ΠΠΈΠ±Π»ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΏΠΈΡΠΎΠΊ.
ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π°ΡΠΌΠΎΡΡΠ΅ΡΠ½ΡΡ
Π²ΠΈΡ
ΡΠ΅Π²ΡΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ
Asay-Davis X., Shetty S., Marcus P. Extraction of Velocity Fields from Telescope Image Pairs of Jupiter’s Great Red Spot, New Red Oval, and Zonal Jet Streams// Bulletin of the American Physical Society, 51, 116, 2006. Read P. L., Gierasch P. J., Conrath B. J. Mapping potential-vorticity dynamics on Jupiter. II: the Great Red Spot from Voyager 1 and 2 data. Quarterly Journal of the Royal… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
ΠΠΈΠ±Π»ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΏΠΈΡΠΎΠΊ. ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π°ΡΠΌΠΎΡΡΠ΅ΡΠ½ΡΡ Π²ΠΈΡ ΡΠ΅Π²ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
1. Godfrey, D. A. A hexagonal feature around Saturn’s North Pole// Icarus, 76, 335−356, 1988.
2. Allison, M., Godfrey, D.A., Beebe, R.F. A wave dynamical interpretation of Saturn’s Polar Hexagon. Science 247, 1061−1063, 1990.
3. Barbosa Aguiar, A. C., Read, P. L., Wordsworth, R. D., et al. A laboratory model of Saturn’s North Polar Hexagon//Icarus, 206, 755−763, 2010.
4. Morales-Juberias, R., Sayanagi, K. M., Simon, A. A., et al. Meandering Shallow Atmospheric Jet as a Model of Saturn’s North-polar Hexagon// Astrophysical Journal Letters, 806, L18, 2015.
5. Sayanagi K.M., et al. Saturn’s Polar Atmosphere//arXiv:1609.09626v2 [astro-ph.EP] 3 Oct 2016.
6. Karkoschka, E., and Tomasko, M. G. Saturn’s upper atmospheric hazes observed by the Hubble Space Telescope//Icarus, 106, 428−441, 1993.
7. Sanchez-Lavega, A., Rojas, J. F., and Sada, P. V. Saturn’s Zonal Winds at Cloud Level. Icarus, 147, 405−420, 2000.
8. Fletcher, L. N., Irwin, P. G. J., Orton, G. S., et al. Temperature and Composition of Saturn’s Polar Hot Spots and Hexagon// Science, 319, 79−81, 2008.
9. Choi D. S., Showman A. P., and Brown R. H. Cloud features and zonal wind measurements of Saturn’s atmosphere as observed by Cassini//VIMS. J. Geophy. Res., 114, E4007, 2009.
10. Friedson, A. J., and Moses, J. I. General circulation and transport in Saturn’s upper troposphere and stratosphere//Icarus, 218, 861−875, 2012.
11. Liu, J., Schneider, T., and Fletcher, L. N. Constraining the depth of Saturn’s zonal winds by measuring thermal and gravitational signals// Icarus, 239, 260−272, 2014.
12. Ingersoll A. P., Cuong P. G. Numerical model of long-lived Jovian vortices// J. Atmos. Sci., 38, 2067;2076, 1981.
13. Porco, C. C., West, R. A., et al. Cassini imaging of Jupiter’s atmosphere, satellites and rings// Science, 299, 1541−1547, 2003.
14. Dowling, T. E., Ingersoll, A. P. Potential vorticity and layer thickness variations in the flow around Jupiter’s Great Red Spot and White Oval BC// Journal of Atmospheric Sciences 45, 1380−1396, 1988.
15. Vasavada, A. R., Ingersoll, A. P., et al. Galileo Imaging of Jupiter’s Atmosphere: The Great Red Spot, Equatorial Region, and White Ovals// Icarus 135, 265−275, 1998.
16. Choi David S., Banfield Don, Gierasch Peter J., Showman Adam P. Velocity and Vorticity Measurements of Jupiter’s Great Red Spot Using Automated Cloud Feature Tracking//Icarus, 188, 35−46, 2007; arXiv:1301.6119v1 [astro-ph.EP] 25 Jan 2013.
17. Carlson R., et al. Near-Infrared Spectroscopy and Spectral Mapping of Jupiter and the Galilean Satellites: Results from Galileo’s Initial Orbit. Science 274, 385−388, 1996.
18. Cho J. Y.-K., de la Torre Juarez M., Ingersoll A. P., Dritschel D. G. A high-resolution, three-dimensional model of Jupiter’s Great Red Spot. Journal of Geophysical Research 106, 5099−5106, 2001.
19. Showman A. P. Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn// J. Atmos. Sci., 64, 3132−3157, 2007.
20. Thomson S. I. A New Model of Jupiter’s Jet Streams and the Effects of Moist Convection. PhD Thesis, University of Cambridge, 2015.
21. Trunev A. P. Similarity theory for turbulent flow over natural rough surface in pressure and temperature gradients/ Air Pollution IV. Monitoring, Simulation and Control, eds. B. Caussade, H. Power & C.A. Brebbia, Comp. Mech. Pub., Southampton, pp. 275−286, 1996.
22. Trunev A. P. Similarity theory and model of diffusion in turbulent atmosphere at large scale/ Air Pollution V. Modelling, Monitoring and Management, eds. H. Power, T. Tirabassi & C.A. Brebbia, CMP, Southampton-Boston, pp. 109−118, 1997.
23. Π’ΡΡΠ½Π΅Π² Π. Π. Π’Π΅ΠΎΡΠΈΡ ΡΡΡΠ±ΡΠ»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΈΡΡΡΠ·ΠΈΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ Π² ΠΏΡΠΈΠ·Π΅ΠΌΠ½ΠΎΠΌ ΡΠ»ΠΎΠ΅ Π°ΡΠΌΠΎΡΡΠ΅ΡΡ. — Π‘ΠΎΡΠΈΠ½ΡΠΊΠΈΠΉ Π½Π°ΡΡΠ½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΈΠΉ ΡΠ΅Π½ΡΡ Π ΠΠ, Π‘ΠΎΡΠΈ, 160 Ρ., 1999.
24. Π’ΡΡΠ½Π΅Π² Π. Π. Π’Π΅ΠΎΡΠΈΡ ΡΡΡΠ±ΡΠ»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΠ±ΡΠ»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ° Π² Π°ΡΠΌΠΎΡΡΠ΅ΡΠ΅. // ΠΠΎΠ»ΠΈΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΡΠ΅Π²ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΉ Π½Π°ΡΡΠ½ΡΠΉ ΠΆΡΡΠ½Π°Π» ΠΡΠ±Π°Π½ΡΠΊΠΎΠ³ΠΎ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π°Π³ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ° (ΠΠ°ΡΡΠ½ΡΠΉ ΠΆΡΡΠ½Π°Π» ΠΡΠ±ΠΠΠ£) [ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΉ ΡΠ΅ΡΡΡΡ]. — ΠΡΠ°ΡΠ½ΠΎΠ΄Π°Ρ: ΠΡΠ±ΠΠΠ£, 2010. — № 05(059). Π‘. 179 — 243; № 06(060). Π‘. 412 — 491.
25. Π’ΡΡΠ½Π΅Π² Π. Π. Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΡ ΡΡΡΠ±ΡΠ»Π΅Π½ΡΠ½ΠΎΠΉ Π²ΡΠ·ΠΊΠΎΡΡΠΈ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΠ±ΡΠ»Π΅Π½ΡΠ½ΠΎΡΡΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΠ°Π²ΡΠ΅-Π‘ΡΠΎΠΊΡΠ° // ΠΠΎΠ»ΠΈΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΡΠ΅Π²ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΉ Π½Π°ΡΡΠ½ΡΠΉ ΠΆΡΡΠ½Π°Π» ΠΡΠ±Π°Π½ΡΠΊΠΎΠ³ΠΎ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π°Π³ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ° (ΠΠ°ΡΡΠ½ΡΠΉ ΠΆΡΡΠ½Π°Π» ΠΡΠ±ΠΠΠ£) [ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΉ ΡΠ΅ΡΡΡΡ]. — ΠΡΠ°ΡΠ½ΠΎΠ΄Π°Ρ: ΠΡΠ±ΠΠΠ£, 2016. — № 04(118). Π‘. 1469 — 1487. — IDA [article ID]: 1 181 604 096. — Π Π΅ΠΆΠΈΠΌ Π΄ΠΎΡΡΡΠΏΠ°: http://ej.kubagro.ru/2016/04/pdf/96.pdf.
26. Π’ΡΡΠ½Π΅Π² Π. Π. ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΠ±ΡΠ»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π² ΠΏΠΎΠ»ΠΎΡΡΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΠ°Π²ΡΠ΅-Π‘ΡΠΎΠΊΡΠ° / Π. Π. Π’ΡΡΠ½Π΅Π² // ΠΠΎΠ»ΠΈΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΡΠ΅Π²ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΉ Π½Π°ΡΡΠ½ΡΠΉ ΠΆΡΡΠ½Π°Π» ΠΡΠ±Π°Π½ΡΠΊΠΎΠ³ΠΎ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π°Π³ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ° (ΠΠ°ΡΡΠ½ΡΠΉ ΠΆΡΡΠ½Π°Π» ΠΡΠ±ΠΠΠ£) [ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΉ ΡΠ΅ΡΡΡΡ]. — ΠΡΠ°ΡΠ½ΠΎΠ΄Π°Ρ: ΠΡΠ±ΠΠΠ£, 2016. — № 05(119). Π‘. 1111 — 1133. — IDA [article ID]: 1 191 605 079. — Π Π΅ΠΆΠΈΠΌ Π΄ΠΎΡΡΡΠΏΠ°: http://ej.kubagro.ru/2016/05/pdf/79.pdf.
27. Π’ΡΡΠ½Π΅Π² Π. Π. ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅ΠΊΡΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠ±ΡΠ»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π² ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ Π‘Π°ΡΡΡΠ½Π°/ Π. Π. Π’ΡΡΠ½Π΅Π² // ΠΠΎΠ»ΠΈΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΡΠ΅Π²ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΉ Π½Π°ΡΡΠ½ΡΠΉ ΠΆΡΡΠ½Π°Π» ΠΡΠ±Π°Π½ΡΠΊΠΎΠ³ΠΎ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π°Π³ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ° (ΠΠ°ΡΡΠ½ΡΠΉ ΠΆΡΡΠ½Π°Π» ΠΡΠ±ΠΠΠ£) [ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΉ ΡΠ΅ΡΡΡΡ]. — ΠΡΠ°ΡΠ½ΠΎΠ΄Π°Ρ: ΠΡΠ±ΠΠΠ£, 2017. — № 01(125). Doi: 10.21 515/1990;4665−125−050.
28. Nagano Y., Kasagi N., Ota T., Fujita H., Yoshida H. & Kumada M. Data-Base on Turbulent Heat Transfer/ Department of Mechanical Engineering, Nagoya Institute of Technology, Nagoya, DATA No FW BL004, 1992.
29. Van Ulden A. & Holtslag A. A. M. Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications// J. Clim. Appl. Meteorol,. 24, pp. 1196−1207, 1985.
30. Pugliese S., Jaeger M. & Occelli R. Finite element modelling of plume dispersion in the lower part of the atmosphere/ Air Pollution IV. Monitoring, Simulation and Control, eds. B. Caussade, H. Power & C.A. Brebbia, Comp. Mech. Pub. Southampton-Boston, 99−108. 1996.
31. Detering H. W. & Etling D. Application of the ETurbulence Model to the Atmospheric Boundary Layer// Boundary-Layer Meteorol, 33, pp. 113−133, 1985.
32. ΠΠ°Π½Π΄Π°Ρ Π. Π, ΠΠΈΡΡΠΈΡ Π. Π. Π’Π΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΈΠ·ΠΈΠΊΠ°. Π’.6. ΠΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° — 3 ΠΈΠ·Π΄. — Π.: ΠΠ°ΡΠΊΠ°. — 1986; L. D. Landau and E. M. Lifshitz. Fluid Mechanics. — Pergamon, Oxford, UK, first edition, 1959.
33. Simon-Miller A. A., Gierasch P. J., Beebe R. F., Conrath B., Flasar F. M.,. Achterberg R. K. and the Cassini CIRS Team. New observational results concerning Jupiter’s great red spot// Icarus, 158, 249−266, 2002.
34. Read P. L., et al. Mapping potential-vorticity dynamics on Jupiter. I: Zonal-mean circulation from Cassini and Voyager 1 data// Quarterly Journal of the Royal Meteorological Society, 132, 1577−1603, 2006.
35. Asay-Davis X., Shetty S., Marcus P. Extraction of Velocity Fields from Telescope Image Pairs of Jupiter’s Great Red Spot, New Red Oval, and Zonal Jet Streams// Bulletin of the American Physical Society, 51, 116, 2006.
36. Shetty S., Asay-Davis X., Marcus P. S. Modeling and Data Assimilation of the Velocity of Jupiter’s Great Red Spot and Red Oval// Bulletin of the American Physical Society, 51, 116. 2006.
37. Shetty S., Xylar S. Asay-Davis, Philip S. Marcus. On the interaction of Jupiter’s Great Red Spot and zonal jet streams//Journal of Atmospheric Sciences, Vol. 64, pp. 4432−4444, 2007.
38. Read P. L., Gierasch P. J., Conrath B. J. Mapping potential-vorticity dynamics on Jupiter. II: the Great Red Spot from Voyager 1 and 2 data. Quarterly Journal of the Royal Meteorological Society, 132, 1605−1625. 2006.
39. Mitchell J. L., Beebe R. F., Ingersoll A. P., Garneau G. W. Flow fields within Jupiter’s great red spot and white oval bc// J. Geophys. Res., 86, 8751−8757, 1981.
40. Marcus P. S. Jupiter’s great red spot and other vortices// Rev. Astron. Astrophy., 31, 523−573, 1993.