Молекулярная детекция и разнообразие Crenarchaeota в наземных горячих источниках
Практическая значимость. Предложен простой, надежный и чувствительный метод обнаружения архей Crenarchaeota, основанный на ПЦР амплификации генов 16S рРНК с помощью высокоспецифичных олигонуклеотидных праймеров. Также предложен надежный и чувствительный метод детекции кренархеот рода Desulfurococcus, основанный на ДНК-ДНК гибридизации на мембранах с олигонуклеотидными зондами. Методыспешно… Читать ещё >
Молекулярная детекция и разнообразие Crenarchaeota в наземных горячих источниках (реферат, курсовая, диплом, контрольная)
Актуальность проблемы. Археи филума Crenarchaeota представляют одну из наиболее глубоких филогенетических ветвей прокариот. С момента пионерских исследований Т. Брока (Brock, 1986) в Йеллоустонском Национальном парке в 70-х гг. и последующих работ В. Циллига и К. Штеттера (Zillig et al., 1982; Stetter, 1996) до середины 90-х гг. XX века все представители этого филума формировали небольшую гомогенную группу, представленную гипертермофилами с серным метаболизмом, обитающими только в зонах вулканической активности. В течение последних двух десятилетий в связи с развитием новых молекулярно-биологических подходов, позволяющих детектировать микроорганизмы в природных экосистемах без предварительного культивирования, огромное количество «филотипов» Crenarchaeota было найдено как в «холодных» местообитаниях, так и в морских и наземных гидротермах. В связи с таким широким распространением в природных экосистемах представители Crenarchaeota могут вносить значительный вклад в глобальные энергетические циклы (Schleper et al., 2005). Однако физиологические свойства и метаболизм новых линий Crenarchaeota остаются неясными, так как лишь единичные виды удается выделить в чистую культуру или хотя бы получить стабильный рост в лабораторных условиях.
Большой интерес к термофильным прокариотам, и, в частности, к термофильным Crenarchaeota как к представителям наиболее древних филогенетических линий, связан с теориями о происхождении жизни на Земле и с исследованиями механизмов приспособления к существованию при высоких температурах. Фундаментально-научный интерес к уникальным по стабильности биополимерам термофильных прокариот сопровождается интенсивным изучением возможности их практического применения в различных областях биотехнологии и индустрии.
В связи с этим изучение распространения и биоразнообразия термофильных Crenarchaeota, а также поиск новых культивируемых представителей этой группы, представляет научный и практический интерес.
Цели и задачи исследования. Целью настоящей работы была молекулярная детекция и идентификация представителей филума Crenarchaeota с помощью олигонуклетидных праймеров и зондов, специфичных к генам 16Б рРНК, а также выделение и характеристика новых представителей Сгепагскаео1а. Основные задачи исследования состояли в следующем:
1. Разработка методов молекулярной детекции представителей филума Сгепагскаео1а.
2. Проведение детекции представителей Сгепагскаео1а в накопительных культурах и природных образцах.
3. Мониторинг накопительных культур Crenarchaeota.
4. Выделение в чистую культуру новых термофильных представителей Сгепагскаео1а,.
5. Феноттщическая и филогенетическая характеристика новых изолятов. Научная новизна и значимость работы. Разработаны олигонуклеотидные праймеры для детекции представителей архей филума Сгепагскаео1а и зонды для детекции представителей рода ВеБгй/игососсш. Высокая специфичность праймеров позволяет делать выводы о наличии представителей Сгепагскаеога в накопительных культурах и природных образцах непосредственно по результатам ПЦР-амплификации. С использованием разработанных подходов изучен состав СгепагсНаео1а, населяющих горячие источники полуострова Камчатка, Байкальского региона, о. Кунашир и Исландии. В числе детектированных организмов были близкие как к культивируемым представителям филума Crenarchaeota порядков ОеБи^игососсаШ, Ткегторго1еа1е8, 8иЦо1оЪаеБ, так и к некультивируемым Сгепагскаео1а. Предлагаемый нами метод молекулярно-биологической детекции гипертермофильных архей рода ОеБШ/июсоссш позволил провести быстрый и достоверный скрининг этих организмов в культурах и природных образцах. На основании совокупности физиологических и филогенетических признаков описан новый вид Desulfurococcus fermentans и дана его полная фенотипическая характеристика. Применение комбинации молекулярно-биологических и культуральных методов позволило культивировать и дать первичную фенотипическую характеристику «Fervidococcus fontis» -представителя новой филогенетической ветви Crenarchaeota, ранее включавшей лишь некультивируемые организмы. Полученные результаты расширяют представления о биоразнообразии термофильных представителей филума Crenarchaeota. Новые организмы могут являться источниками новых ферментов для различных областей биотехнологии.
Практическая значимость. Предложен простой, надежный и чувствительный метод обнаружения архей Crenarchaeota, основанный на ПЦР амплификации генов 16S рРНК с помощью высокоспецифичных олигонуклеотидных праймеров. Также предложен надежный и чувствительный метод детекции кренархеот рода Desulfurococcus, основанный на ДНК-ДНК гибридизации на мембранах с олигонуклеотидными зондами. Методыспешно применены для детекции и идентификации чистых культур микроорганизмов, детекции Crenarchaeota и, в частности, рода Desulfurococcus в природных образцах и накопительных культурах.
Расширено представление о составе микробных сообществ, участвующих в процессе анаэробного разложения биополимеров в вулканических местообитаниях.
Апробация работы. Материалы диссертации были представлены на международных конференциях: «IVth International Congress on Extremophiles», 2002; «1st FEMS Congress of European Microbiologists», 2003; «International Congress on Thermophiles», 2003; «Vth International Congress on Extremophiles», 2004; «International conference «Archaea», 2005; «International workshop «Biodiversity, molecular biology and biogeochemistry of thermophiles», 2005; «2nd FEMS Congress of European Microbiologists», 2006; «International Congress on Thermophiles», 2007; а также на XV международной молодежной зимней школе-конференции, 2003.
Публикации. По материалам диссертации опубликовано 11 печатных работ: 2 экспериментальные статьи, 9 тезисов конференций, 2 статьи находятся в печати.
Объем и структура диссертации. Диссертационная работа состоит из введения, обзора литературы, экспериментальной части, содержащей методы и результаты исследования с обсуждением, заключения, выводов и списка литературы, который содержит 207 наименований работ. Материалы диссертации изложены на 171 странице машинописного текста и включают 21 рисунок и 12 таблиц.
134 ВЫВОДЫ.
1. Разработан метод обнаружения архей филума Crenarchaeota, основанный на ПЦР-амплификации генов 16S рРНК с помощью высокоспецифичных олигонуклеотидных праймеров.
2. Разработан метод идентификации архей рода Desulfurococcus, основанный на ДНК-ДНК гибридизации на мембранах с помощью высокоспецифичных олигонуклеотидных зондов.
3. Описан новый вид Desulfurococcus fermentans sp. nov. и изменен диагноз рода Desulfurococcus.
4. Установлено, что в источниках с температурами 55−75°С присутствуют представители глубоких филогенетических ветвей филума Crenarchaeota. Культивируемые умеренно-термофильные Crenarchaeota являются анаэробными органотрофами, использующими сложные полимерные субстраты.
5. Путем сочетания молекулярно-биологических подходов и методов культивирования, выделен представитель нового рода и вида lFervidococcus fontis' gen. nov., sp. nov., относящийся к глубокой филогенетической ветви, до сих пор представленной лишь некультивируемыми организмами. Организмы группы lFervidococcus' широко распространены в вулканических местообитаниях с умеренными температурами, где участвуют в деструкции органического вещества в анаэробных условиях.
ЗАКЛЮЧЕНИЕ
.
В течение многих лет горячие источники Камчатки, Байкальского региона, Курильских островов и Исландии были источником выделения термофильных микроорганизмов. В разные годы из гидротерм Камчатки и о. Кунашир сотрудниками ИНМИ РАН были выделены органотрофные анаэробные представители Сгепагскаео1а ОеяЫ/игососсш атуЫуИсиБ (Бонч-Осмоловская и др., 1988), Ткегтор^еш иготетк (ВопсЬ-Озшо1оузкауа е! а1., 1990), АЫсШоЬш асеИсш (Ргок^еуа е! а1., 2000). В последние годы молекулярно-биологических подходы к исследованию микробного разнообразия были применены и к микробным сообществам гидротерм. Довольно подробно было изучено биоразнообразие наземных и подземных гидротерм Исландии (МагТетзБОп еХ а1., 2001; Ку1з1 е! а1., 200?). Однако молекулярно-биологические данные, характеризующие микробное разнообразие в горячих источниках Камчатки, Байкальского региона и о. Кунашир отсутствовали.
В ходе нашей работы были разработаны новые способы детекции гипертермофильных архей филума Сгепагскаео1а и представителей рода ОейиЩгососсш, которые позволили нам обнаружить эти микроорганизмы в различных природных местообитаниях. Так, с помощью ПЦР с Сгепагскаео1а-специфичными праймерами нам удалось показать, что представители Сгепагскаео1а широко распространены в гидротермах Камчатки, Байкальского региона, Курильских островов, и подтвердить эти данные для гидротерм Исландии. Кроме того, в горячих источниках Камчатки, Исландии и Байкальского региона были детектированы представители глубоких филогенетических ветвей Сгепагскаео1а, присутствие которых приурочено к источникам с температурными характеристиками (57−75°С) слишком низкими для большинства анаэробных гипертермофильных культивируемых Сгепагскаео1а.
С помощью нового способа детекции представителей рода Оеяи1/игососсш нам удалось идентифицировать четыре новых штамма этого рода, выделенные из наземных гидротерм Камчатки и о. Кунашир, которые были отнесены нами к виду D. amylolyticus. Также с помощью нового молекулярно-биологического подхода нами были обнаружены представители этого рода непосредственно в наземных гидротермах Камчатки и прибрежной морской гидротерме о. Кунашир. Эти данные подтверждают сведения о широком распространении органотрофных гипертермофильных архей с кокковидными клетками в наземных гидротермах Дальнего Востока России (Бонч-Осмоловская, Светличный, 1988; Бонч-Осмоловская, Заварзин, 1989). Кроме того, нами был описан новый вид Desulfurococcus fermentans, который оказался способен к росту на ряде полимерных субстратов, таких как целлюлоза и пектин. При этом способность к росту на целлюлозе является уникальным свойством нового организма, т.к. среди гипертермофильных архей не было ранее обнаружено организмов, растущих на целлюлозных субстратах (Sunna, 1997). Таким образом, оказалось, что в род Desulfurococcus, исходно описанный как включающий гипертермофильных архей с серным дыханием, использующих пептиды (Zillig et al., 1982), входят также вид (ы), не нуждающиеся в сере и использующие широкий круг полисахаридов.
Нами был выделен в чистую культуру новый организм «Fervidococcus fontis», филогенетически удаленный от ближайших культивируемых представителей порядка Desulfurococcales (уровень сходства 87−89%), который также оказался органотрофом, способным к росту при температурах значительно ниже нижнего температурного предела роста ранее известных гипертермофильных Crenarchaeota. Эти данные, как и результаты наших исследований природных сообществ горячих источников, говорят о том, что многие «некультивируемые» Crenarchaeota относятся к новой группе «умеренных термофилов» .
Комбинация методов культивирования с новыми молекулярно-биологическими подходами в приложении к пробам и накопительным культурам из горячего источника Уринской группы (Байкальский регион) позволила дать первичную фенотипическую характеристику организма, являющегося представителем глубокой филогенетической ветви «некультивируемых» СгепагсИаео1а, ранее представленную клоном рЛЧ1 из к*.
Иеллоустонского Национального Парка, также оказавшегося умеренным термофилом и органотрофом.
Таким образом, наши данные свидетельствуют о том, что представители новой группы умеренно-термофильных СгепагсИаео1а являются органотрофами, участвующими в анаэробной деструкции органического вещества в гидротермах.
Список литературы
- Басков Е.А., Суриков С. Н. Гидротермы Земли. Д.: Недра, 1989.
- Бонч-Осмоловская Е.А., Светличный В. А. 1988. Экстремально-термофильные сероредуцирующие архебактерии // Архебактерии. Сборник научных трудов. Пущино. С. 50−60.
- Бонч-Осмоловская Е.А., Заварзин Г. А. 1989. Термофильные бактерии, восстанавливающие серу, и формирование ими геохимического барьера. Кальдерные микроорганизмы. М.: Наука. С. 98.
- Брянская А.В., Намсараев З. Б., Калашникова О. М., Бархутова Д. Д., Намсараев Б. Б., Горленко В. М. 2006. Биогеохимические процессы в альгобактериальных матах щелочного термального Уринского источника //Микробиология 75(5): 702−712.
- Герхардт Ф. Методы общей бактериологии. М.: Наука. 1984.
- Заварзин Г. А. Бактерии и состав атмосферы. М.: Наука. 1984.
- Заварзин Г. А., Карпов Г. А. Деятельность микроорганизмов в кальдерах. Кальдерные микроорганизмы. М.: Наука. 1989. С. 3−29.
- Карпов Г. А. В кальдере вулкана. М.: Наука. 1980.
- Карпов Г. А. Узон земля заповедная. М.: Логата. 1998. 64 с.
- Короновский Н.В., Якушова А. Ф. Основы геологии. М. Высшая школа. 1991.420 стр.
- Майерс Р., Шеффилд В., Кокс Д. Обнаружение единичных нуклеотидных замен в ДНК: расщепление РНКазой и денатурирующий градиентный гель-электрофорез. Анализ генома: Методы. М.: Мир, 1990.- С. 123−175.
- Маниатис Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование: методы генетической инженерии. Пер. с англ. М.: Мир, 1984.
- Милановский Е.Е., 1999. Рифтогенез и его роль в развитии Земли // Соросовский образовательный журнал 8: 60−70.
- Намсараев З.Б., Горленко В. М., Намсараев Б. Б., Бархутова Д. Д. 2006. Микробные сообщества щелочных гидротерм. Новосибирск. Издательство сибирского отделения РАН.
- Семенов В. 1988. В краю горячих источников. Дальневосточное книжное издательство, Камчатское отделение.
- Слободкин А.В., Бонч-Осмоловская Е.А. 1994. Рост и образование продуктов метаболизма экстремально-термофильными археями рода Desulfurococcus в присутствии и в отсутствие элементной серы // Микробиология 63: 981−985.
- Слободкина Г. Б., Слободкин А. И., Турова Т. П., Кострикина Н. А., Бонч-Осмоловская Е.А. 2004. Обнаружение культивируемой гипертермофильной археи рода Sulfophobococcus в метантенке, работающем в термофильном режиме // Микробиология 73: 716−720.
- Шаталкин А.И. 2004. Высший уровень деления в классификации организмов. Архебактерии, эубактерии и эукариоты // Журнал общей биологии 65:99−115.
- Allers Т., Mevarech М. 2005. Archaeal genetics the third way // Nat. Rev. Gen. 6: 58−73.
- Amann R.I., Ludwig W., Schleifer K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation // Microbiological Reviews 59: 143−169.
- Amann R., Ludwig W. 2000. Ribosomal RNA targeted nucleic acid probes for studies in microbial ecology // FEMS Microbiology Review 24: 555−565.
- Ando S., Ishida H., Kosugi Y., Ishikawa K. 2002. Hyperthermostable endoglucanase from Pyrococcus horikoshii // Applied and Environmental Microbiology 68:430−433.
- Ashkin A., Dziedzic J.M. 1987. Optical trapping and manipulation of viruses and bacteria // Science 235: 1517−1520.-
- Barbier G., Godfroy A., Meunier J.-R., Querellou J., Cambon M.-A., Lesongeur F., Grimont P. A. D. & Raguenes G. 1999. Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise // Int J Syst Bacterid 49:1829−1837.
- Barns S.M., Fundyga R.E., Jeffries M.W., and Pace N.R. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment // Proceedings of the National Academy of Sciences of the United States of America 91:1609−1613.
- Barns, S., Delwiche, C., Palmer, J.D. and Pace, N. 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences // Proceeding of the National Academy of Sciences of the United States of America 93: 9188−9193.
- Barton H.A., Taylor N.M., Lubbers B.R., Pemberton A.C. 2005. DNA extraction from low-biomass carbonate rock: An improved method with reduced contamination and the low-biomass contaminant database // Journal of Microbiological Methods 66(1): 21−31.
- Bauer M. W., Driskill L. E., Callen W., Snead M. A., Mathur E. J., Kelly R. M. 1999. An endoglucanase, EglA, from the hyperthermophilic archaeon
- Pyrococcus furiosus hydrolyzes ?-1,4 bonds in mixed-linkage (1—>3), (1—>4)-?-D-glucans and cellulose I IJ Bacteriol 181:284−290.
- Bintrim S.B., Donohue T.J., Handelsman J., Roberts G.P., Goodman R.M. 1997. Molecular phylogeny of archaea from soil // Proceeding of the national Academy of Sciences of the United states of America 94:277−282.
- Blochl E., Burggraf S., Fiala G., Lauere G., Huber G., Huber R., Rachel R., Segerer A., Stetter K.O. and Volkl P. 1995. Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms // World Journal of Microbiology & Biotechnology 11: 9−16.
- Blochl E., Rachel R., Burggraf S., Hafenbradl D., Jannasch H. W., and Stetter. K. O. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of Archaea, extending the upper temperature limit for life to 113 °C // Extremophiles 1:14−21.
- Bonch-Osmolovskaya E.A. 2004. Studies of thermophilic microorganisms at the Institute of Microbiology, Russian Academy of Sciences // Microbiology 73: 551−564. Translated from Mikrobiologiya 73: 644−658.
- Boom R., Sol C.J.A., Salimans M.M.M., Jansen C.L., Wertheim-van Dillen P.M.E., van der Noordaa J. 1990. Rapid and simple method for purification of nucleic acids // Journal of Clinical Microbiology 28(3): 495−503.
- Brock T.D. 1986.Thermophiles: General, molecular and applied microbiology // By John Willey & Sons, Inc. USA.
- Buckley D.H., Graber J.R., Schmidt T.M. 1998. Phylogenese analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils // Applied and Environmental Microbiology 64:43 334 339.
- Burggraf S., Huber H., & Stetter K.O. 1997. Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data // Int. J. Syst. Bacteriol. 47: 657−660.
- Burns B.P., Goh F., Allen M., Neilan B.A. 2004. Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia // Environmental Microbiology 6: 1096−1101.
- Chandler D.L., Stults J.R., Cebula S. et al. 2000. Affinity purification of DNA and RNA from environmental samples with peptide nucleic acid clamps // Applied Environmental Microbiology 66(8): 3438−3445.
- Chapelle, F.H., O’Neill, K., Bradley, P.M., Methe, B.A., Ciufo, S.A., Knobel, L.L., Lovley, D.R. 2002. A hydrogen-based subsurface microbial community dominated by methanogens // Nature 415:312−315.
- Cole S.T., Girons I.S. 1994. Bacterial genomics // FEMS Microbial Reviews 14: 139−160.
- Corpet F. 1988. Multiple sequence alignment with hierarchical clustering // Nucl. Acids. Res. 16(22): 10 881−10 890.
- Dawson S.C., DeLong E.F., Pace N.R. 2006. Phylogenetic and Ecological Perspectives on Uncultured Crenarchaeota and Korarchaeota U The Prokaryotes. V.3. Archaea. Bacteria: Firmicutes, Actinomycetes. Springer New York.
- Dedysh S.N., Pankratov T.A., Belova S.E., Kulichevskaya I.S., Liesack W. 2006. Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog // Applied and Environmental Microbiology 72(3): 2110−2117.
- Degrange V. and Bardin R. 1995. Detection and counting of Nitrobacter population in soil by PCR // Applied and Environmental Microbiology 61(6): 2093−2098.
- DeLong, E. F., G. S. Wickham, and N. R. Pace. 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells // Science 243: 1360−1363.
- DeLong, E.F. 1992. Archaea in coastal marine environments // Proceedings of the National Academy of Sciences of the United States of America 89: 56 855 689.
- Dickson E.M., Riggio M.P., Macpherson L. 2005. A novel species-specific PCR assay for identifying Lactobacillus fermentum II Journal of Medical Microbiology 54:299−303.
- Farrelly V., Rainey F.A., Stackebrandt E. 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species // Applied Environmental Microbiology 61:2798−2801.
- Fiala, G., Stetter, K. 0.1986. Pyrococcus furiosus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaeobacteria growing optimally at 100 °C // Systematic and Applied Microbiology 8:106— 113.
- Fisher S.G., Lerman L.S. 1979. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis// Cell 16:191 200.
- Forterre P. 1996. A hot topic: the origin of hyperthermophiles // Cell 85: 789 792.
- Fox G.E., Magrum L.J., Balch W.E., Wolfe R.S., Woese C.R. 1977. Classification of methanogenic bacteria by 16S ribosomal RNAcharacterization // Proceeding of the National Academy of Sciences of the United States of America 74:4537−4541.
- Fuchs, T., Huber, H., Teiner, K., Burggraf, S., Stetter, K. O. 1995. Metallosphaeraprunae sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in Germany I I Systemataic Applied Microbiology 18, 560−566.
- Fuhrman J.A., McCallum K., Davis, A.A. 1992. Novel major archaebacterial group from marine plankton // Nature 356:148−149.
- Fuhrman J.A., Davis A.A. 1997. Widespread archaea and novel bacteria from the deep sea as shown by 16S rRNA gene sequences // Marine Ecology-Progress Series 150: 275−285.
- Garcia-Martinez J., Rodriguez-Valera F. 2000. Microdiversity of uncultured marine prokaryotes: the SARI 1 sluster and the marine Archaea of Group I // Molecular Ecology 9:935−948.
- Garrity G.M., Boone D.R., Castenholz R.W. (eds). Bergey’s manual of systematic bacteriology. 2nd ed. 2001. // Springer-Verlag. New York, Berlin, Heidelberg.
- Giovannoni, S.J., DeLong E.F., Olsen G.J., Pace N.R. 1988. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells//Journal of Bacteriology 170: 720−726.
- Glockner F.O., Amann R., Alfreider A., Pernthaler J., Psenner R., Trebesius K., Schleifer K.-H. 1996. An in situ hybridization protocol for detection and identification of planktonic bacteria // Systematic and Applied Microbiology 19,403−406.
- Godon, J.J., Zumstein, E., Dabert P., Habouzit, F., Molettta, R. 1997 Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis // Applied and Environmental microbiology 63:2802−2813.
- Golovacheva R.S., Karavaiko G.I. 1978. A new genus of thermophilic spore-forming bacteria, Sulfobacillus II Microbiology (Engl. Transl. of Microbiologiia) 47: 658−664.
- Grosskopf R., Stubner S., Liesack W. 1998. Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms // Applied and Environmental Microbiology 65: 4983−4989.
- Gutell R.R. Larsen N., Woese C.R. 1994. Lessons from an evolving rRNA: 16S and 23 S rRNA structures from a comparative perspective // Microbiological Reviews 58:10−26.
- Head I.M., Saunders J.R., Pickup R.W. 1998. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms // Microbial Ecology 35: 1−21.
- Hershberger K.L., Barns S.M., Reysenbach A.-L., Dawson S.C., Pace N.R. 1996. Wide diversity of Crenarchaeota II Nature 384: 420.
- Hjorleifsdottir S., Skienisdottir S., Hreggvidsson G.O., Hoist O., Kristiansson J.K. 2001. Species composition of cultivated and concultivated bacteria from short filaments in an Icelandic hot spring at 88 °C // Microbial Ecology 42: 117−125.
- Hohn M.J., Hedlund B.P., Huber H. 2002. Detection of 16S rDNA sequences representing the novel phylum «Nanoarchaeota»: Indication for a wide distribution in high temperature biotopes // Systematic Applied Microbiology 25:551−554.
- Huber R., Stoffers P., Cheminee J. L., Richnow H. H., and Stetter. K. O. 1990. Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount // Nature 345: 179−182.
- Huber G., Stetter K.O. 1991. Sulfolobus metallicus sp. nov., a novel strictly chemolithotrophic thermophilic archaeal species of metal-mobilizers // Syst. Appl. Microbiol 14: 372−378.
- Huber R., Huber H., Stetter K. O. 2000. Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties // FEMS Microbiology Review 24: 615−623.
- Huber, H., and K. O. Stetter. 2001. Order II: Desulfiirococcales. In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed. SpringerVerlag. New York, NY. 1:179−180.
- Huber, H., Hohn, M. J., Rachel, R., Fuchs, T., Wimmer, V.C., Stetter, K. O. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont // Nature 417: 63−67.
- Huber J.A., Butterfield D.A., Barossi J.A. 2002. Temporal changes in archaeal diversity and chemistry in a Mid-Ocean Ridge subseafloor habitat // Applied and Environmental Microbiology 68: 1585−1594.
- Huber H., Hohn M.J., Stetter K.O., and Rachel R. 2003. The phylum Nanoarchaea: present knowledge and future perspectives of a unique form of life // Research in Microbiology 154: 165−171.
- Huber H., Stetter K.O. 2006. Desulfurococcales II The Prokaryotes. V.3. Archaea. Bacteria: Firmicutes, Actinomycetes. Springer New York.
- Huber H., Prangishvili D. 2006. Sulfulobales II The Prokaryotes. V.3. Archaea. Bacteria: Firmicutes, Actinomycetes. Springer New York.
- Hugenholtz P., 2002. Exploring prokaryotic diversity in the genomic era. Genome Biology 3(2): reviews0003.1−0003.8.
- Jackson C.R., Langner H.W., Donahoe-Christiansen J., Inskeep W.P., McDermott T.R. 2001. Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring // Environmental Microbiology 3:532−542.
- Jannasch H.W., Wirsen C.O., Molyneaux S.J., Langworthy T.A. 1988. Extremely Thermophilic Fermentative Archaebacteria of the Genus Desulfurococcus from Deep-Sea Hydrothermal Vents II Applied and Environmental Microbiology 54: P. 1203.
- Jukes T.H., Cantor C.R. 1969. Evolution of protein molecules. Pp. 21−123 in H. N. Munro, ed. Mammalian protein metabolism II Academic Press, New York.
- Jurgens G., Lindstrom K., Saano A. 1997. Novel group within the kingdom Crenarchaeota from boreal forest soil // Applied and Environmental Microbiology 63: 803−805.
- Kanakratana P., Chanapan S., Pootanakit K., Eurwilaichitr L. 2004. Diversity and abundance of Bacteria and Archaea in the Bor Khlueng hot Spring in Thailand // Journal of Basic Microbiology 44: 430−444.
- Karavaiko G.I. Golyshina O.V., Troitskii A.V., Valieho-Roman K.M., Golovacheva R.S., Pivovarova T.A. 1994. Sulfurococcus yellowstonii sp. nov., a new species of iron- and sulfur-oxidizing thermoacidophilic archaebacteria // Microbiologiya 63: 668−682.
- Keough B.P., Schmidt T.M., Hicks R.E. 2003. Archaeal nucleic acids in picoplankton from Great Lakes on three continents // Microbial Ecology 46: 238−248.
- Kimura H., Sugihara M., Yamamoto H., Patel Bharat K.C., Kato K., Hanada S. 2005. Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia // Extremophiles 9:407−414.
- Klenk H.-P., Spitzer M., Ochsenreiter T., Fuellen G. Phylogenomic of hyperthermophilic Archaea and Bacteria // Biochemical Society Transaction 32: 175−178.
- Knittel K., Losekann T., Boetius A., Kort R., Amann R. 2005. Diversity and distribution of methanotrophic archaea at cold seeps // Applied and Environmental Microbiology 71(1): 467−479.
- Koch M., Rudolph C., Moissl C., Huber R. 2006. A cold-loving crenarchaeon is a substantial partofa novel microbial community in cold sulphidicmarshwater// FEMS Microbiological Ecology 57: 55−66.
- Konneke M., Bernhard A.E., de la Torre J.R., Walken C.B., Waterbury J.B., Stahl D.A. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon // Nature Letters 437: 543−546.
- Kvist T., Mengewein A., Manzei S., Ahring B.K., Westermann P. 2005. Diversity of thermophilic and non-thermophilic crenarchaeota at 80 °C //
- FEMS Microbiology Letters 244: 61−68. 50./ 7c>0 * / j 105. Kvist T., Ahring B.K., and Westermann P. 2006: Archaeal diversity in1. elandic hot springs // FEMS Microbial Ecology 59: 71−80.
- Lane, D. J. 1991. 16S/23 S rRNA sequencing, In E. Stackebrandt and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons, Inc., New York, N.Y. pp. 115−175.
- Limauro D., Cannio R., Fiorentino G., Rossi M., Bartolucci S. 2001. Identification and molecular characterization of an endoglucanase gene, celS, from the extremely thermophilic archaeon Sulfolobus solfataricus // Extremophiles 5:213−219.
- Makarova K.S., Wolf Y.I., Koonin E.V. 2003. Potential genomic determinants of hyperthermophily//TRENDS in Genetics 19:172−176.
- Marteinsson, V.T., Hauksdottir, S., Hobel, C.F.V., Kristmannsdottir, H., Hreggvidsson, G.O., and Kristjansson, J.K. 2001a. Phylogenetic diversity analysis of subterranean hot springs in Iceland // Applied and Environmental Microbiology 67:4242−4248.
- Massana R., DeLong E.F., Pedros-Alio C. 2000. A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces // Applied and Environmental Microbiology 66: 1777−1787.
- Matsuki T., Watanabe K., Tanaka R. 2003. Genus- and species-specific PCR primers for the detection and identification of Bifidobacteria // Current Issues Intest. Microbiology 4: 61−69.
- McCliment E.A., Voglesonger K.M., O’Day P.A., Dunn E.E., Holloway J.R., and Cary S.C. 2006. Colonization of nascent, deep-sea hydrothermalvents by a novel Archaeal and Nanoarchaeal assemblage // Environmental Microbiology 8:114−125.
- Mclnerney J.O., Wilkinson M., Patching J.W., Embley T.M., and Powell R. 1995. Recovery and phylogenetic analysis of novel archaeal ribosomal RNA sequences from a deep-sea deposit feeder // Applied and Environmental Microbiology 61:1646−1648.
- Mehling, A., Wehmeier, U. F., Piepersberg, W. 1995. Nucleotide sequences of Streptomycete 16S ribosomal DNA: towards a specific identification system for Streptomycetes using PCR // Microbiology 141: 2139−2147.
- Meyer-Dombard D.R., Shock E.L., and Amend J.P. 2005. Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA // Geobiology 3: 211−227.
- Miller S.L., Lazcano A. 1996. The origin of life-did it occur at high temperatures? // J. Mol. Evol 41: 689−692.
- More M.I., Herrick J.B., Silva M.C., Ghiorse W.C., Madsen E.L. 1994. Quantitative cell lysis of indigenous microorganisms and rapid extraction of DNA from sediment // Applied and Environmental Microbioology 60: 15 721 580.
- Moyer, C.L., Tiedje, J.M., Dobbs, F.C., and Karl, D.M. 1998. Diversity of deep-sea hydrothermal vent Archaea from Loihi seamount, Hawaii // Deep-Sea Research Part Ii-Topical Studies in Oceanography 45: 303−317.
- Munson M.A., Nedwell D.B., and Embley M.T. 1997. Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh // Applied Environmental Microbiology 63: 4729−4733.
- Muyzer G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems // Current Opinion in Microbiology 2: 317−322.
- Nakagawa S., Takai K., Horikoshi K., Sako Y. 2004. Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney I I International Journal of Systematic Microbiology 54: 329−335.
- Nercessian O., Reysenbach A.L., Prieur D., and Jeanthon C. 2003. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N) // Environmental Microbiology 5:492 502.
- Niederberger T.D., Ronimus R.S., Morgan H.W. 2007. The microbial ecology of a high-temperature near neutral spring situated in Rotorua, New Zealand // Microbiological Research. In press.
- Niemi R.M., Heiskanen I., Wallenius K., Lindstrom K. 2001. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia//Journal of Microbiological Methods 45:155−165.
- Nikol G.W., Tscherko D., Embley T.M., Prosser J.I. 2005. Primary succession of soil Crenarchaeota across a receding glacier foreland // Environmental Microbiology 7(3): 337−347.
- Nomura M., Mizushima S., Ozaki M., Traub P., Lowry P.E. 1969. Structure and function of ribosomes and their molecular components // Cold Spring Harbor Symp. Quant. Biol. 34: 49−61.
- Ochsenreiter T., Pfeifer F., Schleper C. 2002. Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies // Extremophiles 6(4): 267−274.
- Ochsenreiter T., Selezi D., Quaiser A., Bonch-Osmolovskaya L., and Schleper C. 2003. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR // Environmental Microbiology 5: 787−797.
- Pearson A., Huang Z., Ingalls A.E., Romanek C.S., Wiegel J., Freeman K.H., Smittenberg R.H., and Zhang C.L. 2004. Nonmarine crenarchaeol in Nevada hot springs // Applied and Environmental Microbiology 70: 52 295 237.
- Pernthaler J., Glockner F.O., Schonhuber W., Amann R. ? Fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes // In J. Paul (ed.), Methods in Microbiology: Marine Microbiology, vol. 30. Academic Press Ltd, London.
- Pernthaler A., Pernthaler J., Amann R. 2002. Fluorescence in situ hybridization and catalysed reporter deposition for the identification of marine bacteria // Applied and Environmental Microbiology 68(6): 3094−3101.
- Pichler T., Amend J., Garey J., Hallock P., Hsia N., Karlen D., McCloskey B., Meyer-Dombard D., Price R. 2006. A natural laboratory to study arsenic geobiocomplexity // EOS 87(23): 221−225.
- Pley U., Schipka J., Gambacorta A., Jannasch H. W., Fricke H., Rachel R., and Stetter K. O. 1991. Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 °C // Syst. Appl. Microbiol. 14:245−253.
- Preston C.M., Wu K.Y., Molinski T.F., DeLong E.F., 1996. A psychrophilic crenarchaeon inhibits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov // Proceeding of the National Academy of Sciences of the United States of America 93: 6241−6246.
- Reynolds, G. S. 1963.The use of lead citrate at high pH as an electron opaque stain in electronic microscopy // Journal of Cell Biology 17: 208−212.
- Reysenbach A.-L., Giver L.J., Wickham G.S., Pace N.R. 1992. Differential amplification of rRNA genes by polymerase chain reaction // Applied Environmental Microbiology 58: 3417−3418.
- Reysenbach, A.-L., Ehringer, H., and Hershberger, K. 2000a. Microbial diversity at 83 degrees Celsius in calcite springs, Yellowstone National Park: another environment where the Aquificales and «Korarchaeota» coexist // Extremophiles 4: 61−67.
- Reysenbach, A.-L., Longnecker, K., and Kirshtein, J. 2000b. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent // Applied and Environmental Microbiology 66:3798−3806.
- Rieu-Lesme F., Delbes C., Sollelis L. 2005. Recovery of partial 16S rDNA sequences suggests the presence of Crenarchaeota in the human digestive ecosystem // Current Microbiology 51:317−321.
- Rochelle P.A., Fry J.C., Parkes R.J., Weightman A.J. 1992. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities // FEMS Microbiological Letters 100: 59−66.
- Rogers K.L., and Amend J.P. 2005. Archaeal diversity and geochemical energy yields in a geothermal well on Vulcano island, Italy // Geobiology 3: 319−332.
- Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees // Mol. Biol. Evol. 4(4): 406−425.
- Sako, Y., Nomura N., Uchida A., Ishida Y., Morii H., Koga Y., Hoaki T., and Maruyama T. 1996. Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 °C // Int. J. Syst. Bact. 46:1070−1077.
- Schafer T., Schonheit P. 1992. Maltose fermentation to acetate, C02 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway // Arch Microbiol 158:188−202.
- Schleper, C" Holben, W., and Klenk, H.P. 1997. Recovery of Crenarchaeotal ribosomal DNA sequences from freshwater lake sediments // Applied and Environmental Microbiology 63:321−323.
- Schleper C., Jurgens G., and Jonuscheit M. 2005. Genomic studies of uncultured archaea // Nature Reviews Microbiology 3:479−488.
- Schonheit, P. and Schafer, T. 1995. Metabolism of hyperthermophiles // World Journal of Microbiological Biotechnology 11: 26−57.
- Shrenk M.O., Kelley D.S., Delaney J.R., and Baross J.A. 2003. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney // Applied and Environmental Microbiology 69: 35 803 592.
- Simon H.M., Dodsworth J.A., Goodman R.M. 2000. Crenarchaeota colonize terrestrial plant roots. Environmental Microbiology 2:495−505.
- Spear J.R., Walker J.J., McCollom T.M., and Pace N. 2004. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem // Proceedings of the National Academy of Sciences of the United States of America 102:25 552 560.
- Speksnijder A.G.C.L., Kowalchuk G.A., De Jong S. et al. 2001. Microvariation artifacts introduced be PCR and cloning of closely related 16S rRNA gene sequences // Applied Environmental Microbiology 67(1): 469 472.
- Spiegelman D., Whissell G., Greer C. W. 2005. A survey of the methods for the characterization of microbial consortia and communities // Can. Journal Microbiology 51: 355−386.
- Stackebrandt E., and Woese C. 1981. The evolution of prokaryotes. // In Molecular and cellular aspects of microbial evolution. Carlise M.J., Collins J.R., and Moseley B.E.B. (eds). Cambridge: Cambridge University press 1−31.
- Stackenbrandt E., Woese C. R. 1981. Towards a phylogeny of the actinomycetes and related organisms // Curr. Microbiol 5:197−202.
- Stahl D.A., Lane D.J., Olsen G.J., Pace N.R. 1985. Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences // Applied and Environmental Microbiology 49: 1379−1384.
- Stahl D., and Amann R. 1991. Development and application of nucleic acid probes // In: E. Stackebrandt and M. Goodfellow (Eds.), Nucleic acidtechniques in bacterial systematics, John Wiley and Sons, New York, NY, pp. 205−248.
- Steffan R.J., Goksoyr J., Asim K.B., Atlas R.M. 1988. Recovery of DNA from soils and sediments // Applied and Environmental microbiology 54: 2908−2915.
- Stein J.L., Marsh T.L., Wu K.Y., Shizuya H., DeLong E.F. 1996. Characterization of incultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment front a planktonic marine archaeon // Journal of Bacteriology 178: 591−599.
- Stetter K. O., Konig H., and Stackebrandt E. 1983. Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C // Syst. Appl. Microbiol. 4:535−551
- Stetter K. O., and Zillig W. 1985. Thermoplasma and the thermophilic sulfur-dependent archaebacteria II In: C. Woese, and R. S. Wolfe (Eds.) The Bacteria. Academic Press. New York, NY. 8: 100−201.
- Stetter K.O. Diversity of extremely thermophilic archaebacteria. 1986. // Thermophiles: General, Molecular and Appl. Microbiol, ed Brock T.D. New York: John Wiley & Sons. pp. 40−74.
- Stetter K.O. 1996. Diversity of extremely thermophilic archaebacteria // Thermophiles. General, molecular, and applied microbiology, edited by T. D. Brock.
- Sunna A., Moracci M., Rossi M., Antranikian G. 1997. Glycosyl hydrolases from hyperthermophiles // Extremophiles 1:2−13.
- Suzuki M.T., Giovannoni S.J. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR // Applied Environmental Microbiology 62:625−630.
- Takai, K. and Sako, Y. 1999. A molecular view of archaeal diversity in marine and terrestrial hot water environments // Fems Microbiology Ecology 28:177−188.
- Takai, K. and Horikoshi, K. 1999. Genetic diversity of archaea in deep-sea hydrothermal vent environments // Genetics 152: 1285−1297.
- Takai, K., Komatsu, T., Inagaki, F., and Horikoshi, K. 2001. Distribution of archaea in a black smoker chimney structure // Applied and Environmental Microbiology 67: 3618−3629.
- Triverdi S., Satyawada Rama Rao and Hukam Singh Gehlot. 2005. Nucleic acid stability in thermophilic prokaryotes: a review // Journal of Cell and Molecular Biology 4: 61−69.
- Ueda T., Suga Y., Matsuguchi T. 1995. Molecular phylogenetic analysis of a soil microbial community in a soybean field // European Journal of Soil Sciences 46:415−421.
- Van de Peer Y., Chapelle S., Wachter R.D. 1996. A quantitative map of nucleotide substitution rates in bacterial rRNA // Nucleic Acids Research 24: 3381−3391.
- Van de Peer Y. & De Wachter R. 1994. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment // Comput Appl Biosci 10,569−570.
- Van der Maarel M.J., Artz R.R., Haanstra R., Forney L.J. 1998. Association of marine archaea with the digestive tracts of two marine fish species // Applied and Environmental Microbiology 64: 2894−2898.
- Vetriani C., Jannasch H.W., MacGregor B.J., Stahl D.A., Reysenbach A.L. 1999. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments // Applied and Environmental Microbiology 65: 4375−4384.
- Wang P., Xiao X., and Wang F. 2005. Phylogenetic analysis of Archaea in the deep-sea sediments of west Pacific Warm Pool // Extremophiles 9:209 217.
- Ward D.M., Bateson M.M., Weller R., Ruff-Roberts A.L. 1992. Ribosomal RNA analysis of microorganisms as they occur in nature // Advanced Microbial Ecology 12:219−286.
- Whitaker R.J., Grogan D.W., Taylor J.W. 2003. Geographic barriers isolate endemic populations of hyperthermophilic archaea // Science 301: 976 978.
- Wiegel J. 1998. Anaerobic alkalithermophiles, a novel group of extremophiles // Extremophiles V.2. P. 257−267.
- Winker, S., Woese, C.R., 1991. A Definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit RNA characteristics // Syst. Appl. Microbiol, vol. 14, no. 4, pp. 305−310.
- Woese, C.R., and Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms // Proceeding of the National Academy of Sciences of the United States of America 74: 5088−5090.
- Woese C.R. 1987. Bacterial evolution // Microbiological reviews 51(2): 221−271.
- Woese C.R., Kandler O., Wheelis M.L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya // Proceeding of the National Academy of Sciences of the United States of America 87:4576−4579.
- Zillig W., Holz I., and Wunderl S. 1991. Hyperthermus butylicus gen. nov., sp. nov., a hyperthermophilic, anaerobic, peptide-fermenting, facultatively H2S-generating archaebacterium // Int. J. Syst. Bact. 41:169−170.
- Zuckerkandl E., Pauling L. 1965. Molecules as documents of evolutionary history // Journal of Theoretical Biology 8(2): 357−66.159