Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

Регуляризирующие алгоритмы и комплекс программ решения обратной задачи восстановления параметров намагниченности

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Диссертационная работа посвящена исследованию проблем решения задачи восстановления параметров намагниченности корабля по измеренным значениям магнитного поля. Результатом данной работы является построение как иерархии моделей, позволяющих понизить размерность решаемой трёхмерной задачи восстановления параметров намагниченности корабля, так и разработка эффективных методов решения трёхмерных… Читать ещё >

Содержание

  • 1. Задача восстановления параметров намагниченности
    • 1. 1. Задача восстановления параметров намагниченности корабля
    • 1. 2. Экспериментальное исследование макета корабля
    • 1. 3. Математическая модель
    • 1. 4. Иерархия математических моделей
      • 1. 4. 1. Одномерная постановка задачи
      • 1. 4. 2. Двумерная постановка задачи
      • 1. 4. 3. Трёхмерная постановка задачи в общем виде
  • 2. Регуляризирующие алгоритмы и численные методы
    • 2. 1. Методы решения одномерных обратных задач
      • 2. 1. 1. Метод условного градиента
      • 2. 1. 2. Метод проекции сопряженных градиентов
      • 2. 1. 3. Метод сингулярного разложения матрицы
      • 2. 1. 4. Примеры решения одномерной обратной задачи
    • 2. 2. Методы решения двумерных обратных задач
      • 2. 2. 1. Уравнение типа свертки
      • 2. 2. 2. Метод решения двумерной задачи в общем виде
    • 2. 3. Метод решения трёхмерной задачи в общем виде
  • 3. Программный комплекс
    • 3. 1. Структура программного комплекса
    • 3. 2. Особенности численной реализации
    • 3. 3. Особенности распараллеливания трёхмерной задачи

Регуляризирующие алгоритмы и комплекс программ решения обратной задачи восстановления параметров намагниченности (реферат, курсовая, диплом, контрольная)

Диссертационная работа посвящена исследованию проблем решения задачи восстановления параметров намагниченности корабля по измеренным значениям магнитного поля. Для решения этой задачи в зависимости от известной априорной информации об изучаемом объекте предлагаются различные численные алгоритмы решения, запрограммированные для использования как на обычных компьютерах, так и на многопроцессорных системах. Техника распараллеливания позволяет производить обработку больших объемов данных, что даёт достаточно подробное описание исследуемого объекта. Разработанные алгоритмы также могут быть успешно применены для решения очень широкого класса прикладных физических задач, сводящихся как к трёхмерным интегральным уравнениям Фредгольма 1-го рода для векторной функции, так и к задачам меньшей размерности (в том числе для случая, когда необходимо восстановить скалярную функцию).

Актуальность темы

Многие задачи современной физики являются обратными задачами. К сожалению, во всех реальных задачах входные данные задаются с погрешностями, например, получаются в результате эксперимента. Более ста лет назад считалось, что только задачи с решениями, устойчивыми по отношению к возмущениям входных данных, имеют физический смысл. Ж. Адамар ввел понятие корректной (корректно поставленной) задачи [1].

Корректной (корректно поставленной) задачей он называл любую задачу, у которой решение.

1) существует,.

2) единственно и.

3) непрерывно зависит от входных данных.

Все остальные задачи Ж. Адамар называл некорректными (некорректно поставленными). Т. е. некорректной считалась задача, у которой нарушается хотя бы одно из трёх свойств корректной задачи.

Оказывается, что абсолютное большинство обратных задач, к которым сводятся прикладные задачи, являются некорректно поставленными. В связи с этим в середине XX века начала развиваться теория некорректных задач, и начали разрабатываться методы их решения.

Академиком А. Н. Тихоновым в 60-х годах прошлого века была заложена теория решения некорректных задач, основанная на понятии регуляризирующего алгоритма [2, 3] как способа приближенного решения некорректной задачи. После основополагающих работ А. Н. Тихонова [2−7], М. М. Лаврентьева [8, 9] и В. К. Иванова [10−13] теория некорректных задач была развита многими учеными в применении к разным областям науки и техники. Некоторые результаты работы отечественных и зарубежных ученых представлены в [14−41].

При решении многих современных прикладных обратных задач часто необходимо восстанавливать характеристики исследуемых объектов в пространстве, при этом эти характеристики могут являться векторными функциями. Это зачастую приводит к необходимости решать трёхмерные интегральные уравнения Фредгольма 1-го рода для векторной функции, что невозможно сделать с использованием обычных персональных компьютеров. В таких случаях обычно используются различные упрощения и допущения, которые понижают размерность решаемой задачи, но при этом дают ограниченную информацию об исследуемом объекте либо приводят к существенным ошибкам в восстанавливаемых значениях исследуемых характеристик. В связи с этим наибольший интерес представляют эффективные методы решения прикладных трёхмерных обратных задач.

Данные проблемы рассматриваются на примере решения важной прикладной задачи восстановления параметров намагниченности корабля по измеренным значениям магнитного поля вне его корпуса. Цель работы Целью данной работы являлось построение как иерархии моделей, позволяющих понизить размерность решаемой трёхмерной задачи восстановления параметров намагниченности корабля, так и разработка эффективных методов решения трёхмерных обратных задач в постановке, в которой необходимо решить трёхмерное интегральное уравнение Фредгольма 1-го рода для векторной функции (постановка, к которой сводится много прикладных физических задач). Положения, выносимые на защиту.

1) Иерархия моделей и эффективные численные методы решения обратной задачи восстановления параметров намагниченности корабля по измеренным значениям магнитного поля.

2) Программный комплекс решения обратной задачи восстановления параметров намагниченности корабля по измеренным значениям магнитного поля на обычных и многопроцессорных системах.

3) Алгоритм решения прикладных трёхмерных обратных задач, сводящихся к интегральным уравнениям Фредгольма 1-го рода для векторной функции, с использованием многопроцессорных систем и его программная реализация.

Научная новизна Автором была разработана иерархия моделей решения обратной задачи восстановления параметров намагниченности корабля по измеренным значениям магнитного поля. Выло показано, что для решения трёхмерных обратных задач, сводящихся к трёхмерным интегральным уравнениям Фредгольма 1-го рода для векторной функции, использование многопроцессорных систем очень эффективно, что позволяет решать данные задачи в самой общей постановке без использования различных упрощений, которые обычно сильно ограничивают полученную при решении информацию об исследуемом объекте. Практическая значимость Результаты, полученные в диссертации, могут быть применены для решения многих прикладных трёхмерных обратных задач. Среди физических задач отметим обратные задачи механики, задачи томографии, обратные задачи астрофизики, обратные задачи геофизики, задачи спектроскопии, обратные задачи линейной оптики, обратные задачи линейной акустики, обратные задачи радиофизики, задачи исследования материалов и дефектов в них, задачи по обработке изображений. Описанные в работе методы решения применимы к линейным обратным задачам, встречающимся в перечисленных областях. Все результаты данной работы могут быть использованы как для решения трёхмерных обратных задач физики, в которых неизвестные величины являются векторными функциями, так и легко упрощены на случаи задач меньшей размерности либо задач, при решении которых необходимо восстанавливать скалярные функции.

Личный вклад автора Основные результаты, полученные в данной диссертационной работе, были впервые получены автором. Постановка математической задачи и анализ научных результатов проводились под руководством А. Г. Яголы. Постановка задачи восстановления параметров намагниченности проводилась совместно с X. Я. Пейем из Национального Университета Сингапура. Основное содержание диссертационной работы и её результатов полностью отражено в девяти научных публикациях автора. В материалах совместных публикаций личный вклад автора является определяющим.

Апробация работы Основные результаты диссертационной работы были представлены: 1) на Всероссийской научно-практическая конференции «Обратные задачи в приложениях» (Бирск, 22−23 мая 2006 года, Бирская государственная социально-педагогическая академия);

2) на Всероссийской научной конференции «Математика. Механика. Информатика.» (Челябинск, 19−22 сентября 2006 года, Челябинский государственный университет);

3) на Международной конференции «Обратные и некорректные задачи математической физики», посвященной 75-летию академика М. М. Лаврентьева (Новосибирск, 20−25 августа 2007 года, Дом Учёных СО РАН);

4) на Международной конференции 11 Алгоритмический анализ неустойчивых задач", посвященной 100-летию со дня рождения В. К. Иванова (Екатеринбург, 1−6 сентября 2008 года, Уральский университет);

5) на конференции «65 лет Южно-Уральскому государственному университету. Секция естественно-научных и гуманитарных наук.» (Челябинск, 2008 год, Южно-Уральский Государственный Университет);

6) на Международной конференции студентов, аспирантов и молодых ученых по фундаментальным наукам «Ломоносов-2010» (Москва, 12 апреля 2010 года, Московский Государственный Университет им. М. В. Ломоносова);

7) на Международной конференции «The Second International Workshop on Computational Inverse Problems and Applications» (Китай, Пекин, 12−15 июля 2010 года, Институт геологии и геофизики Китайской Академии Наук);

8) на научном семинаре кафедры математики физического факультета МГУ им. М. В. Ломоносова (24 февраля 2010 года);

9) на научном семинаре «Обратные задачи математической физики» под руководством А. Б. Бакушинского, А. В. Тихонравова и А. Г. Яго-лы, проводящемся в Научно-исследовательском вычислительном центре МГУ (1 декабря 2010 года);

10) на научно-методологическом семинаре НИВЦ МГУ под руководством A.B. Тихонравова, 3 февраля 2011 года.

Публикации По теме диссертации опубликовано 9 работ, из которых 2 статьи в рецензируемых печатных научных журналах [42,43], 1 статья в сборниках трудов конференций [44] и 6 тезисов конференций [45−50]. В журналах из списка ВАК РФ опубликовано 2 статьи [42,43]. Структура работы Диссертация написана на 104 страницах, состоит из титульного листа, оглавления, введения, трёх глав, заключения и списка литературы (92 наименования).

В первой главе подробно описана постановка задачи восстановления параметров намагниченности, которая заключается в восстановлении вектора намагниченности, распределённого по объёму корабля, по измеренным значениям магнитного поля вне его корпуса. Рассматривается иерархия моделей, позволяющая как понизить размерность решаемой задачи с целью её более простого численного решения, так и позволяющая решить поставленную задачу в самом общем виде с целью получения более подробной информации об исследуемом объекте. Обсуждаются преимущества и недостатки каждой из предложенных моделей.

Во второй главе рассмотрены методы регуляризации решения поставленной некорректной задачи. Методы основаны на минимизации функционала Тихонова с последующим выбором параметра регуляризации по обобщённому принципу невязки. Минимизация функционала Тихонова осуществляется с помощью метода условного градиента с ограничениями, метода сопряженных градиентов с проекцией на множество ограничений, метода сингулярного обращения матрицы для одномерной задачис использованием метода решения двумерного интегрального уравнения Фредгольма 1-го рода с ядром типа свертки и метода сопряжённых градиентов для двумерной задачис помощью метода сопряженных градиентов для трёхмерной задачи. Демонстрируются результаты модельных расчётов и обработки экспериментальных данных.

В третьей главе приведено описание программного комплекса и его многопроцессорной реализации. Предлагаются алгоритмы использования многопроцессорных систем для решения двумерной и трёхмерной обратных задач, сводящихся к интегральному уравнению Фредгольма 1-го рода для векторной функции.

Заключение

.

Диссертационная работа посвящена исследованию проблем решения задачи восстановления параметров намагниченности корабля по измеренным значениям магнитного поля. Результатом данной работы является построение как иерархии моделей, позволяющих понизить размерность решаемой трёхмерной задачи восстановления параметров намагниченности корабля, так и разработка эффективных методов решения трёхмерных обратных задач в постановке, в которой необходимо решить трёхмерное интегральное уравнение Фредгольма 1-го рода для векторной функции. Для решения поставленной задачи в зависимости от известной априорной информации об изучаемом объекте предложены различные численные алгоритмы решения, запрограммированные для использования как на обычных компьютерах так и на многопроцессорных системах. Техника распараллеливания позволяет производить обработку больших объёмов данных, что даёт достаточно подробное описание исследуемого объекта. Разработанные алгоритмы также могут быть успешно применены для решения очень широкого класса прикладных физических задач, сводящихся как к трёхмерным интегральным уравнениям Фредгольма 1-го рода для векторной функции, так и к задачам меньшей размерности (в том числе для случая, когда необходимо восстановить скалярную функцию).

Сформулируем основные результаты данной работы:

1) Разработаны иерархия моделей и эффективные численные методы решения обратной задачи восстановления параметров намагниченности корабля по измеренным значениям магнитного поля.

2) Создан программный комплекс решения обратной задачи восстановления параметров намагниченности корабля по измеренным значениям магнитного поля на обычных и многопроцессорных системах.

3) Предложен и реализован в виде комплекса программ алгоритм решения прикладных трёхмерных обратных задач, сводящихся к интегральным уравнениям Фредгольма 1-го рода для векторной функции, с использованием многопроцессорных систем.

Автор хочет выразить свою искреннюю благодарность научному руководителю, доктору физико-математических наук, профессору Анатолию Григорьевичу Яголе за постоянное внимание к работе и совместное обсуждение полученных результатов.

Показать весь текст

Список литературы

  1. Hadamard J. Le probleme de Cauchy et les equations aux derivers particlee linearles hyperbolique. Paris: Hermann, 1932.
  2. А. H. О решении некорректно поставленных задач и методе регуляризации // Доклады Академии наук СССР, 1963, т. 151, к 3, с. 501−504.
  3. А. Н. О регуляризации некорректно поставленных задач // Доклады Академии наук СССР, 1963, т. 153, к 1, с. 49—52.
  4. А. Н. Об устойчивости обратных задач // Доклады Академии наук СССР, 1943, т. 39, к 5, с. 195−198.
  5. А.Н. О решении нелинейных интегральных уравнений первого рода // Доклады Академии наук СССР, 1964, т. 156, к 6, с. 1296—1299.
  6. А. Н. О нелинейных уравнениях первого рода // Доклады Академии наук СССР, 1965, т. 161, к 5, с. 1023—1026.
  7. А. Н. О методах регуляризации задач оптимального управления // Доклады Академии наук СССР, 1965, т. 162, к 4, с. 763—765.
  8. М. М. Об интегральных уравнениях первого рода // Доклады Академии наук СССР, 1959, т. 127, к 1, с. 31—33.
  9. М. М. О некоторых некорректных задачах математической физики. Новосибирск: Изд-во СО АН СССР, 1962.
  10. В. К. О линейных некорректных задачах // Доклады Академии наук СССР, 1962, т. 145, к 2, с. 270−272.
  11. В. К. О некорректно поставленных задачах: // Математический сборник, 1963, т. 61, к 2, с. 211—223.
  12. В. К. О приближенном решении операторных уравнений первого рода // Журнал вычислительной математики и математической физики, 1966, т. 6, к 6, с. 1089—1094.
  13. В. К. Некорректные задачи в топологических пространствах // Сибирский математический журнал, 1969, т. 10, к 5, с. 1065−1074.
  14. В. К.} Васин В. В., Танана В. П. Теория линейных некорректных задач и ее приложения. М.: Наука, 1978.
  15. М.М., Романов В. Г., Шигиатский С. П. Некорректные задачи математической физики и анализа. М.: Наука, 1980.
  16. В. П. Методы решения операторных уравнений. М.: Наука, 1981.
  17. М. М., Резницкая К. Г., Яхно В. Г. Одномерные обратные задачи математической физики. Новосибирск: Наука, 1982.
  18. Г. М. Методы решения линейных некорректно поставленных задач в гильбертовых пространствах. Тарту: Изд-во Тарт. гос. ун-та, 1982.
  19. А. М. Линейные некорректные задачи со случайными ошибками в данных. Новосибирск: Наука, 1982.
  20. А. Л. Операторные уравнения Вольтерра. Новосибирск: Наука, 1983.
  21. В. В. Обратные задачи математической физики. М.: Изд-во МГУ, 1984.
  22. В. Г. Обратные задачи математической физики. М.: Наука, 1984.
  23. А. В., Черепащук А. М., Ягола А. Г. Некорректные задачи астрофизики. М.: Наука, 1986.
  24. Г. М., Веретенников А. Ю. Итерационные процедуры в некорректных задачах. М.: Наука, 1986.
  25. А. Н. Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1986.
  26. С. Ф. Методы решения линейных некорректных задач. М.: Издво МГУ, 1987.
  27. В. А. Регулярные методы решения некорректно поставленных задач. М.: Наука, 1987.
  28. О.М., Артюхин Е. А., Румянцев C.B. Экстремальные методы решения некорректных задач. М.: Наука, 1988.
  29. A.A. Введение в теорию обратных задач. Новосибирск: Наука, 1988.
  30. А. В., Гончарский А. В. Некорректные задачи. Численные методы и приложения. М.: Изд-во МГУ, 1989.
  31. А.Н., Гончарский A.B., Степанов В. В., Ягола А. Г. Численные методы решения некорректных задач. М.: Наука, 1990.
  32. А. М. Некорректные задачи со случайными ошибками в данных. Новосибирск: Наука, 1990.
  33. В. В., Агееев А. Л. Некорректные задачи с априорной информацией. Екатеринбург: Наука, 1993.
  34. Groetsch С. W. Inverse problems in the mathematical sciences. Braunschweig: Vieweg, 1993.
  35. И. В., Курамшина Г. М., Пентин Ю. А., Ягола А. Г. Обратные задачи колебательной спектроскопии. М.: Изд-во МГУ, 1993.
  36. А. М. Введение в теорию обратных задач. М.: Изд-во МГУ, 1994.
  37. В. К., Мельникова И. В., Филиппов А. И. Дифференциально операторные уравнения и некорректные задачи. М.: Физмат-лит, 1995.
  38. А. Н., Леонов А. С., Ягола А. Г. Нелинейные некорректные задачи. М.: Наука, 1995.
  39. Engl Н. W., Hanke М., Neubauer A. Regularization of inverse problems. Dordrecht: Kluwer, 1996.
  40. M. M., Савельев Л. Я. Теория операторов и некорректные задачи. Новосибирск: Издательство Института математики, 1999.
  41. Ю. С., Васильев Ф. П., Потапов М. М. Основы метода динамической регуляризации. М.: Изд-во МГУ, 1999.
  42. Н.А., Лукьяненко Д. В., Ягола А. Г. Применение многопроцессорных систем для решения двумерных интегральных уравнений Фредгольма I рода типа свертки для векторных функций. — Вычислительные методы и программирование, 2009, т. 10, с. 263−267.
  43. Д. В., Ягола А. Г. Применение многопроцессорных систем для решения трехмерных интегральных уравнений Фред-гольма первого рода для векторных функций. — Вычислительные методы и программирование, 2010, т. 11, с. 336−343.
  44. Ohlund G. Design of submarine for stealth and survivability. Hamburg: UDT, 1997.
  45. Totterdell A. C. Magnetic signature control from conceptual design to ship operation. London: UDT, 1996.
  46. Pei Y. H., Yeo H. G. Sequential inversion of ship magnetization from measurements. 3-rd Marine Electromagnetics, Stockholm, Sweden, July, 2001.
  47. Rioux-Damidau F., Bandefier В., Penven P. A fast and precise determination of the static magnetic field in the presence of thin iron shells. IEEE Transactions on Magnetics. 1995. 31. N. 6. 3491−3493.
  48. Guamieri M., Stella A., Trevisan F. A methodological analysis of different formulations for solving inverse electromagnetic problem. IEEE Transactions on Magnetics. 1990. 26. N. 2. March.
  49. Duthoit F. M., Krahenbuhl L., Nicolas A. The boundary integral equation method for the extrapolation of field measurement. IEEE Transactions on Magnetics. 1985. 21. N. 6. 2439−2442.
  50. Brunotte X., Meunier G. Line element for efficient computation of the magnetic field created by thin iron plates. IEEE Transactions on Magnetics. 1990. 26, 2196−2199.
  51. В., Филлипс М. Классическая электродинамика. М.: Физматгиз, 1963.
  52. Джексон Дэю. Классическая электродинамика. М.: Мир, 1965.
  53. В. И. Введение в электродинамику материальных сред. М.: МГУ, 1989.
  54. Л. Д., Лифшиц Е. М. Теоретическая физика. Том 8. Электродинамика сплошных сред. М.: Наука, 1982.
  55. А. Я., Самарский А. А. Уравнения математической физики. М.: Наука, 1972.
  56. М. А. Лекции об уравнениях математической физики. 2-е изд., М.: МЦНМО, 2003. 303
  57. М. П. Интегральные уравнения. Введение в теорию. М: Наука, 1975.
  58. А. Б., Тихонов Н. А. Интегральные уравнения. М.: Из-дво МГУ, 1989.
  59. Н., Шварц Длс. Т. Линейные операторы. Т 1. Общая теория. М.: Изд-во иностр. лит., 1962.
  60. В. А. Теория операторов. М.: Дрофа, 2001.
  61. В. А. Функциональный Анализ. М.: Наука, 1993.
  62. А. Я. Лекции по функциональному анализу. М.: МЦ-НМО, 2004. 552 с.
  63. А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1974.
  64. М. А., Вайникко Г. М., Забрейко П. П., Рутпиц-кий Я. В., Стеценко В. Я. Приближённое решение операторных уравнений. М: Наука, 1969. 456 с.
  65. Н. Н. Численные методы. М.: Наука, 1978.
  66. Т., Аейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. М.: МЦНМО, 2000. 960 с.
  67. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B. P. Numerical Recipes in С. http: / / www. fizyka. umk. pl/nrb ook/b ookcp df. html/
  68. Numerical Recipes oficial website, http://www.nr.com
  69. P. Т. Выпуклый анализ. M.: Мир, 1973.
  70. И., Темам Р. Выпуклый анализ и вариационные проблемы. М.: Мир, 1979.
  71. Магарил-Илъяев Г. Г., Тихомиров В. М. Выпуклый анализ и его приложения. М.: Эдиториал УРСС, 2000.
  72. А. Д., Тихомиров В. М. Двойственность выпуклых функций и экстремальные задачи // Успехи матем. наук. 1958. 51−116.
  73. А. Д., Тихомиров В. М. Теория экстремальных задач. М.: Наука, 1974.
  74. Ф. П. Численные методы решения экстремальных задач. М.: Наука, 1988.
  75. Данциг Док. Линейное программирование, его применения и обобщения. М.: Прогресс, 1966.
  76. Вычислительный кластер НИВЦ МГУ (http://parallel.ru/cluster).
  77. В. В., Воеводин В л. В. Параллельные вычисления. С.-П.: БХВ-Петербург, 2002.
  78. А. Г., Васильев М. П. Применение многопроцессорных систем для решения двумерных интегральных уравнений Фредголь-ма 1-го рода // Вычислительные методы и программирование. 2003. Т. 4, с. 323−326.1. Qf^jy
  79. MPI: A Message-Passing Interface Standard. The Message Passing Interface Forum, Version 1.1, June 12, 1995, http://www.mpi-forum.org.
  80. Э. Дисциплина программирования. M.: Мир, 1978.
  81. Д. Наука программирования. М.: Мир, 1984. 418 с.
  82. Н. Алгоритмы и структуры данных. М.: Мир, 1978. 360 с.
Заполнить форму текущей работой