha7 nicotinic receptors in the brain: a PET study in conscious monkeys, PLoS One 3 (2008) e3231.
  94. A.B. Elgoyhen, D.S. Johnson, J. Boulter, D.E. Vetter, S. Heinemann, Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells, Cell 79 (1994) 705−715.
  95. Y.N. Utkin, V.V. Kukhtina, E.V. Kryukova, F. Chiodini, D. Bertrand, C. Methfessel, V.I. Tsetlin, «Weak toxin» from Naja kaouthia is a nontoxic antagonist of alpha 7 and muscle-type nicotinic acetylcholine receptors, J Biol Chem 276 (2001) 15 810−15 815.
  96. E.F. Pereira, M. Alkondon, J.M. Mcintosh, E.X. Albuquerque, Alpha-conotoxin-Iml. a competitive antagonist at alpha-bungarotoxin-sensitive neuronal nicotinic receptors in hippocampal neurons, J Pharmacol Exp Ther 278 (1996) 1472−1483.
  97. M. Ellison, J.M. Mcintosh, B.M. Olivera, Alpha-conotoxins Iml and Imll. Similar alpha 7 nicotinic receptor antagonists act at different sites, J Biol Chem 278 (2003) 757−764.
  98. M. Ellison, C. Haberlandt, M.E. Gomez-Casati, M. Watkins, A.B. Elgoyhen, J.M. Mcintosh, B.M. Olivera, Alpha-RgIA: a novel conotoxin that specifically and potently blocks the alpha9alphal0 nAChR, Biochemistry 45 (2006) 1511−1517.
  99. N.M. Broxton, J.G. Down, J. Gehrmann, P.F. Alewood, D.G. Satchell, B.G. Livett, Alpha-conotoxin Iml inhibits the alpha-bungarotoxin-resistant nicotinic response in bovine adrenal chromaffin cells, JNeurochem 72 (1999) 1656−1662.
  100. S. Luo, T.A. Nguyen, G.E. Cartier, B.M. Olivera, D. Yoshikami, J.M. Mcintosh, Single-residue alteration in alpha-conotoxin PnIA switches its nAChR subtype selectivity, Biochemistry 38 (1999) 14 542−14 548.
  101. S. Dutertre, A. Nicke, R.J. Lewis, Beta2 subunit contribution to 4/7 alpha-conotoxin binding to the nicotinic acetylcholine receptor, J Biol Chem280 (2005) 30 460−30 468.
  102. A. Nicke, M.L. Loughnan, E.L. Millard, P.F. Alewood, D.J. Adams, N.L. Daly, D.J. Craik, R.J. Lewis, Isolation, structure, and activity of GID, a novel alpha 4/7-conotoxin with an extended N-terminal sequence, J Biol Chem 278 (2003) 3137−3144.
  103. A. Nicke, M. Samochocki, M.L. Loughnan, P. S. Bansal, A. Maelicke, R.J. Lewis, Alpha-conotoxins EpI and AuIB switch subtype selectivity and activity in native versus recombinant nicotinic acetylcholine receptors, FEBS Lett 554 (2003) 219−223.
  104. J.M. Ward, V.B. Cockcroft, G.G. Lunt, F.S. Smillie, S. Wonnacott, Methyllycaconitine: a selective probe for neuronal alpha-bungarotoxin binding sites, FEBS Lett 270 (1990) 4548.
  105. L. Yum, K.M. Wolf, V.A. Chiappinelli, Nicotinic acetylcholine receptors in separate brain regions exhibit different affinities for methyllycaconitine, Neuroscience 72 (1996) 545−555.
  106. S. Thornton, A. Schedel, S. Besenfelder, H. Kluter, P. Bugert, Cholinergic drugs inhibit in vitro megakaryopoiesis via the alpha7-nicotinic acetylcholine receptor, Platelets (2011).
  107. C.S. Roegge, E.D. Levin, Nicotinic Receptor Antagonists in Rats, (2006).
  108. N.S. Millar, C. Gotti, Diversity of vertebrate nicotinic acetylcholine receptors, Neuropharmacology 56 (2009) 237−246.
  109. L.W. Role, D.K. Berg, Nicotinic receptors in the development and modulation of CNS synapses, Neuron 16 (1996) 1077−1085.
  110. C. Gotti, F. Clementi, A. Fornari, A. Gaimarri, S. Guiducci, I. Manfredi, M. Moretti, P. Pedrazzi, L. Pucci, M. Zoli, Structural and functional diversity of native brain neuronal nicotinic receptors, Biochem Pharmacol 78 (2009) 703−711.
  111. K. Ono, T. Toyono, K. Inenaga, Nicotinic receptor subtypes in rat subfornical organ neurons and glial cells, Neuroscience 154 (2008) 994−1001.
  112. J. Xiu, A. Nordberg, X. Qi, Z.Z. Guan, Influence of cholesterol and lovastatin on alpha- ' form of secreted amyloid precursor protein and expression of alpha7 nicotinic receptor on astrocytes, Neurochem Int 49 (2006) 459−465.
  113. J. Barik, S. Wonnacott. Indirect modulation by alpha7 nicotinic acetylcholine receptors of noradrenaline release in rat hippocampal slices: interaction with glutamate and GABA systems and effect of nicotine withdrawal, Mol Pharmacol 69 (2006) 618−628.
  114. T. Endo, Y. Yanagawa, K. Obata, T. Isa, Nicotinic acetylcholine receptor subtypes involved in facilitation of GABAergic inhibition in mouse superficial superior colliculus, J Neurophysiol 94 (2005) 3893−3902.
  115. Z.W. Zhang, J.S. Coggan, D.K. Berg, Synaptic currents generated by neuronal acetylcholine receptors sensitive to alpha-bungarotoxin, Neuron 17 (1996) 1231−1240.
  116. D. Ji, J.A. Dani, Inhibition and disinhibition of pyramidal neurons by activation of nicotinic receptors on hippocampal interneurons, J Neurophysiol 83 (2000) 2682−2690.
  117. C.J. Frazier, A.V. Buhler, J.L. Weiner, T.V. Dunwiddie, Synaptic potentials mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons, JNeurosci 18 (1998) 8228−8235.
  118. M. Alkondon, E.F. Pereira, E.X. Albuquerque, alpha-bungarotoxin- and methyllycaconitine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices, Brain Res 810 (1998) 257−263.
  119. D.K. Berg, W.G. Conroy, Nicotinic alpha 7 receptors: synaptic options and downstream signaling in neurons, J Neurobiol 53 (2002) 512−523.
  120. G. Sharma, S. Vijayaraghavan, Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores, Proc Natl Acad Sci U SA98 (2001)4148−4153.
  121. E.M. Ullian, P.B. Sargent, Pronounced cellular diversity and extrasynaptic location of -nicotinic acetylcholine receptor subunit immunoreactivities in the chicken pretectum, J Neurosci 15 (1995) 7012−7023. -
  122. H.L. Horch, P.B. Sargent, Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion, J Neurosci 15 (1995) 7778−7795.
  123. J.S. Coggan, T.M. Bartol, E. Esquenazi, J.R. Stiles, S. Lamont, M.E. Martone, D.K. Berg, M.H. Ellisman, T.J. Sejnowski, Evidence for ectopic neurotransmission at a neuronal synapse, Science 309 (2005) 446−451. «
  124. I. Wessler, C.J. Kirkpatrick, Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans, Br J Pharmacol 154 (2008) 1558−1571.
  125. S. Di Angelantonio, C. Matteoni, E. Fabbretti, A. Nistri, Molecular biology and electrophysiology of neuronal nicotinic receptors of rat chromaffin cells, Eur J Neurosci 17(2003)2313−2322.
  126. R.A. Corriveau, S.J. Romano, W.G. Conroy, L. Oliva, D.K. Berg, Expression of neuronal acetylcholine receptor genes in vertebrate skeletal muscle during development, J Neurosci 15 (1995) 1372−1383.
  127. U. Fischer, S. Reinhardt, E.X. Albuquerque, A. Maelicke, Expression of functional alpha7 nicotinic acetylcholine receptor during mammalian muscle development and denervation, Eur JNeurosci 11 (1999) 2856−2864.
  128. S.J. Romano, P.C. Pugh, J.M. Mcintosh, D.K. Berg, Neuronal-type acetylcholine receptors and regulation of alpha 7 gene expression in vertebrate skeletal muscle, J Neurobiol 32 (1997) 69−80.
  129. H. Wang, M. Yu, M. Ochani, C.A. Amelia, M. Tanovic, S. Susarla, J.H. Li, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, K.J. Tracey, Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation, Nature 421 (2003) 384−388.
  130. V.A. Pavlov, K.J. Tracey, The cholinergic anti-inflammatory pathway, Brain Behav Immun 19 (2005) 493−499.
  131. W.J. de Jonge, L. Ulloa, The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation, Br J Pharmacol 151 (2007) 915−929.
  132. P. Paldi-Haris, J.G. Szelenyi, T.H. Nguyen, S.R. Hollan, Changes in the expression of the cholinergic structures of human T lymphocytes due to maturation and stimulation, Thymus 16(1990) 119−122.
  133. Y. Kuo, L. Lucero, J. Michaels, D. DeLuca, R.J. Lukas, Differential expression of nicotinic acetylcholine receptor subunits in fetal and neonatal mouse thymus, J Neuroimmunol 130 (2002) 140−154.
  134. G. Sharma, S. Vijayaraghavan, Nicotinic receptor signaling in nonexcitable cells, J Neurobiol 53 (2002) 524−534.
  135. C. Heeschen, M. Weis, A. Aicher, S. Dimmeler, J.P. Cooke, A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors, J Clin Invest 110 (2002) 527−536.
  136. R.D. Shytle, T. Mori, K. Townsend, M. Vendrame, N. Sun, J. Zeng, J. Ehrhart, A.A. Silver, P.R. Sanberg, J. Tan, Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors, J Neurochem 89 (2004) 337−343.
  137. A.J. Middlebrook, C. Martina, Y. Chang, R.J. Lukas, D. DeLuca, Effects of nicotine exposure on T cell development in fetal thymus organ culture: arrest of T cell maturation, J Immunol 169 (2002) 2915−2924.
  138. M.V. Skok, E.N. Kalashnik, L.N. Koval, V.I. Tsetlin, Y.N. Utkin, J.P. Changeux, R. Grailhe, Functional nicotinic acetylcholine receptors are expressed in B lymphocyte-derived cell lines, Mol Pharmacol 64 (2003) 885−889.
  139. Y. Wang, E.F. Pereira, A.D. Maus, N.S. Ostlie, D. Navaneetham, S. Lei, E.X. Albuquerque, B.M. Conti-Fine, Human bronchial epithelial and endothelial cells express alpha7 nicotinic acetylcholine receptors, Mol Pharmacol 60 (2001) 1201−1209.
  140. H.K. Plummer, 3rd, M. Dhar, H.M. Schuller, Expression of the alpha7 nicotinic acetylcholine receptor in human lung cells, Respir Res 6 (2005) 29.
  141. R. Freedman, M. Hall, L. E Adler, S. Leonard, Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia, Biol Psychiatry 38 (1995) 22−33.
  142. Z.Z. Guan, X. Zhang, K. Blennow, A. Nordberg, Decreased protein level of nicotinic receptor alpha7 subunit in the frontal cortex from schizophrenic brain, Neuroreport 10 (1999) 1779−1782.
  143. A. Marutle, X. Zhang, J. Court, M. Piggott, M. Johnson, R. Perry, E. Perry, A. Nordberg, Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia, J ChemNeuroanat 22 (2001) 115−126.
  144. R. Freedman, A. Olincy, R. G Ross, M.C. Waldo, K.E. Stevens, L.E. Adler, S Leonard, The genetics of sensory gating deficits in schizophrenia, Curr Psychiatry Rep 5 (2003) 155−161.
  145. O. Perl, T Ilani, R.D. Straus, R. Lapidus, S. Fuchs, The alpha7 nicotinic acetylcholine receptor in schizophrenia- decreased mRNA levels in peripheral blood lymphocytes, FASEB J 17 (2003) 1948−1950.
  146. S.E. Counts, B. He, S. Che, M.D. Ikonomovic, S.T. DeKosky, S.D. Ginsberg, E.J. Mufson, Alpha7 nicotinic receptor up-regulation in cholinergic basal forebrain neurons in Alzheimer disease, Arch Neurol 64 (2007) 1771−1776.
  147. E. Hellstrom-Lindahl, M. Mousavi, X Zhang, R. Ravid, A. Nordberg, Regional distribution of nicotinic receptor subunit mRNAs in human brain: comparison between Alzheimer and normal brain, Brain Res Mol Brain Res 66 (1999) 94−103.
  148. Alzheimer’s disease- histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein, Eur J Neurosci 11 (1999) 2551−2565.
  149. Z.Z. Guan, X. Zhang, R. Ravid, A. Nordberg, Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer’s disease, J Neurochem 74 (2000) 237−243.
  150. P. Davies, S. Feisullin, Postmortem stability of alpha-bungarotoxin binding sites in mouse and human brain, Brain Res 216 (1981) 449−454.
  151. K. Sugaya, E. Giacobini, V.A. Chiappinelli, Nicotinic acetylcholine receptor subtypes in human frontal cortex: changes in Alzheimer’s disease, J Neurosci Res 27 (1990) 349−359.
  152. M.D. Ikonomovic, L. Wecker, E.E. Abrahamson, J. Wuu, S.E. Counts, S.D. Ginsberg, E.J. Mufson, S.T. Dekosky, Cortical alpha7 nicotinic acetylcholine receptor and beta-amyloid levels in early Alzheimer disease, Arch Neurol 66 (2009) 646−651.
  153. T. Teaktong, A. Graham, J. Court, R. Perry, E. Jaros, M. Johnson, R. Hall, E. Perry, Alzheimer’s disease is associated with a selective increase in alpha7 nicotinic acetylcholine receptor immunoreactivity in astrocytes, Glia 41 (2003) 207−211.
  154. H.Y. Wang, W. Li, N.J. Benedetti, D.H. Lee, Alpha 7 nicotinic acetylcholine receptors mediate beta-amyloid peptide-induced tau protein phosphorylation, J Biol Chem 278 (2003)31547−31 553.
  155. Q. Liu, H. Kawai, D K. Berg, beta -Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons, Proc Natl Acad Sci U S A 982 001)4734−4739.
  156. D.L. Pettit, Z. Shao, J.L. Yakel, beta-Amyloid (l-42) peptide directly modulates nicotinic receptors in the rat hippocampal slice, J Neurosci 21 (2001) RC120.
  157. G. Dziewczapolski, C.M. Glogowski, E. Masliah, S.F. Heinemann, Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease, J Neurosci 29 (2009) 8805−8815.
  158. P. Whiting, J. Lindstrom, Purification and characterization of a nicotinic acetylcholine receptor from rat brain, Proc Natl Acad Sci U S A 84 (1987) 595−599.
  159. L.W. Swanson, D.M. Simmons, P.J. Whiting, J. Lindstrom, Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system, J Neurosci 7 (1987) 3334−3342
  160. S.J. Tzartos, D.E. Rand, B.L. Einarson, J.M. Lindstrom, Mapping of surface structures of electrophorus acetylcholine receptor using monoclonal antibodies, J Biol Chem 256 (1981) 8635−8645.
  161. K.E. McLane, X. Wu, J.M. Lindstrom, B.M. Conti-Tronconi, Epitope mapping of polyclonal and monoclonal antibodies against two alpha-bungarotoxin-binding alphai subunits from neuronal nicotinic receptors, J Neuroimmunol 38 (1992) 115−128.
  162. W.G. Conroy, A.B. Vernallis, D.K. Berg, The alpha 5 gene product assembles withmultiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain, Neuron 9 (1992) 679−691.
  163. R. Fabian-Fine, P. Skehel, M.L. Errington, H A. Davies, E. Sher, M. G Stewart, A. Fine, Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in ratihippocampus, J Neurosci 21 (2001) 7993−8003.
  164. H. Kawai, W. Zago, D.K. Berg, Nicotinic alpha 7 receptor clusters on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins, J Neurosci 222 002) 7903−7912.
  165. M. Zoli, M. Moretti, A. Zanardi, J.M. Mcintosh, F. Clementi, C. Gotti, Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum, J Neurosci 22 (2002) 8785−8789.
  166. B.M. Conti-Fine, S. Lei, K.E. McLane, Antibodies as tools to study the structure of membrane proteins: the case of the nicotinic acetylcholine receptor, Annu Rev Biophys Biomol Struct 25 (1996) 197−229.
  167. D.L. Herber, E.G. Severance, J. Cuevas, D. Morgan, M.N. Gordon, Biochemical and histochemical evidence of nonspecific binding of alpha7nAChR antibodies to mouse brain tissue, J Histochem Cytochem 52 (2004) 1367−1376.
  168. S. Neff, K. Dineley-Miller, D. Char, M. Quik, J. Patrick, Production of polyclonal antisera that recognize and distinguish between the extracellular domains of neuronal nicotinic acetylcholine receptor subunits, JNeurochem 64 (1995) 332−339.
  169. S. Vailati, M. Moretti, R. Longhi, G.E. Rovati, F. Clementi, C. Gotti, Developmental expression of heteromeric nicotinic receptor subtypes in chick retina, Mol Pharmacol 63 (2003) 1329−1337.
  170. S. Di Angelantonio, M.E. De Stefano, A. Piccioni, L Lombardi, C. Gotti, P. Paggi, Lack of dystrophin functionally affects alpha3beta2/beta4-nicotinic acetylcholine receptors in sympathetic neurons of dystrophic mdx mice, Neurobiol Dis 41 528−537.
  171. M. Tomizawa, J.E. Casida, Minor structural changes in nicotinoid insecticides confer differential subtype selectivity for mammalian nicotinic acetylcholine receptors, Br J Pharmacol 127 (1999) 115−122.
  172. I.E. Kasheverov, Y.N. Utkin, V.I. Tsetlin, Naturally occurring and synthetic peptides acting on nicotinic acetylcholine receptors, Curr Pharm Des 15 (2009) 2430−2452.
  173. P.A. Quiram, J.J. Jones, S.M. Sine, Pairwise interactions between neuronal alpha7 acetylcholine receptors and alpha-conotoxin Iml, J Biol Chem274 (1999) 19 517−19 524.
  174. P.A. Quiram, J.M. Mcintosh, S.M. Sine, Pairwise interactions between neuronal alpha (7) acetylcholine receptors and alpha-conotoxin PnIB, J Biol Chem 275 (2000) 4889−4896.
  175. C. Ulens, R.C. Hogg, P.H. Celie, D. Bertrand, V. Tsetlin, A.B. Smit, T.K. Sixma, Structural determinants of selective alpha-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP, Proc Natl Acad Sci U S A 103 (2006) 3615−3620.
  176. E.G. Livett, D.W. Sandall, D. Keays, J. Down, K R. Gayler, N. Satkunanathan, Z. Khalil, Therapeutic applications of conotoxins that target the neuronal nicotinic acetylcholine receptor, Toxicon48 (2006) 810−829.
  177. A.J. Hone, P. Whiteaker, J.L. Mohn, M H. Jacob, J.M. Mcintosh, Alexa Fluor 546-ArIBVllL-V16A] is a potent ligand for selectively labeling alpha 7 nicotinic acetylcholine receptors, J Neurochem 114 (2010) 994−1006.
  178. A. J. Hone, P. Whiteaker, S. Christensen, Y. Xiao, E L. Meyer, J.M. Mcintosh, A novel fluorescent alpha-conotoxin for the study of alpha7 nicotinic acetylcholine receptors, J Neurochem 111 (2009) 80−89.
  179. P.C. Pugh, R.A. Corriveau, W.G. Conroy, D.K. Berg, Novel subpopulation of neuronal acetylcholine receptors among those binding alpha-bungarotoxin, Mol Pharmacol 47 (1995)717−725.
  180. C.J. Keiger, D. Prevette, W.G. Conroy, R.W. Oppenheim, Developmental expression of nicotinic receptors in the chick and human spinal cord, J Comp Neurol 455 (2003) 86−99.
  181. V.T. Nguyen, A. Ndoye, S.A. Grando, Novel human alpha9 acetylcholine receptor regulating keratinocyte adhesion is targeted by Pemphigus vulgaris autoimmunity, Am J Pathol 157(2000) 1377−1391.
  182. P. Kumar, S. Meizel, Nicotinic acetylcholine receptor subunits and associated proteins in human sperm, J Biol Chem 280 (2005) 25 928−25 935.
  183. H. Peng, R.L. Ferris, T. Matthews, H Hiel, A. Lopez-Albaitero, L.R. Lustig, Characterization of the human nicotinic acetylcholine receptor subunit alpha (alpha) 9 (CHRNA9) and alpha (alpha) 10 (CHRNA10) in lymphocytes, Life Sci 76 (2004) 263 280.
  184. K.S. Lips, U. Pfeil, W. Kummer, Coexpression of alpha 9 and alpha' 10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons, Neuroscience 115 (2002) 1−5.
  185. C.M. McGann, J. Bracamontes, J.H. Steinbach, J.R. Sanes, The cholinergic antagonist alpha-bungarotoxin also binds and. blocks a subset of GAB A receptors, Proc Natl Acad Sci U S A 103 (2006) 5149−5154.
  186. P.B. Clarke, R.D. Schwartz, S.M. Paul, C.B. Pert, A. Pert, Nicotinic binding in rat brain: autoradiographic comparison of 3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin, J Neurosci 5 (1985) 1307−1315.
  187. I. W. Jones, S. Wonnacott, Precise localization of alpha7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area, J Neurosci 24 (2004) 11 244−11 252.
  188. I.W. Jones, J. Barik, M.J. O’Neill, S. Wonnacott, Alpha bungarotoxin-1.4 nm gold: a novel conjugate for visualising the precise subcellular distribution of alpha 7* nicotinic acetylcholine receptors, J Neurosci Methods 134 (2004) 65−74.
  189. J.M. Gershoni, E. Hawrot, T.L. Lentz, Binding of alpha-bungarotoxin to isolated alpha subunit of the acetylcholine receptor of Torpedo californica: quantitative analysis with protein blots, Proc Natl Acad Sci U S A 80 (1983) 4973−4977.
  190. Y. Sekine-Aizawa, R.L. Huganir, Imaging of receptor trafficking by using alpha-bungarotoxin-binding-site-tagged receptors, Proc Natl Acad Sci U S A 101 (2004) 17 114−17 119.
  191. Y. Xiao, G.R. Abdrakhmanova, M. Baydyuk, S. Hernandez, K.J. Kellar, Rat neuronal nicotinic acetylcholine receptors containing alpha7 subunit: pharmacological properties of ligand binding and function, Acta Pharmacol Sin 30 (2009) 842−850.
  192. C.J. Frazier, Y.D. Rollins, C.R. Breese, S. Leonard, R. Freedman, T.V. Dunwiddie, Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells, J Neurosci 18 (1998) 1187−1195.
  193. R. Ogier, X. Liu, E. Tribollet, D. Bertrand, M. Raggenbass, Identified spinal motoneurons of young rats possess nicotinic acetylcholine receptors of the heteromeric family, Eur J Neurosci 20 (2004) 2591−2597.
  194. N. Kaneko, H. Okano, K. Sawamoto, Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb, Genes Cells 11 (2006) 1145−1159.
  195. S. Aznar, V. Kostova, S.H. Christiansen, G.M. Knudsen, Alpha 7 nicotinic receptor subunit is present on serotonin neurons projecting to hippocampus and septum, Synapse 55 (2005) 196−200.
  196. B. Csillik, P. Rakic, E Knyihar-Csillik, Peptidergic innervation and the nicotinic acetylcholine receptor in the primate basal nucleus, Eur JNeurosci 10 (1998) 573−585.
  197. C.J. Dean, Preparation, and characterization of monoclonal antibodies to proteins and other cellular components, Methods MolBiol 32 (1994) 361−379.
  198. A.S. Korotina, E.V. Kriukova, E.A. Azeeva, A.F. Sheval’e, N. Utkin Iu, V.I. Tsetlin, Sensitive nonradioactive screening method, for compounds interacting with alpha7-cholinoreceptor], Bioorg Khim 29 (2003) 391−396.
  199. C. Virginio, A Giacometti, L. Aldegheri, J.M. Rimland, G.C. Terstappen, Pharmacological properties of rat alpha 7 nicotinic receptors expressed in native and recombinant cell systems, Eur J Pharmacol 445 (2002) 153−161.
  200. G.L. Peterson, A simplification of the protein assay method of Lowry et al. which is more generally applicable, Anal Biochem 83 (1977) 346−356.
  201. M.A. Cascieri, T. Liang, Characterization of the substance P receptor in rat brain cortex membranes and the inhibition of radioligand binding by guanine nucleotides, J Biol Chem 258 (1983) 5158−5164.
  202. R.E. Hibbs, T.T. Talley, P. Taylor, Acrylodan-conjugated cysteine side chains reveal conformational state and ligand site locations of the acetylcholine-binding protein, J Biol Chem 279 (2004) 28 483−28 491.
  203. B.M. Conti-Tronconi, S.M. Dunn, E.A. Barnard, J.O. Dolly, F.A. Lai, N. Ray, M.A. Raftery, Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins, Proc Natl Acad Sci U S A 82 (1985) 5208−5212.
  204. R.I. Norman, F. Mehraban, E.A. Barnard, J.O. Dolly, Nicotinic acetylcholine receptor from chick optic lobe, Proc Natl Acad Sci U S A 79 (1982) 1321−1325.
  205. S.N. Sudweeks, J.L. Yakel, Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons, J Physiol 527 Pt 3 (2000) 515 528.
  206. D. Servent, V. Winckler-Dietrich, H.Y. Hu, P. Kessler, P. Drevet, D. Bertrand, A. Menez, Only snake curaremimetic toxins with a fifth disulfide bond have high affinity for the neuronal alpha7 nicotinic receptor, J Biol Chem 272 (1997) 24 279−24 286.
  207. R. Chicheportiche, J.P. Vincent, C. Kopeyan, H. Schweitz, M. Lazdunski, Structure-function relationship in the binding of snake neurotoxins to the torpedo membrane receptor, Biochemistry 14 (1975) 2081−2091.
  208. T. Endo, M. Nakanishi, S. Furukawa, F.J. Joubert, N. Tamiya, K. Hayashi, Stopped-flow fluorescence studies on binding kinetics of neurotoxins with acetylcholine receptor, Biochemistry 25 (1986) 395−404.
  209. V.I. Tsetlin, F. Hucho, Snake and snail toxins acting on nicotinic acetylcholine receptors: fundamental aspects and medical applications, FEBS Lett 557 (2004) 9−13.
  210. D.M. Fambrough, H.C. Hartzell, Acetylcholine receptors: number and distribution at neuromuscular junctions in rat diaphragm, Science 176 (1972) 189−191.
  211. A. Ishiyama, I. Lopez, P.A. Wackym, Distribution of efferent cholinergic terminals and alpha-bungarotoxin binding to putative nicotinic acetylcholine receptors in the human vestibular end-organs, Laryngoscope 105 (1995) 1167−1172.
  212. J.R. Genzen, W. Van Cleve, D.S. McGehee, Dorsal root ganglion neurons express multiple nicotinic acetylcholine receptor subtypes, J Neurophysiol 86 (2001) 1773−1782.
  213. R.V. Haberberger, N. Bernardini, M. Kress, P. Hartmann, K.S. Lips, W. Kummer, Nicotinic acetylcholine receptor subtypes in nociceptive dorsal root ganglion neurons of the adult rat, Auton Neurosci 113 (2004) 32−42.
  214. K.K. Rau, R.D. Johnson, B.Y. Cooper, Nicotinic AChR in subclassified capsaicin-sensitive and -insensitive nociceptors of the rat DRG, J Neurophysiol 93 (2005) 13 581 371.
  215. N.J. Sucher, T.P. Cheng, S.A. Lipton, Neural nicotinic acetylcholine responses in sensory neurons from postnatal rat, Brain Res 533 (1990) 248−254.
  216. G. Polz-Tejera, S.P. Hunt, J. Schmidt, Nicotinic receptors in sensory ganglia, Brain Res 195 (1980) 223−230.
  217. M.I. Damaj, M. Fei-Yin, M. Dukat, W. Glassco, R.A. Glennon, B.R. Martin, Antinociceptive responses to nicotinic acetylcholine receptor ligands after systemic and intrathecal administration in mice, J Pharmacol Exp Ther 284 (1998) 1058−1065.
  218. S.D. Gilbert, T.M. Clark, C.M. Flores, Antihyperalgesic activity of epibatidine in the formalin model of facial pain, Pain 89 (2001) 159−165.
  219. Y.L. Liu, H.M. Lin, R. Zou, J.C. Wu, R Han, L.N. Raymond, P.F. Reid, Z.H. Qin, Suppression of complete Freund’s adjuvant-induced adjuvant arthritis by cobratoxin, Acta Pharmacol Sin 30 (2009) 219−227.
  220. P. Curzon, A.L. Nikkei, A.W. Bannon, S.P. Arneric, M.W. Decker, Differences between the antinociceptive effects of the cholinergic channel activators A-85 380 and (+/-)-epibatidine in rats, J Pharmacol Exp Ther 287 (1998) 847−853.
  221. Y. Wang, D.M. Su, R.H. Wang, Y. Liu, H. Wang, Antinociceptive effects of choline against acute and inflammatory pain, Neuroscience 132 (2005) 49−56.
  222. R.C. Drisdel, E. Manzana, W.N. Green, The role of palmitoylation in functional expression of nicotinic alpha7 receptors, J Neurosci 24 (2004) 10 502−10 510.
  223. R.J. Thompson, J.F. Doran, P. Jackson, A.P. Dhillon, J. Rode, PGP 9.5~a new marker for vertebrate neurons and neuroendocrine cells, Brain Res 278 (1983) 224−228.
  224. M. Ninkovic, S.P. Hunt, Alpha-bungarotoxin binding sites on sensory neurones and their axonal transport in sensory afferents, Brain Res 272 (1983) 57−69.
  225. M. Zoli, N. Le Novere, J.A. Hill, Jr., J.P. Changeux, Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous systems, J Neurosci 15 (1995) 1912−1939.
  226. M. Fornaro, J.M. Lee, S. Raimondo, S. Nicolino, S. Geuna, M. Giacobini-Robecchi, Neuronal intermediate filament expression in rat dorsal root ganglia sensory neurons: an in vivo and in vitro study, Neuroscience 153 (2008) 1153−1163.
  227. S.N. Lawson, M.J. Perry, E. Prabhakar, P.W. McCarthy, Primary sensory neurones: neurofilament, neuropeptides, and conduction velocity, Brain Res Bull 30 (1993) 239 243.
  228. D.L. Bennett, S. Averill, D.O. Clary, J.V. Priestley, S.B. McMahon, Postnatal changes in the expression of the trkA high-affinity NGF receptor in primary sensory neurons, Eur J Neurosci 8 (1996) 2204−2208.
  229. D.C. Molliver, D.E. Wright, M.L. Leitner, A.S. Parsadanian, K. Doster, D. Wen, Q. Yan, W.D. Snider, IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life, Neuron 19 (1997) 849−861.
  230. C.J. Woolf, Q. Ma, Nociceptors-noxious stimulus detectors, Neuron 55 (2007) 353−364.
  231. A. Guo, L. Vulchanova, J. Wang, X. Li, R. Elde, Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites, Eur J Neurosci 11 (1999) 946−958.
  232. W.D. Snider, S.B. McMahon, Tackling pain at the source: new ideas about nociceptors, Neuron 20 (1998) 629−632.
  233. M. Tominaga, M.J. Caterina, A.B. Malmberg, T.A. Rosen, H. Gilbert, K. Skinner, B.E. Raumann, A.I. Basbaum, D. Julius, The cloned capsaicin receptor integrates multiple pain-producing stimuli, Neuron 21 (1998) 531−543.
  234. M.J. Caterina, M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, D. Julius, The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature 389 (1997)816.824.
  235. C. Torsney, R.L. Anderson, K.A. Ryce-Paul, A.B. MacDerraott, Characterization of sensory neuron subpopulations selectively expressing green fluorescent protein in phosphodiesterase 1C BAC transgenic mice, Mol Pam 2 (2006) 17.
  236. J.R. Genzen, D.S. McGehee, Short- and long-term enhancement of excitatory transmission in the spinal cord dorsal horn by nicotinic acetylcholine receptors, Proc Natl Acad SciU S A 100 (2003) 6807−6812.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ