Π”ΠΈΠΏΠ»ΠΎΠΌ, курсовая, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°
ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚

ВзаимодСйствиС Ρ‚ΠΌΠ ΠΠš с рибосомой Π² процСссС транс-трансляции

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρ‹ Ρ‚ΠΌΠ ΠΠš, Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ мРНК-ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° ΠΈ ΡΠΏΠΈΡ€Π°Π»ΠΈ 5, практичСски Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ся Π² Ρ…ΠΎΠ΄Π΅ транс-трансляции. Π‘ΠΏΠΈΡ€Π°Π»ΡŒ 5 стабилизируСтся ΠΈΠ»ΠΈ защищаСтся ΠΏΡ€ΠΈ взаимодСйствии Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ. Π‘ΠΏΠ΅ΠΊΡ‚Ρ€ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² мРНК-ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° измСняСтся ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ прохоТдСния Ρ‚ΠΌΠ ΠΠš Ρ‡Π΅Ρ€Π΅Π· рибосому Π² Ρ…ΠΎΠ΄Π΅ транс-трансляции. ΠŸΡΠ΅Π²Π΄ΠΎΡƒΠ·Π»Ρ‹ 2, 3 ΠΈ 4 ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ ΠΏΠ΅Ρ‚Π»ΡŽ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…ности 70S… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок сокращСний
  • ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Ρ‚ΠΌΠ ΠΠš
  • ΠžΠ±Ρ‰ΠΈΠ΅ свСдСния ΠΎ Ρ‚ΠΌΠ ΠΠš
  • Вторичная структура Ρ‚ΠΌΠ ΠΠš
  • ΠŸΡ€ΠΎΡ†Π΅ΡΡΠΈΠ½Π³ Ρ‚ΠΌΠ ΠΠš
  • ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ оснований Ρ‚ΠΌΠ ΠΠš
  • АминоацилированиС Ρ‚ΠΌΠ ΠΠš
  • Π‘Π΅Π»ΠΎΠΊ SmpB
  • ΠžΠ±Ρ‰ΠΈΠ΅ свСдСния ΠΎ SmpB
  • ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½Π°Ρ организация SmpB
  • ВзаимодСйствиС Π±Π΅Π»ΠΊΠ° SmpB с Ρ‚ΠΌΠ ΠΠš
  • ВзаимодСйствиС SmpB ΠΈ Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ
  • Вранс-трансляция
  • МодСль процСсса тиранс-трансляции
  • ΠŸΡ€ΠΈΡ‡ΠΈΠ½Ρ‹ появлСния свободного, А ΡΠ°ΠΉΡ‚Π° Π² Ρ‚Ρ€Π°Π½ΡΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… рибосомах
  • РаспознаваниС «Π°Ρ€Π΅ΡΡ‚ΠΎΠ²Π°Π½Π½Ρ‹Ρ…» рибосом ΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ, А ΡΠ°ΠΉΡ‚Π° 43 ΠŸΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Π½Π° ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ, ΡƒΠ·Π½Π°Π²Π°Π½ΠΈΠ΅ ΠΊΠΎΠ΄ΠΎΠ½Π° продолТСния синтСза
  • Элонгация ΠΈ Ρ‚Срминация
  • ДСградация Π±Π΅Π»ΠΊΠ° ΠΈ ΠΌΠ ΠΠš
  • БиологичСская Ρ€ΠΎΠ»ΡŒ /ядонс-трансляции
  • ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
  • Π Π΅Π°ΠΊΡ‚ΠΈΠ²Ρ‹ ΠΈ Π±ΠΈΠΎΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹
  • Π‘ΡƒΡ„Π΅Ρ€Ρ‹ ΠΈ Ρ€Π°ΡΡ‚Π²ΠΎΡ€Ρ‹
  • Врансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Escherichia coli 57 ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Escherichia coli для трансформации с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока
  • Врансформация с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока
  • Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ Π² Π³Π΅Π½, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Ρ‚ΠΌΠ ΠΠš. Π‘Π°ΠΉΡ‚-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π·
  • Анализ активности ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Ρ‚ΠΌΠ ΠΠš с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ &bdquo-гСнСтичСской систСмы"
  • Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ комплСкса Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ
  • Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ суммарной РНК комплСкса
  • ΠžΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ ΠŸΠΠΠ“ Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ суммарного Π±Π΅Π»ΠΊΠ° комплСкса
  • ΠžΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ ΠŸΠΠΠ“-SDS ΠšΡƒΠΌΠ°ΡΡΠΈ R
  • Масс-спСктромСтричСский Π°Π½Π°Π»ΠΈΠ· Π±Π΅Π»ΠΊΠΎΠ²
  • Π”ΠΈΠ°Π»ΠΈΠ·
  • Π£Π€-сшиваниС Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ
  • ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ Π·ΠΎΠ½Π΄Π° для Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ с Ρ‚ΠΌΠ ΠΠš
  • НозСрн-Π±Π»ΠΎΡ‚ Π°Π½Π°Π»ΠΈΠ·
  • ΠŸΠ΅Ρ€Π΅ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»
  • ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠ° ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Брэдфорда
  • ВСстСрн-Π±Π»ΠΎΡ‚ Π°Π½Π°Π»ΠΈΠ·
  • Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ‚ΠΌΠ ΠΠš
  • Π₯имичСский ΠΏΡ€ΠΎΠ±ΠΈΠ½Π³
  • ΠšΡ€ΠΈΠΎ-элСктронная томография
  • ΠšΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
  • Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅
  • Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ комплСксов транспортно-ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠΉ РНК с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ
  • Анализ РНК, входящих Π² ΡΠΎΡΡ‚Π°Π² Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… комплСксов

Анализ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ состава Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… комплСксов 79 ИсслСдованиС комплСкса Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ сшивания 83 ИсслСдованиС комплСксов Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ химичСского ΠΏΡ€ΠΎΠ±ΠΈΠ½Π³Π° 87 ИсслСдованиС комплСкса Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΡ€ΠΈΠΎ-элСктронной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ

ΠšΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ процСсса прохоТдСния Ρ‚ΠΌΠ ΠΠš Ρ‡Π΅Ρ€Π΅Π· рибосому Π² Ρ…ΠΎΠ΄Π΅ транс-трансляции

Π’Ρ‹Π²ΠΎΠ΄Ρ‹

ВзаимодСйствиС Ρ‚ΠΌΠ ΠΠš с рибосомой Π² процСссС транс-трансляции (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Π’ΠΎ Π²ΡΠ΅Ρ… Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… транс-трансляция остановлСна Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… этапах, присутствуСт Π±Π΅Π»ΠΎΠΊ SmpB. БтСхиомСтрия комплСксов рибосома-Ρ‚ΠΌΠ ΠΠš-SmpB Ρ€Π°Π²Π½Π° 1:1:1 Π½Π° Π²ΡΠ΅Ρ… стадиях транс-трансляции. Π‘Π΅Π»ΠΎΠΊ SmpB Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ‚ каноничСский сайт связывания с Ρ‚Π ΠΠš-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌ Π΄ΠΎΠΌΠ΅Π½ΠΎΠΌ Ρ‚ΠΌΠ ΠΠš.

2. ΠŸΡΠ΅Π²Π΄ΠΎΡƒΠ·Π΅Π» 3 Ρ‚ΠΌΠ ΠΠš находится Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…ности рибосомы Π½Π° Π²ΡΠ΅Ρ… этапах транстрансляции.

3. ΠŸΡΠ΅Π²Π΄ΠΎΡƒΠ·Π»Ρ‹ 2, 3 ΠΈ 4 ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ ΠΏΠ΅Ρ‚Π»ΡŽ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…ности 70S рибосомы. Π­Ρ‚Π° пСтля ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Π° Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π΅ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π·Π°Π½ΠΈΠΌΠ°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ полоТСния ΠΎΡ‚ «ΠΏΠ»Π΅Ρ‡Π°» Π΄ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ «Π³ΠΎΠ»ΠΎΠ²Ρ‹» 30S субчастицы рибосомы. ПолоТСния ΠΊΠΎΠ½Ρ†ΠΎΠ² Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ΅Ρ‚Π»ΠΈ Ρ‚ΠΌΠ ΠΠš Π½Π° Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠ΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π²Ρ…ΠΎΠ΄Ρƒ ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Ρƒ ΠΊΠ°Π½Π°Π»Π° мРНК, прСдполагая Ρ€Π°Π·ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π² Π½Π΅ΠΌ мРИК-ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ части Ρ‚ΠΌΠ ΠΠš.

4. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρ‹ Ρ‚ΠΌΠ ΠΠš, Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ мРНК-ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° ΠΈ ΡΠΏΠΈΡ€Π°Π»ΠΈ 5, практичСски Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ся Π² Ρ…ΠΎΠ΄Π΅ транс-трансляции. Π‘ΠΏΠΈΡ€Π°Π»ΡŒ 5 стабилизируСтся ΠΈΠ»ΠΈ защищаСтся ΠΏΡ€ΠΈ взаимодСйствии Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ. Π‘ΠΏΠ΅ΠΊΡ‚Ρ€ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² мРНК-ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° измСняСтся ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ прохоТдСния Ρ‚ΠΌΠ ΠΠš Ρ‡Π΅Ρ€Π΅Π· рибосому Π² Ρ…ΠΎΠ΄Π΅ транс-трансляции.

5. ИзмСнСния ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π² ΠΌΠ ΠΠš-ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΌ Π΄ΠΎΠΌΠ΅Π½Π΅ Ρ‚ΠΌΠ ΠΠš Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π² ΡΠΏΠΈΡ€Π°Π»ΠΈ 2, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ сущСствованиС Ρ‚Ρ€Π΅Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° ΠΌΠ΅ΠΆΠ΄Ρƒ этими областями.

6. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ прохоТдСния Ρ‚ΠΌΠ ΠΠš Ρ‡Π΅Ρ€Π΅Π· рибосому Π² Ρ…ΠΎΠ΄Π΅ транс-трансляции.

1. Lee, S.Y., Bailey, S.C. and Apirion, D. (1978) Small stable RNAs from Escherichia coli: evidence for the existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. J Bacteriol, 133, 1015−23.

2. Inouye, M. and Delihas, N. (1988) Small RNAs in the prokaryotes: a growing list of diverse roles. Cell, 53, 5−7.

3. Jain, S.K., Gurevitz, M. and Apirion, D. (1982) A small RNA that complements mutants in the RNA processing enzyme ribonuclease P. J Mol Biol, 162, 515−33.

4. Keiler, K.C., Shapiro, L. and Williams, K.P. (2000) tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: A two-piece tmRNA functions in Caulobacter. Proc Natl Acad Sci USA, 97, 77/8−83.

5. Jacob, Y., Seif, E., Paquet, P.O. and Lang, B.F. (2004) Loss of the mRNA-like region in mitochondrial tmRNAs of jakobids. RNA, 10, 605−614.

6. Komine, Y., Kitabatake, M., Yokogawa, Π’., Nishikawa, K. and Inokuchi, H. (1994) A tRNA-like structure is present in lOSa RNA, a small stable RNA from Escherichia coli. Proc. Natl Acad. Sci. USA, 91, 9223−9227.

7. Komine, Y. and Inokuchi, H. (1991) Physical map locations of the genes that encode small stable RNAs in Escherichia coli. J Bacteriol, 173, 5252.

8. Chauhan, A.K. and Apirion, D. (1989) The gene for a small stable RNA (lOSa RNA) of Escherichia coli. Mol Microbiol, 3, 1481−5.

9. Moore, S.D. and Sauer, R.T. (2005) Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli. Mol. Microbiol., 58, 456−466.

10. Hallier, M., Ivanova, N., Rametti, A., Pavlov, M., Ehrenberg, M. and Felden, B. (2004) Pre-binding of small protein Π’ to a stalled ribosome triggers trans-translation. J Biol Chem, 279, 25 978−85.

11. Karzai, A.W., Susskind, M.M. and Sauer, R.T. (1999) SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J., 18, 3793−3799.

12. Hong, S.J., Tran, Q.A. and Keiler, K.C. (2005) Cell cycle-regulated degradation of tmRNA is controlled by RNase R and SmpB. Mol Microbiol, 57, 565−75.

13. Hanawa-Suetsugu, K., Takagi, M., Inokuchi, H., Himeno, H. and Muto, A. (2002) SmpB functions in various steps of trans-translation. Nucleic Acids Res, 30, 1620−1629.

14. Keiler, K.C. and Shapiro, L. (2003) TmRNA is required for correct timing of DNA replication in Caulobacter crescentus. J. Bacteriol., 185, 573−80.

15. Oh, B.K. and Apirion, D. (1991) lOSa RNA, a small stable RNA of Escherichia coli, is functional. Mol. Gen. Genet., 229, 52−56.

16. Zwieb, Π‘., Wower, I. and Wower, J. (1999) Comparative sequence analysis of tmRNA. Nucleic Acids Res, 27, 2063;71.

17. Williams, K.P. and Bartel, D.P. (1996) Phylogenetic analysis of tmRNA secondary structure. Rna, 2, 1306−10.

18. Felden, Π’., Himeno, H., Muto, A., McCutcheon, J.P., Atkins, J.F. and Gesteland, R.F. (1997) Probing the structure of the Escherichia coli lOSa RNA (tmRNA). Rna, 3, 89−103.

19. Felden, Π’., Himeno, II., Muto, A., Atkins, J.F. and Gesteland, R.F. (1996) Structural organization of Escherichia coli tmRNA. Biochimie, 78, 979−83.

20. Gaudin, C., Zhou, X., Williams, K.P. and Felden, B. (2002) Two-piece tmRNA in cyanobacteria and its structural analysis. Nucleic Acids Res, 30, 2018;24.

21. Sharkady, S.M. and Williams, K.P. (2004) A third lineage with two-piece tmRNA. Nucleic Acids Res, 32,4531−8.

22. Lin-Chao, S., Wei, C.L. and Lin, Y.T. (1999) RNase E is required for the maturation of ssrA RNA and normal ssrA RNA pepti de-tagging activity. Proc Natl Acad Sci USA, 96, 1 240 611.

23. Li, Z., Pandit, S. and Deutscher, M.P. (1998) 3' exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc Natl Acad Sci U S A, 95,2856−61.

24. Ray, B.K. and Apirion, D. (1979) Characterization of 10S RNA: a new stable rna molecule from Escherichia coli. Mol Gen Genet, 174, 25−32.

25. Felden, Π’., Atkins, J.F. and Gesteland, R.F. (1996) tRNA and mRNA both in the same molecule. Nat Struct Biol, 3, 494.

26. Suddath, F.L., Quigley, G.J., McPherson, A., Sneden, D., Kim, J.J., Kim, S.H. and Rich, A. (1974) Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0angstroms resolution. Nature, 248, 20−4.

27. Tamura, K., Asahara, H., Himeno, H., Hasegawa, T. and Shimizu, M. (1991) Identity elements of Escherichia coli tRNA (Ala). J Mol Recognit, 4, 129−32.

28. Kealey, J.T. and Santi, D.V. (1994) High-level expression and rapid purification of tRNA (m5U54)-methyltransferase. Protein Expr Purif, 5, 149−52.

29. Nurse, K., Wrzesinski, J., Bakin, A., Lane, B.G. and Ofengand, J. (1995) Purification, cloning, and properties of the tRNA psi 55 synthase from Escherichia coli. Rna, 1, 102−12.

30. Cusack, S., Hartlein, M. and Leberman, R. (1991) Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res, 19, 3489−98.

31. Francklyn, C. and Schimmel, P. (1989) Aminoacylation of RNA minihelices with alanine. Nature, 337, 478−81.

32. Beuning, P.J., Yang, F., Schimmel, P. and Musier-Forsyth, K. (1997) Specific atomic groups and RNA helix geometry in acceptor stem recognition by a tRNA synthetase. Proc Natl Acad Sci USA, 94, 10 150−4.

33. Shi, J.P. and Schimmel, P. (1991) Aminoacylation of alanine minihelices. «Discriminator» base modulates transition state of single turnover reaction. J Biol Chem, 266, 2705−8.

34. Hou, Y.M. and Schimmel, P. (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature, 333, 140−5.

35. McClain, W.H. and Foss, K. (1988) Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end. Science, 240, 793−6.

36. Nameki, N., Tadaki, Π’., Muto, A. and Himeno, H. (1999) Amino acid acceptor identity switch of Escherichia coli tmRNA from alanine to histidine in vitro. J Mol Biol, 289, 1−7.

37. Barends, S., Wower, J. and Kraal, B. (2000) Kinetic parameters for tmRNA binding to alanyl-tRNA synthetase and elongation factor Tu from Escherichia coli. Biochemistry, 39, 2652−8.

38. Barends, S., Karzai, A.W., Sauer, R.T., Wower, J. and Kraal, B. (2001) Simultaneous and functional binding of SmpB and EF-Tu-TP to the alanyl acceptor arm of tmRNA. J. Mol. Biol., 314, 9−21.

39. Corvaisier, S., Bordeau, V. and Felden, B. (2003) Inhibition of transfer messenger RNA aminoacylation and trans-translation by aminoglycoside antibiotics. J Biol Chem, 278, 14 788−97.

40. Miczak, A., Chauhan, A.K. and Apirion, D. (1991) Two new genes located between 2758 and 2761 kilobase pairs on the Escherichia coli genome. J. Bacteriol., 173, 3271−3272.

41. Wower, J., Wower, I.K., Kraal, B. and Zwieb, C.W. (2001) Quality control of the elongation step of protein synthesis by tmRNP. J Nutr, 131, 2978S-82S.

42. Withey, J.H. and Friedman, D.I. (2003) A salvage pathway for protein structures: tmRNA and trans-translation. Annu Rev Microbiol, 57, 101−23.

43. Baumler, A.J., Kusters, J.G., Stojiljkovic, I. and Heffron, F. (1994) Salmonella typhimurium loci involved in survival within macrophages. Infect. Immun., 62, 1623−1630.

44. Wower, J., Zwieb, C.W., Hoffman, D.W. and Wower, I.K. (2002) SmpB: a protein that binds to double-stranded segments in tmRNA and tRNA. Biochemistry, 41, 8826−8836.

45. Barends, S., Bjork, K., Gultyaev, A.P., de Smit, M.H., Pleij, C.W. and Kraal, B. (2002) Functional evidence for Dand T-loop interactions in tmRNA. FEBS Lett., 514, 78−83.

46. Sundermeier, T.R., Dulebohn, D.P., Cho, H.J. and Karzai, A.W. (2005) A previously uncharacterized role for small protein Π’ (SmpB) in transfer messenger RNA-mediated trans-translation. Proc Natl Acad Sci USA, 102, 2316−21.

47. Jacob, Y., Sharkady, S.M., Bhardwaj, K., Sanda, A. and Williams, K.P. (2005) Function of the SmpB tail in transfer-messenger RNA translation revealed by a nucleus-encoded form. J. Biol. Chem., 280, 5503−5509.

48. Dong, G., Nowakowski, J. and Hoffman, D.W. (2002) Structure of small protein B: the protein component of the tmRNA-SmpB system for ribosome rescue. EMBO J., 21, 18 451 854.

49. Someya, T. et al. (2003) Solution structure of a tmRNA-binding protein, SmpB, from Thermus thermophilus. FEBS Lett., 535, 94−100.

50. Dulebohn, D.P., Cho, H.J. and Karzai, A.W. (2006) Role of conserved surface amino acids in binding of SmpB protein to SsrA RNA. J Biol Chem, 281, 28 536−45.

51. Hallier, M., Desreac, J. and Felden, B. (2006) Small protein Π’ interacts with the large and the small subunits of a stalled ribosome during trans-translation. Nucleic Acids Res, 34, 1935;43.

52. Shimizu, Y. and Ueda, T. (2002) The role of SmpB protein in trans-translation. FEBS Lett, 514, 74−7.

53. Nameki, N. et al. (2005) Interaction Analysis between tmRNA and SmpB from Thermus thermophilus. J Biochem (Tokyo), 138, 729−39.

54. Ivanova, N., Lindell, M., Pavlov, M., Holmberg Schiavone, L., Wagner, E.G. and Ehrenberg, M. (2007) Structure probing of tmRNA in distinct stages of trans-translation. RNA, 13, 713−722.

55. Bessho, Y. et al. (2007) Structural basis for functional mimicry of long-variable-arm tRNA by transfer-messenger RNA. Proc. Natl Acad. Sci. USA, 104, 8293−8298.

56. Gutmann, S., Haebel, P.W., Metzinger, L., Sutter, M., Felden, B. and Ban, N. (2003) Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB. Nature, 424, 699−703.

57. Metzinger, L., Hallier, M. and Felden, B. (2005) Independent binding sites of small protein Π’ onto transfer-messenger RNA during trans-translation. Nucleic Acids Res, 33, 2384−94.

58. Konno, Π’., Kurita, D., Takada, K., Muto, A. and Himeno, H. (2007) A functional interaction of SmpB with tmRNA for determination of the resuming point of trans-translation. Rna, 13, 1723−31.

59. Stagg, S.M., Frazer-Abel, A.A., Hagerman, P.J. and Harvey, S.C. (2001) Structural studies of the tRNA domain of tmRNA. J. Mol. Biol., 309, 727−735.

60. Ivanova, N., Pavlov, M.Y., Bouakaz, E., Ehrenberg, M. and Schiavone, L.H. (2005) Mapping the interaction of SmpB with ribosomes by footprinting of ribosomal RNA. Nucleic Acids Res., 33, 3529−3539.

61. Kurita, D., Sasaki, R., Muto, A. and Himeno, H. (2007) Interaction of SmpB with ribosome from directed hydroxyl radical probing. Nucleic Acids Res, 35, 7248−55.

62. Kurita, D., Konno, Π’., Takada, K., Muto, A. and Himeno, H. (2007) Molecular mechanism of trans-translation. Nucleic Acids Symp Ser (Oxf), 43−4.

63. Valle, M., Gillet, R., Kaur, S., Henne, A., Ramakrishnan, V. and Frank, J. (2003) Visualizing tmRNA entry into a stalled ribosome. Science, 300, 127−30.

64. Nissen, P., Kjeldgaard, M., Thirup, S., Polekhina, G., Reshetnikova, L., Clark, B.F. and Nyborg, J. (1995) Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science, 270, 1464−1472.

65. Wimberly, B.T., Brodersen, D.E., demons, W.M., Morgan-Warren, R.J., Carter, A.P., Vonrhein, C., Hartsch, T. and Ramakrishnan, V. (2000) Structure of the 30S ribosomal subunit. Nature, 407, 327−339.

66. Yusupov, M.M., Yusupova, G.Z., Baucom, A., Lieberman, K., Earnest, T.N., Cate, J.H. and Noller, H.F. (2001) Crystal structure of the ribosome at 5.5 A resolution. Science, 292, 883 896.

67. Valle, M., Sengupta, J., Swami, N.K., Grassucci, R.A., Burkhardt, N., Nierhaus, K.H., Agrawal, R.K. and Frank, J. (2002) Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J., 21, 3557−3567.

68. Valle, M. et al. (2003) Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol., 10, 899−906.

69. Knudsen, Π’., Wower, J., Zwieb, C. and Gorodkin, J. (2001) tmRDB (tmRNA database). Nucleic Acids Res, 29, 171−2.

70. Stark, H., Rodnina, M.V., Wieden, II.J., Zemlin, F., Wintermeyer, W. and van Heel, M. (2002) Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol., 9, 849−54.

71. Haebel, P.W., Gutmann, S. and Ban, N. (2004) Dial tm for rescue: tmRNA engages ribosomes stalled on defective mRNAs. Curr Opin Struct Biol, 14, 58−65.

72. Kaur, S., Gillet, R., Li, W., Gursky, R. and Frank, J. (2006) Cryo-EM visualization of transfer messenger RNA with two SmpBs in a stalled ribosome. Proc Natl Acad Sci USA, 103, 16 484−9.

73. Sundermeier, T.R. and Karzai, A.W. (2007) Functional SmpB-ribosome interactions require tmRNA. J Biol Chem, 282, 34 779−86.

74. Gillet, R., Kaur, S., Li, W., Hallier, M., Felden, B. and Frank, J. (2007) Scaffolding as an organizing principle in trans-translation. The roles of small protein Π’ and ribosomal protein SI. J. Biol. Chem., 282, 6356−6363.

75. Karzai, A.W. and Sauer, R.T. (2001) Protein factors associated with the SsrA. SmpB tagging and ribosome rescue complex. Proc. Natl Acad. Sci. USA, 98, 3040−3044.

76. Moore, S.D. and Sauer, R.T. (2007) The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem., 76, 101−124.

77. Tu, G.F., Rcid, G.E., Zhang, J.G., Moritz, R.L. and Simpson, R.J. (1995) C-terminal extension of truncated recombinant proteins in Escherichia coli with a lOSa RNA decapeptide. J Biol Chem, 270, 9322−6.

78. Keiler, K.C. and Sauer, R.T. (1996) Sequence determinants of C-terminal substrate recognition by the Tsp protease. J. Biol. Chem., 271, 2589−2593.

79. Keiler, K.C., Waller, P.R. and Sauer, R.T. (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science, 271, 990−993.

80. Withey, J. and Friedman, D. (1999) Analysis of the role of trans-translation in the requirement of tmRNA for lambdaimmP22 growth in Escherichia coli. J. Bacteriol., 181, 2148−2157.

81. Gottesman, S., Roche, E., Zhou, Y. and Sauer, R.T. (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev., 12, 1338−1347.

82. Herman, C., Thevenet, D., Bouloc, P., Walker, G.C. and D’Ari, R. (1998) Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev, 12, 1348−55.

83. Ivanov, P.V. et al. (2002) How does tmRNA move through the ribosome? FEBS Lett, 514, 55−9.

84. Abo, Π’., Inada, Π’., Ogawa, K. and Aiba, H. (2000) SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J., 19, 3762−3769.

85. Yamamoto, Y., Sunohara, Π’., Jojima, K., Inada, T. and Aiba, II. (2003) SsrA-mediated trans-translation plays a role in mRNA quality control by facilitating degradation of truncated mRNAs. RNA, 9, 408−418.

86. Ueda, K., Yamamoto, Y., Ogawa, K., Abo, Π’., Inokuchi, H. and Aiba, H. (2002) Bacterial SsrA system plays a role in coping with unwanted translational readthrough caused by suppressor tRNAs. Genes Cells, 7, 509−19.

87. Abo, Π’., Ueda, K., Sunohara, Π’., Ogawa, K. and Aiba, H. (2002) SsrA-mediated protein tagging in the presence of miscoding drugs and its physiological role in Escherichia coli. Genes Cells, 7, 629−638.

88. Roche, E.D. and Sauer, R.T. (1999) SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J., 18, 4579−4589.

89. Roche, E.D. and Sauer, R.T. (2001) Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J Biol Chem, 276, 28 509−15.

90. Collier, J., Binet, E. and Bouloc, P. (2002) Competition between SsrA tagging and translational termination at weak stop codons in Escherichia coli. Mol Microbiol, 45, 74 554.

91. Hayes, C.S., Bose, B. and Sauer, R.T. (2002) Proline residues at the Π‘ terminus of nascent chains induce SsrA tagging during translation termination. J Biol Chem, 277, 33 825−32.

92. Sunohara, Π’., Abo, Π’., Inada, T. and Aiba, H. (2002) The C-terminal amino acid sequence of nascent peptide is a major determinant of SsrA tagging at all three stop codons. Rna, 8, 1416−27.

93. Hayes, C.S., Bose, B. and Sauer, R.T. (2002) Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci USA, 99, 3440−5.

94. Li, X., Yokota, Π’., Ito, К., Nakamura, Y. and Aiba, H. (2007) Reduced action of polypeptide release factors induces mRNA cleavage and tmRNA tagging at stop codons in Escherichia coli. Mol. Microbiol., 63, 116−126.

95. Hayes, C.S. and Sauer, R.T. (2003) Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol. Cell, 12, 903−911.

96. Sunohara, Π’., Jojima, K., Tagami, H., Inada, T. and Aiba, H. (2004) Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli. J. Biol. Chem., 279, 15 368−15 375.

97. Sunohara, Π’., Jojima, K., Yamamoto, Y., Inada, T. and Aiba, H. (2004) Nascent-peptide-mediated ribosome stalling at a stop codon induces mRNA cleavage resulting in nonstop mRNA that is recognized by tmRNA. RNA, 10, 378−86.

98. Collier, J., Bohn, C. and Bouloc, P. (2004) SsrA tagging of Escherichia coli SecM at its translation arrest sequence. J. Biol. Chem., 279, 54 193−54 201.

99. Li, X., Hirano, R., Tagami, H. and Aiba, H. (2006) Protein tagging at rare codons is caused by tmRNA action at the 3' end of nonstop mRNA generated in response to ribosome stalling. RNA, 12, 248−255.

100. Li, X., Yagi, M., Morita, T. and Aiba, H. (2008) Cleavage of mRNAs and role of tmRNA system under amino acid starvation in Escherichia coli. Mol Microbiol, 68, 462−73.

101. Garza-Sanchez, F., Janssen, B.D. and Hayes, C.S. (2006) Prolyl-tRNA (Pro) in the A-site of SecM-arrested ribosomes inhibits the recruitment of transfer-messenger RNA. J. Biol. Chem., 281, 34 258−34 268.

102. Asano, K., Kurita, D., Takada, K., Konno, Π’., Muto, A. and Himeno, H. (2005) Competition between trans-translation and termination or elongation of translation. Nucleic Acids Res., 33, 5544−5552.

103. Ivanova, N., Pavlov, M.Y., Felden, B. and Ehrenberg, M. (2004) Ribosome rescue by tmRNA requires truncated mRNAs. J. Mol. Biol., 338, 33−41.

104. Yusupova, G.Z., Yusupov, M.M., Cate, J.H. and Noller, H.F. (2001) The path of messenger RNA through the ribosome. Cell, 106, 233−241.

105. Jenner, L. et al. (2005) Translational operator of mRNA on the ribosome: How repressor proteins exclude ribosome binding. Science, 308, 120−123.

106. Ivanova, N., Pavlov, M.Y. and Ehrenberg, M. (2005) tmRNA-induced release of messenger RNA from stalled ribosomes. J. Mol. Biol., 350, 897−905.

107. Williams, K.P., Martindale, K.A. and Bartel, D.P. (1999) Resuming translation on tmRNA: a unique mode of determining a reading frame. EMBO J., 18, 5423−33.

108. Lim, V.I. and Garber, M.B. (2005) Analysis of recognition of transfer-messenger RNA by the ribosomal decoding center. J. Mol. Biol., 346, 395−8.

109. O’Connor, M. (2007) Minimal translation of the tmRNA tag-coding region is required for ribosome release. Biochem Biophys Res Commun, 357, 276−81.

110. Sauer, R.T. et al. (2004) Sculpting the proteome with AAA (+) proteases and disassembly machines. Cell, 119, 9−18.

111. Weber-Ban, E.U., Reid, B.G., Miranker, A.D. and Horwich, A.L. (1999) Global unfolding of a substrate protein by the HsplOO chaperone ClpA. Nature, 401, 90−93.

112. Kim, Y.I., Burton, R.E., Burton, B.M., Sauer, R.T. and Baker, T.A. (2000) Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell, 5, 639−648.

113. Wiegert, T. and Schumann, W. (2001) SsrA-mediated tagging in Bacillus subtilis. J. Bacteriol., 183,3885−3889.

114. Farrell, C.M., Grossman, A.D. and Sauer, R.T. (2005) Cytoplasmic degradation of ssrA-tagged proteins. Mol. Microbiol., 57, 1750−1761.

115. Bohn, C., Binet, E. and Bouloc, P. (2002) Screening for stabilization of proteins with a trans-translation signature in Escherichia coli selects for inactivation of the ClpXP protease. Mol. Genet. Genomics, 266, 827−831.

116. Baker, T.A. and Sauer, R.T. (2006) ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem Sci., 31, 647−653.

117. Flynn, J.M., Levchenko, I., Seidel, M., Wickner, S.H., Sauer, R.T. and Baker, T.A. (2001) Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl Acad. Sci. USA, 98, 10 584−10 589.

118. Levchenko, I., Grant, R.A., Wah, D.A., Sauer, R.T. and Baker, T.A. (2003) Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag. Mol. Cell, 12, 365−372.

119. Flynn, J.M., Levchenko, I., Sauer, R.T. and Baker, T.A. (2004) Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev, 18, 2292−301.

120. Levchenko, I., Seidel, M., Sauer, R.T. and Baker, T.A. (2000) A specificity-enhancing factor for the ClpXP degradation machine. Science, 289, 2354−2356.

121. Lessner, F.H., Venters, B.J. and Keiler, K.C. (2007) Proteolytic adaptor for transfer-messenger RNA-tagged proteins from alpha-proteobacteria. J. Bacteriol., 189, 272−275.

122. Dougan, D.A., Reid, B.G., Horwich, A.L. and Bukau, B. (2002) ClpS, a substrate modulator of the ClpAP machine. Mol. Cell, 9, 673−683.

123. Ito, К. and Akiyama, Y. (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol, 59, 211−231.

124. Herman, C., Prakash, S., Lu, C.Z., Matouschek, A. and Gross, C.A. (2003) Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol. Cell, 11, 659−669.

125. Choy, J.S., Aung, L.L. and Karzai, A.W. (2007) Lon protease degrades transfer-messenger RNA-tagged proteins. J Bacteriol, 189, 6564−71.

126. Mehta, P., Richards, J. and Karzai, A.W. (2006) tmRNA determinants required for facilitating nonstop mRNA decay. Rna, 12, 2187−98.

127. Richards, J., Mehta, P. and Karzai, A.W. (2006) RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner. Mol. Microbiol., 62, 1700−1712.

128. Okan, N.A., Bliska, J.B. and Karzai, A.W. (2006) A Role for the SmpB-SsrA system in Yersinia pseudotuberculosis pathogenesis. PLoS Pathog, 2, e6.

129. Muto, A., Fujihara, A., Ito, K.I., Matsuno, J., Ushida, C. and Himeno, H. (2000) Requirement of transfer-messenger RNA for the growth of Bacillus subtilis under stresses. Genes Cells, 5, 627−35.

130. Julio, S.M., Heithoff, D.M. and Mahan, M.J. (2000) ssrA (tmRNA) plays a role in Salmonella enterica serovar Typhimurium pathogenesis. J. Bacteriol., 182, 1558−1563.

131. Braud, S., Lavire, C., Bellier, A. and Mazodier, P. (2006) Effect of SsrA (tmRNA) tagging system on translational regulation in Streptomyces. Arch. Microbiol., 184, 343−352.

132. Huang, C., Wolfgang, M.C., Withey, J., Koomey, M. and Friedman, D.I. (2000) Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J., 19, 1098−1107.

133. Hutchison, C.A., Peterson, S.N., Gill, S.R., Cline, R.T., White, O., Fraser, C.M., Smith, H.O. and Venter, J.C. (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Scicnce, 286, 2165−2169.

134. Shin, J.H. and Price, C.W. (2007) The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures. J Bacteriol, 189, 3729−37.

135. Munavar, H., Zhou, Y. and Gottesman, S. (2005) Analysis of the Escherichia coli Alp phenotype: heat shock induction in ssrA mutants. J. Bacteriol., 187, 4739−4751.

136. Ranquet, C., Geiselmann, J. and Toussaint, A. (2001) The tRNA function of SsrA contributes to controlling repression of bacteriophage Mu prophage. Proc. Natl Acad. Sci. USA, 98, 10 220−5.

137. Billington, S.J., Johnston, J.L. and Rood, J.I. (1996) Virulence regions and virulence factors of the ovine footrot pathogen, Dichelobacter nodosus. FEMS Microbiol Lett, 145, 147−56.

138. Ebeling, S., Kundig, C. and Hennecke, H. (1991) Discovery of a rhizobial RNA that is essential for symbiotic root nodule development. J. Bacteriol., 173, 6373−6382.

139. Keiler, K.C. and Shapiro, L. (2003) tmRNA in Caulobacter crescentus is cell cycle regulated by temporally controlled transcription and RNA degradation. J. Bacteriol., 185, 1825−1830.

140. Hong, S.J., Lessner, F.H., Mahen, E.M. and Keiler, K.C. (2007) Proteomic identification of tmRNA substrates. Proc. Natl Acad. Sci. USA, 104, 17 128−17 133.

141. Bugaeva, E.Y., Shpanchenko, O.V., Felden, Π’., Isaksson, L.A. and Dontsova, O.A. (2008) One SmpB molecule accompanies tmRNA during its passage through the ribosomes. FEBS Lett, 582, 1532−6.

142. Shpanchenko, O.V. et al. (2005) Stepping transfer messenger RNA through the ribosome. J Biol Chem, 280, 18 368−74.

143. Nowotny, P., Nowotny, V., Voss, H. and Nierhaus, K. (1988) Preparation and activity measurements of deuterated 50S subunits for neutron-scattering analysis. Meth. Enzymol., 164, 131−147.

144. Krutchinsky, A.N., Kalkum, M. and Chait, B.T. (2001) Automatic identification of proteins with a MALDI-quadrupole ion trap mass spectrometer. Anal Chem, 73, 5066−77.

145. Kalkum, M., Lyon, G.J. and Chait, B.T. (2003) Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc Natl Acad Sci USA, 100, 2795−800.

146. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 24 854.

147. Moazed, D., Stern, S. and Noller, H. (1986) Rapid chcmical probing of conformation in 16S ribosomal rRNA and 30S subunits using primer extension. J. Mol. Biol., 187, 399−416.

148. Moazed, D. and Noller, H.F. (1986) Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell, 47, 985−94.

149. Adrian, M., Dubochet, J., Lepault, J. and McDowall, A.W. (1984) Cryo-electron microscopy of viruses. Nature, 308, 32−6.

150. Lindahl, E., Hess, B. and van der Spoel, D. (2001) Gromacs 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Mod., 7, 306−317.

151. Van Der Spoel, D., Lindahl, E., Hess, Π’., Groenhof, G., Mark, A.E. and Berendsen, H.J. (2005) GROMACS: fast, flexible, and free. J Comput Chem, 26, 1701−18.

152. Srisawat, C. and Engelke, D.R. (2001) Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. Rna, 7, 632−41.

153. Jurica, M.S., Licklider, L.J., Gygi, S.R., Grigorieff, N. and Moore, M.J. (2002) Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA, 8, 426−39.

154. Leonov, A.A., Sergiev, P.V., Bogdanov, A.A., Brimacombe, R. and Dontsova, O.A. (2003) Affinity purification of ribosomes with a lethal G2655C mutation in 23 S rRNA that affects the translocation. J. Biol. Chem., 278, 25 664−25 670.

155. Nameki, N., Tadaki, Π’., Himeno, H. and Muto, A. (2000) Three of four pseudoknots in tmRNA are interchangeable and are substitutable with single-stranded RNAs. FEBS Lett, 470, 345−9.

156. Bjornsson, A. and Isaksson, L.A. (1996) Accumulation of a mRNA decay intermediate by ribosomal pausing at a stop codon. Nucleic Acids Res, 24, 1753−1757.

157. Mukherjee, S., Shukla, A. and Guptasarma, P. (2003) Single-step purification of a protein-folding catalyst, the SlyD peptidyl prolyl isomerase (PPI), from cytoplasmic extracts of Escherichia coli. Biotechnol. Appl. Biochem., 37, 183−186.

158. Tate, W., Greuer, B. and Brimacombe, R. (1990) Codon Recognition in Polypeptide Chain Termination: Site Directed Crosslinking of Termination Codon to Escherichia coli Release Factor-2. Nucleic Acids Res., 18, 6537−6544.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ