Корреляционный анализ.
Основы экономико-математического моделирования
Корреляционное поле и корреляционная таблица являются вспомогательными средствами при анализе выборочных данных. При нанесении на координатную плоскость выборочных точек получают корреляционное поле. По характеру расположения точек поля можно составить предварительное мнение о форме зависимости случайных величин (например, о том, что одна величина в среднем возрастает или убывает при возрастании… Читать ещё >
Корреляционный анализ. Основы экономико-математического моделирования (реферат, курсовая, диплом, контрольная)
Корреляционный анализ — совокупность основанных на математической теории корреляции методов обнаружения корреляционной зависимости между двумя случайными признаками или факторами. Корреляционый анализ экспериментальных данных заключает в себе следующие основные практические приёмы:
- 1) построение корреляционного поля и составление корреляционной таблицы;
- 2) вычисление выборочных коэффициентов корреляции или корреляционного отношения;
- 3) проверка статистической гипотезы значимости связи.
Дальнейшее исследование заключается в установлении конкретного вида зависимости между величинами. Зависимость между тремя и большим числом случайных признаков или факторов изучается методами многомерного корреляционного анализа. (вычисление частных и множественных коэффициентов корреляции и корреляционных отношений).
Корреляционное поле и корреляционная таблица являются вспомогательными средствами при анализе выборочных данных. При нанесении на координатную плоскость выборочных точек получают корреляционное поле. По характеру расположения точек поля можно составить предварительное мнение о форме зависимости случайных величин (например, о том, что одна величина в среднем возрастает или убывает при возрастании другой). Для численной обработки результаты обычно группируют и представляют в форме корреляционной таблицы. В каждой клетке корреляционной таблицы приводятся численности гц; тех пар(х, у), компоненты которых попадают в соответствующие интервалы группировки по каждой переменной.
Предполагая длины интервалов группировки (по каждому из переменных) равными между собой, выбирают центры xi (соответственноyj) этих интервалов и числа nij в качестве основы для расчётов.
Коэффициент корреляции дает более точную информацию о характере и силе связи, чем картина корреляционного поля.
Коэффициент корреляции — это величина, которая может варьировать в пределах от +1 до — В случае полной положительной корреляции этот коэффициент равен плюс 1, а при полной отрицательной — минус Корреляция считается сильной, если ее коэффициент выше 0,60; если же он превышает 0,90, то корреляция считается очень сильной.
Коэффициент корреляции Браве-Пирсона ® — это параметрический показатель, для вычисления которого сравнивают средние и стандартные отклонения результатов двух измерений. При этом используют формулу (у разных авторов она может выглядеть по-разному).
(17).
где УX*Y — сумма произведений данных из каждой пары;
n-число пар;
- — средняя для данных переменной X;
- — средняя для данных переменной Y
Sx — стандартное отклонение для распределения х;
Sy — стандартное отклонение для распределения у
Коэффициент корреляции рангов Спирмена (rs) — это непараметрический показатель, с помощью которого пытаются выявить связь между рангами соответственных величин в двух рядах измерений.
Этот коэффициент рассчитывать проще, однако результаты получаются менее точными, чем при использовании r. Это связано с тем, что при вычислении коэффициента Спирмена используют порядок следования данных, а не их количественные характеристики и интервалы между классами. Дело в том, что при использовании коэффициента корреляции рангов Спирмена (rs) проверяют только, будет ли ранжирование данных для какой-либо выборки таким же, как и в ряду других данных для этой выборки, попарно связанных с первыми. Если коэффициент близок к +1, то это означает, что оба ряда практически совпадают, а если этот коэффициент близок к -1, можно говорить о полной обратной зависимости.
Коэффициент rs вычисляют по формуле.
(18).
где d — разность между рангами сопряженных значений признаков (независимо от ее знака), а — число пар.
Обычно этот непараметрический тест используется в тех случаях, когда нужно сделать какие-то выводы не столько об интервалах между данными, сколько об их рангах, а также тогда, когда кривые распределения слишком асимметричны и не позволяют использовать такие параметрические критерии, как коэффициент r (в этих случаях бывает необходимо превратить количественные данные в порядковые).