ΠΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΠΎΡΡΡ Π² Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ Π+-ΠΊΠ°Π½Π°Π»ΠΎΠ²
ΠΠ΅Π»ΠΊΠΈ ΠΈΠΎΠ½Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΡΠΏΡΠ°Π²Π»ΡΡΡ ΠΏΠΎΡΠΎΠΊΠ°ΠΌΠΈ ΠΈΠΎΠ½ΠΎΠ² ΡΠ΅ΡΠ΅Π· Π»ΠΈΠΏΠΈΠ΄Π½ΡΠ΅ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠ΅ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. Π’Π΅ΠΏΠ»ΠΎΠ²ΡΠ΅ ΡΠ»ΡΠΊΡΡΠ°ΡΠΈΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Ρ ΡΡΠΈΡ Π±Π΅Π»ΠΊΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡΠΌΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π·Π°ΠΊΡΡΡΠΎΠΌΡ ΠΈ ΠΎΡΠΊΡΡΡΠΎΠΌΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡΠΌ ΠΊΠ°Π½Π°Π»Π°. Π€ΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΎΠ±ΡΡΠ½ΠΎ ΡΠ²ΠΎΠ΄ΡΡΡΡ ΠΊ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΡΠΈΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΎΠ² — «Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°» — ΠΈ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΈ ΠΈΡ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ½ΡΠΌΠΈ ΡΡΠ°ΡΡΠΊΠ°ΠΌΠΈ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΈ ΠΏΡΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
- Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΡΠ΄Π΅ΡΠΆΠΊΠ°
- ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ°
- ΠΡΡΠ³ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ
- ΠΠΎΠΌΠΎΡΡ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈ
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΠ»Π°Π²Π° 1. ΠΠ±Π·ΠΎΡ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- 1. 1. ΠΠΎΠ½Π½ΡΠ΅ ΠΊΠ°Π½Π°Π»Ρ
- 1. 1. 1. Π‘ΡΡΡΠΊΡΡΡΠ° Π‘Π°2±Π°ΠΊΡΠΈΠ²ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΈ KV ΠΊΠ°Π½Π°Π»Π°
- 1. 1. 2. ΠΠΎΡΠΎΡΠ½ΡΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ
- 1. 1. 3. ΠΠΈΠ½Π΅ΡΠΈΠΊΠ° Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ°
- 1. 2. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°
- 1. 2. 1. ΠΠ°ΡΠΊΠΎΠ²ΡΠΊΠΈΠΉ ΠΏΡΠΎΡΠ΅ΡΡ
- 1. 2. 2. ΠΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ (D1 ΠΈ D3)
- 1. 2. 3. ΠΠΎΠ΄Π΅Π»Ρ ΠΠΈΠ»ΡΡΠΌΠ°-Π£ΠΎΡΡΠ° (W)
- 1. 2. 4. ΠΠΊΡΠΏΠΎ-ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ (Π)
- 1. 2. 5. Π€ΡΠ°ΠΊΡΠ°Π»ΡΠ½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ (F)
- 1. 2. 6. ΠΠΎΠ΄Π΅Π»Ρ Π΄Π΅ΡΠ΅ΡΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Ρ Π°ΠΎΡΠ°
- 1. 2. 7. Π‘ΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ°Π·Π½ΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ
- 1. 3. ΠΠ±Π·ΠΎΡ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² 38 1.3.1 ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ
- 1. 1. ΠΠΎΠ½Π½ΡΠ΅ ΠΊΠ°Π½Π°Π»Ρ
ΠΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΠΎΡΡΡ Π² Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ Π+-ΠΊΠ°Π½Π°Π»ΠΎΠ² (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π»ΡΠ±ΠΎΠ³ΠΎ ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ, Π½Π°Π΄ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ°Π±ΠΎΡΠ°ΡΡ ΠΌΠ½ΠΎΠ³ΠΎ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΠΎΠ² ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρ (ΡΠΈΠ·ΠΈΠΊΠΈ, Ρ ΠΈΠΌΠΈΠΊΠΈ, Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈ, ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈ ΠΈ Π΄Ρ.). ΠΠ° ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΡΡΠΎΠ²Π½Π΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΡΠ°Π±ΠΎΡΡ ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° ΠΎΡΠΎΠ±ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΡΡΠΈ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΡΡ Π²ΠΎΠΏΡΠΎΡΠ° (Choe et al., 1999): 1) ΡΡΠ΅ΡΠ΅ΠΎΡ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈ ΡΠ΅ΡΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΡΠ½ΠΎΠ²Ρ ΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ- 2) ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π° ΠΊΠ°Π½Π°Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π·Π°ΠΊΡΡΡΡΠΌ ΠΈ ΠΎΡΠΊΡΡΡΡΠΌ ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠΈΠ½ΡΠΌΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΡΠΌΠΈ- 3) Π°Π³ΡΠ΅Π³Π°ΡΠΈΡ ΡΡΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΡ ΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠ°Π½Π°Π»Π° ΠΏΡΡΠ΅ΠΌ Π±Π΅Π»ΠΎΠΊ-Π±Π΅Π»ΠΊΠΎΠ²ΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ.
ΠΠ΅Π»ΠΊΠΈ ΠΈΠΎΠ½Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΡΠΏΡΠ°Π²Π»ΡΡΡ ΠΏΠΎΡΠΎΠΊΠ°ΠΌΠΈ ΠΈΠΎΠ½ΠΎΠ² ΡΠ΅ΡΠ΅Π· Π»ΠΈΠΏΠΈΠ΄Π½ΡΠ΅ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠ΅ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. Π’Π΅ΠΏΠ»ΠΎΠ²ΡΠ΅ ΡΠ»ΡΠΊΡΡΠ°ΡΠΈΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Ρ ΡΡΠΈΡ Π±Π΅Π»ΠΊΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡΠΌΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π·Π°ΠΊΡΡΡΠΎΠΌΡ ΠΈ ΠΎΡΠΊΡΡΡΠΎΠΌΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡΠΌ ΠΊΠ°Π½Π°Π»Π°. Π€ΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΎΠ±ΡΡΠ½ΠΎ ΡΠ²ΠΎΠ΄ΡΡΡΡ ΠΊ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΡΠΈΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΎΠ² — «Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°» — ΠΈ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΈ ΠΈΡ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ½ΡΠΌΠΈ ΡΡΠ°ΡΡΠΊΠ°ΠΌΠΈ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΈ ΠΏΡΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Π»ΠΈΠ³Π°ΠΏΠ΄ΠΎΠ² Ρ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠ°ΠΌΠΈ. Π‘ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ Π₯ΠΎΠ΄ΠΆΠΊΠΈΠ½ΡΠΌ ΠΈ Π₯Π°ΠΊΡΠ»ΠΈ (Hodgkin & Huxley, 1952) ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΠΌΠ°Π»ΠΈΠ·ΠΌΠ° Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΈΠΎΠ½Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΡΠ»ΠΎΠΆΠΈΠ»Π°ΡΡ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΡ, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ ΠΠ°ΡΠΊΠΎΠ²ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΡΡ (Liebovitch & Todorov, 1996):
1) ΠΈΠΌΠ΅Π΅ΡΡΡ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠ΅ ΡΠΈΡΠ»ΠΎ (ΠΎΡ 2 Π΄ΠΎ 20) ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΡ Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΡΡ ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ ΠΊΠ°Π½Π°Π»Π°,.
2) ΡΡΡΠ΅ΡΡΠ²ΡΡΡ Π²ΠΏΠΎΠ»Π½Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΊΠ°Π½Π°Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΡΡΠΎΡΠ½ΠΈΡΠΌΠΈ,.
3) ΡΡΠΈ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π°Π½Π½ΡΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ΠΌ ΠΊΠ°Π½Π°Π»Π° ΠΈ Π½Π΅ Π·Π°Π²ΠΈΡΡΡ ΠΎΡ ΠΏΡΠ΅Π΄ΡΡΡΠΎΡΠΈΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ°, 4) ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΊΠ°Π½Π°Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΡΡΠΎΡΠ½ΠΈΡΠΌΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΡΡΠ°ΠΉΠ½Ρ, Ρ. Π΅. ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ Π΅Π³ΠΎ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ, Π½ΠΎ Π½Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ.
ΠΠ°ΡΠΊΠΎΠ²ΡΠΊΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ. Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΌΠ½ΠΎΠ³ΠΎ ΡΠ΅Π½ΠΎΠΌΠ΅Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ°, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΡ Π½Π° ΠΌΠ°ΡΠΊΠΎΠ²ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ (Hille, 2001). ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ³ΠΎ, ΡΡΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄ΠΎ ΡΠΈΡ ΠΏΠΎΡ ΠΎΡΡΠ°ΡΡΡΡ Π΄ΠΎΠΌΠΈΠ½ΠΈΡΡΡΡΠΈΠΌΠΈ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ «Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ» ΠΏΡΠΎΡΠ΅ΡΡΠ° Π² ΠΊΠ°Π½Π°Π»Π°Ρ Π² ΠΠ°ΡΠΊΠΎΠ²ΡΠΊΠΎΠΌ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ Π½Π΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡΠΌ ΠΎ Π³Π»ΠΎΠ±ΡΠ»ΡΡΠ½ΡΡ Π±Π΅Π»ΠΊΠ°Ρ . ΠΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ Π² ΡΡΡΡΠΊΡΡΡΡ ΠΈΠΎΠ½Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² Π²Ρ ΠΎΠ΄ΡΡ ΡΡΡΡΡΠΈ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΡ ΠΎΡΡΠ°ΡΠΊΠΎΠ² ΠΈ ΡΠΎΡΠ½ΠΈ ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΡΡ Π³ΡΡΠΏΠΏ, ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ Π² ΡΡΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈ Π΄ΠΎΠΌΠ΅Π½Ρ. ΠΠ°ΠΆΠ΄ΡΠΉ Π°ΡΠΎΠΌ ΡΠ°ΠΊΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ Π°ΡΠΎΠΌΠ°ΠΌΠΈ Π±Π»ΠΈΠΆΠ½Π΅Π³ΠΎ ΠΈ Π΄Π°Π»ΡΠ½Π΅Π³ΠΎ ΠΎΠΊΡΡΠΆΠ΅Π½ΠΈΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ , Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΡ ΡΠΈΠ», Π° ΡΡΠ΅ΡΠΈΡΠ½Π°Ρ ΡΡΡΡΠΊΡΡΡΠ° Π±Π΅Π»ΠΊΠΎΠ² ΡΡΠΎΠ»Ρ Π³ΠΈΠ±ΠΊΠ°, ΡΡΠΎ Π°ΡΠΎΠΌΡ ΠΌΠΎΠ³ΡΡ ΠΈΠΌΠ΅ΡΡ ΠΎΠ³ΡΠΎΠΌΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΠΎΡΡΠΈ ΠΈΠ΄Π΅Π½ΡΠΈΡΠ½ΡΡ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ. Π ΡΠ°ΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠ΅ΠΉ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π° ΠΎΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΊ Π΄ΡΡΠ³ΠΎΠΌΡ, Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΠ΅Π³ΠΎ, ΠΌΠ°Π»ΠΎΠ²Π΅ΡΠΎΡΡΠ½ΠΎ, ΡΡΠΎΠ±Ρ Π±Π΅Π»ΠΊΠΈ ΠΈΠΌΠ΅Π»ΠΈ ΡΠΎΠ»ΡΠΊΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π±Π°ΡΡΠ΅ΡΠΎΠ² (Liebovitch, 2001).
Π ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠ΅ ΠΈΠΎΠ½Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΈΠΏΠΎΠ² ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Ρ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠΉ ΠΠ°ΡΠΊΠΎΠ²ΡΠΊΠΎΠΉ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° Π₯ΡΡΡΡΠ° (R'S-ΠΌΠ΅ΡΠΎΠ΄) Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π‘Π°Π·Π°Π²ΠΈΡΠΈΠΌΡΡ ΠΠΊΠ°Π½Π°Π»ΠΎΠ² (ΠΠ‘Π°-ΠΊΠ°Π½Π°Π») Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ ΠΠ΅ΠΉΠ΄ΠΈΠ³Π° ΠΎΡ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½Π° ΠΊΠ°ΠΊ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΡΠΈΡΡΠ΅Π½ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ (Varanda et al., 2000). Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ./^-ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈ Π±Π΅ΡΡΡΠ΅Π½Π΄ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»ΡΠΊΡΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° (ΠΠ€Π) ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΡΠ΅ Π±ΠΊΠ°Π½Π°Π»Ρ Π·Π°Π΄Π΅ΡΠΆΠ°Π½Π½ΠΎΠ³ΠΎ Π²ΡΠΏΡΡΠΌΠ»Π΅Π½ΠΈΡ (ΠΡ-ΠΊΠ°Π½Π°Π»Ρ) Π² Π½Π΅ΠΉΡΠΎΠ½Π°Ρ Π΄ΠΎΡΠ·Π°Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ΅ΡΠΊΠΎΠ²ΡΡ Π³Π°Π½Π³Π»ΠΈΠ΅Π² ΠΊΡΡΡΡ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΡΠΈ Π΄Π°Π½Π½ΡΠ΅ Π²ΡΠ·ΡΠ²Π°ΡΡ ΡΠΎΠΌΠ½Π΅Π½ΠΈΡ, Ρ.ΠΊ. ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ ΡΡΠΈΡ ΠΏΠΎΡ ΠΎΠΆΠΈΡ ΠΏΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΠΈ ΡΠΎΠΌ ΠΆΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΠ΅ Π΄Π°Π»ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ: Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΡ-ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΎΡ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½Π° ΠΈΠΌΠΈ ΠΊΠ°ΠΊ Π°Π½ΡΠΈΠΏΠ΅ΡΡΠΈΡΡΠ΅Π½ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ R/S-ΠΌΠ΅Π³Π³ΠΎΠ΄Π° (Lan el al., 2003) ΠΈ ΠΊΠ°ΠΊ ΡΠΈΠ»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΡΠΈΡΡΠ΅Π½ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠ€Π (Lan et al., 2007). ΠΠ²ΡΠΎΡΠ°ΠΌΠΈ Π±ΡΠ»Π° ΠΏΡΠ΅Π΄ΠΏΡΠΈΠ½ΡΡΠ° ΠΏΠΎΠΏΡΡΠΊΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈΡΠΎΠ΄Ρ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ (ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΠ²ΡΠ΅) Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΎΡ ΡΡΠ°Π½ΡΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π°.
Π Π°ΡΡΠ΅ΡΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ, ΡΡΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π² ΠΌΠΎΠ΄Π΅Π»Ρ Π½Π΅ΠΉΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ ΠΈΠΎΠ½Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² Ρ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΡΠΎΠ²ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΡΡ Π΄Π°Π½Π½ΡΡ Π² ΡΠ»ΡΡΠ°Π΅ Π½Π΅ΠΉΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ (Lowen et al., 1999). ΠΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΡΠΎΡΠ½ΡΡ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ Π½Π°ΡΠΈΠ²Π½ΡΡ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ ΠΈΠΎΠ½Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π΄Π»Ρ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΡ Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ°.
Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΠΈ ΡΡΠ°Π²Π½ΠΈΡΡ Π²ΠΊΠ»Π°Π΄ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΡ ΠΈ ΠΌΡΠ»ΡΡΠΈΡΡΠ°ΠΊΠ³Π°Π»ΡΠ½ΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ Π² Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ Π-ΠΊΠ°Π½Π°Π»ΠΎΠ². Π ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΠΈΠΌ Π±ΡΠ»ΠΈ ΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ:
1) ΡΡΠ°Π²Π½ΠΈΡΡ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ KvΠΈ ΠΠΎΠ³ΠΊΠ°Π½Π°Π»ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΡ ΡΠ²ΠΎΠΉΡΡΠ². ΠΠ΄Π΅ΡΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΎΡΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΡΡ-ΠΊΠ»Π°ΠΌΠΏ, ΠΊΠ°ΠΊ ΠΌΠ΅ΡΠΎΠ΄, ΠΈΠΌΠ΅ΡΡΠΈΠΉ Π½Π°ΠΈΠ»ΡΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π°, ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²Π»Π΅Π½ΠΈΡ Π² Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΡΡ Π±ΠΊΠ°Π½Π°Π»ΠΎΠ² Π½Π΅ΠΉΡΠΎΠ½Π° ΠΌΠΎΠ»Π»ΡΡΠΊΠ° L. stagnalis (ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ, ΠΠ΅Π»Π΅ΡΡΠΊ, 1984;
Kazachenko, Geletyuk, 1984) ΠΈ ΠΌΠ°ΠΊΡΠΈ-ΠΡΠ°-ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΡΠ΅ΠΌΡΡ ΠΏΠΎΡΠ΅ΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΊΠ°Ρ Vero (ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ ΠΈ Π΄Ρ., 1996);
2) ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΊΠ°Π½Π°Π»Π° Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ, ΠΌΠΎΠ΄ΡΠ»ΠΈΡΡΡΡΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠ°Π½Π°Π»Π°: ΡΡΠ°Π½ΡΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π° Vm, Π±Π»ΠΎΠΊΠ°ΡΠΎΡΠΎΠ², ΡΠΈΠΎΠ»-ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΡΡΡΠΈΡ Π°Π³Π΅Π½ΡΠΎΠ², ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΏΡΠΎΠ½ΠΈΠΊΠ°ΡΡΠ΅Π³ΠΎ ΠΈΠΎΠ½Π°. ΠΡΠ° ΡΠ°ΡΡΡ ΡΠ°Π±ΠΎΡΡ Π±ΡΠ»Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° Π½Π° Π²ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ ΠΏΡΠΈΡΠΈΠ½ ΡΠΈΠ»ΡΠ½ΠΎΠΉ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡΠΈ «Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ» ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ°, ΡΡΠ΅Π΄ΠΈ ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠ³Π»ΠΈ Π±Ρ Π±ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅: — ΡΠΎΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° ΡΠ΅ΡΠ΅Π· ΠΊΠ°ΠΏΠ°Π» Ρ Π²ΠΎΡΠΎΡΠ½ΡΠΌ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠΌ (Demo, Yellen, 1992) — -ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π΅ΠΈ Π»ΠΈΠ³Π°Π½Π΄-Π·Π°Π²ΠΈΡΠΈΠΌΠ°Ρ ΠΊΠΎΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ΅^ Π²ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ ΡΡΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΡ ΠΊΠ°Π½Π°Π»Π° ΠΈ ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΠΈ Π»ΠΈΠ³Π°Π½Π΄Π° ΠΈ Π΄Ρ.
3) Π²ΡΡΠ²ΠΈΡΡ ΠΏΡΠΈΡΠΈΠ½Ρ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ ΠΠΈ ΠΡ>1-ΠΊΠ°Π½Π°Π»ΠΎΠ². ΠΠ΄Π΅ΡΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΎΡΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΠΏΠ΅ΡΠ²ΠΎΠΏΡΠΈΡΠΈΠ½Ρ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ, ΠΈΠ»ΠΈ Ρ ΠΎΡΡ Π±Ρ ΠΎΡΠ΅ΡΡΠΈΡΡ ΠΊΡΡΠ³ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ ΠΏΡΠΈΡΠΈΠ½, Π·Π½Π°Ρ, ΠΊΠ°ΠΊΠΈΠ΅ Π²Π½Π΅ΡΠ½ΠΈΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΡΠ°ΠΊΡΠ°Π» ΡΠ½ΠΎΡΡΠΈ;
4) Π²ΡΡΡΠ½ΠΈΡΡ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° ΠΌΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠΌΠ²Π°ΡΠΈΠ°ΡΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² «ΠΏΠ°ΠΌΡΡΠΈ» Π² Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ Π-ΠΊΠ°Π½Π°Π»ΠΎΠ² Π±ΡΠ»Π° ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΡΠ°Π½Π΅Π΅ (ΠΠΎΡΠ΅ΡΠΊΠΎΠ² ΠΈ Π΄Ρ., 2001), ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΏΡΠΈΡΠΈΠ½Ρ ΡΡΠΎΠΉ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ Π½Π΅ Π±ΡΠ»ΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ. ΠΠ΄Π΅ΡΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΎΡΡ ΠΎΡΠ²Π΅ΡΠΈΡΡ Π½Π° ΡΡΠΎΡ Π²ΠΎΠΏΡΠΎΡ, ΠΏΡΠΈΠΌΠ΅Π½ΡΡ ΠΌΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ Π°Π½Π°Π»ΠΈΠ·Π° Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΡΡ ΡΡΠ΄ΠΎΠ².
ΠΠ°ΡΡΠ½Π°Ρ Π½ΠΎΠ²ΠΈΠ·Π½Π°. ΠΠ°ΠΌΠΈ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΈ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΡ ΠΈ ΠΌΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΡ ΡΠ²ΠΎΠΉΡΡΠ² ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ ΠΡΠΈ ΠΡΠ°-ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² ΡΠΈΡΠΎΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ. ΠΡ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΡΡΠ°Π²Π½ΠΈΠ»ΠΈ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ KvΠΈ Kca-ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ²: R/S-ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ (Hurst, 1951), ΠΠ€Π ΠΈ ΠΌΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠΌ-ΠΠ€Π (Peng et al., 1994; Kantelhardt et al., 2002), ΠΏΡΡΠ΅ΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΡΠ»ΡΠ΄Π΅ΡΠ° (Whitcher & Jensen, 2000) ΠΈ Π²Π΅ΠΉΠ²Π»Π΅Ρ-Π°Π½Π°Π»ΠΈΠ·Π° (ΠΡΡΠ°ΡΡΠ΅Π²Π°, 1998). Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΡ (ΠΠ€) ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ Π±ΠΎΠ»ΡΡΠ°Ρ ΡΠ»ΡΠΊΡΡΠ°ΡΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ° ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° — ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π₯ΡΡΡΡΠ° Π — Π½Π΅ ΡΠ²ΡΠ·Π°Π½Π° Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠΊΠΎΡΡΠ΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΡΡΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΊΠ°Π½Π°Π»ΠΎΠ² («ΠΏΠ°ΠΌΡΡΡΡ» Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ°). ΠΠ°ΠΌΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ ΡΡΠ΄ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ² Π² ΠΏΠΎΠ»ΡΠ·Ρ Π²ΡΠ΄Π²ΠΈΠ½ΡΡΠΎΠΉ Π½Π°ΠΌΠΈ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½ΡΡΡΠΈΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Π² ΡΡΡΡΠΊΡΡΡΠ΅ ΠΊΠ°Π½Π°Π»Π°. ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ ΡΠ°Π±ΠΎΡΡ.
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΠΌΠ΅ΡΡ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ Π±ΠΈΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΡΠΊΡΡΡΡ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π°Ρ , Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΈΡΡΠ΅ΠΌ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ (ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½, ΠΊΠ»Π΅ΡΠΎΠΊ, ΡΠΊΠ°Π½Π΅ΠΉ).
ΠΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ ΠΈ Π°ΠΏΡΠΎΠ±Π°ΡΠΈΡ ΡΠ°Π±ΠΎΡΡ.
ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Π΄ΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΠΈ Π΄ΠΎΠΊΠ»Π°Π΄ΡΠ²Π°Π»ΠΈΡΡ ΠΈ ΠΎΠ±ΡΡΠΆΠ΄Π°Π»ΠΈΡΡ Π½Π° 3-ΠΌ ΡΡΠ΅Π·Π΄Π΅ Π±ΠΈΠΎΡΠΈΠ·ΠΈΠΊΠΎΠ² Π ΠΎΡΡΠΈΠΈ (ΠΠΎΡΠΎΠ½Π΅ΠΆ, 2004), Π½Π° ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΉ ΡΠΊΠΎΠ»Π΅-ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΠΈ ΠΏΠΎ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ «Transport Mechanisms Across Cell Membranes: Channels and Pumps» (Π‘ΠΠ±, 2004). Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ Π² 8 ΡΡΠ°ΡΡΡΡ ΠΈ 9 ΡΠ΅Π·ΠΈΡΠ°Ρ .
ΠΡΠ²ΠΎΠ΄Ρ.
1. ΠΠ°ΠΏΠΈΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΠΈ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ°ΡΡΡΠ°Π±Π° ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΡ (ΡΠΊΠ΅Π»ΠΈΠ½Π³Π°), ΡΡΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ. ΠΡΠΎ Π²ΠΈΠ΄Π½ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ ΠΈΡΡ ΠΎΠ΄Π½ΡΠΌ Π·Π°ΠΏΠΈΡΡΠΌ, ΡΠ°ΠΊ ΠΈ ΠΏΠΎ ΠΊΠ°ΡΡΠ°ΠΌ Π²Π΅ΠΉΠ²Π»Π΅Ρ-ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ².
2. ΠΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ ΠΈΠΎΠ½Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΠ΅ΡΡΠΈΡΡΠ΅Π½ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ, Ρ. Π΅. ΠΏΡΠΎΡΠ΅ΡΡ Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠ΅ΠΉ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΊΠΎΠ³Π΄Π° ΠΏΠΎΡΠ»Π΅ Π±ΠΎΠ»Π΅Π΅ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ ΠΆΠΈΠ·Π½ΠΈ ΠΊΠ°Π½Π°Π»Π° Π² ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ Ρ Π±ΠΎΠ»ΡΡΠ΅ΠΉ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ Π±ΠΎΠ»Π΅Π΅ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½Π° ΠΈ Π½Π°ΠΎΠ±ΠΎΡΠΎΡ, ΡΡΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π½ΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΠΌΠ°Ρ ΠΈ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π±Π΅ΡΡΡΠ΅Π½Π΄ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»ΡΠΊΡΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°.
3. Π€ΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ Π½Π°ΠΌΠΈ KvΠΈ ΠΡΠ°-ΠΊΠ°Π½Π°Π»ΠΎΠ² ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΎΡΠ΅Π½ΠΊΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π₯ΡΡΡΡΠ° Π: R/S-ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈ ΠΠ€Π, Π΄Π°Π΅Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
4. Π€ΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ KvΠΈ ΠΡΠ°-ΠΊΠ°Π½Π°Π»ΠΎΠ² Π·Π°Π²ΠΈΡΡΡ ΠΎΡ ΡΡΠ°Π½ΡΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π° ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ ΠΏΡΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Π±Π»ΠΎΠΊΠ°ΡΠΎΡΠΎΠ² Π½Π° ΠΊΠ°Π½Π°Π», Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΡΡΡ Ρ Π²ΡΠ΅ΠΌΠ΅Π½Π°ΠΌΠΈ ΠΆΠΈΠ·Π½ΠΈ ΠΊΠ°Π½Π°Π»Π° Π² ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡΡ .
5. ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π₯ΡΡΡΡΠ° ΡΠΈΠ»ΡΠ½ΠΎ Π²Π°ΡΡΠΈΡΡΠ΅Ρ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ Π²ΡΠ΅ΠΌΠ΅Π½ ΠΆΠΈΠ·Π½ΠΈ ΠΊΠ°Π½Π°Π»Π°, ΡΡΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΊΠ°ΠΊ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΠ°Π·Π±ΠΈΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ±ΠΎΡΠΊΠΈ Π½Π° Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΡΠΎΡΠΊΠΈΠ΅ ΠΎΡΡΠ΅Π·ΠΊΠΈ ΠΈ ΠΏΡΡΠΌΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΎΠΉ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π₯ΡΡΡΡΠ° Π² Π½ΠΈΡ , ΡΠ°ΠΊ ΠΈ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ: ΠΌΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠΌ ΠΠ€Π ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΎΡΠ΅Π½ΠΊΠΈ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΡΠ»ΡΠ΄Π΅ΡΠ°. ΠΠ΄Π½Π°ΠΊΠΎ ΠΌΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΠΌΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ.
6. ΠΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π²ΡΡΠ°ΠΆΠ΅Π½Ρ ΡΠ»Π°Π±ΠΎ.
7. Π€ΡΠ°ΠΊΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠ°Π½Π°Π»Π° ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ΠΎ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π°.
4.4 ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅.
ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π½Π΅ ΠΎΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠΌΠ½Π΅Π½ΠΈΠΉ Π² ΡΠΎΠΌ, ΡΡΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠ°Π½Π°Π»Π° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΠ΅ΡΡΠΈΡΡΠ΅Π½ΡΠ½ΡΠΉ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ, ΠΌΡΠ»ΡΡΠΈΡΡΠ°ΠΊΠ³Π°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½Ρ ΡΠ»Π°Π±ΠΎ. ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½Π½ΡΠ΅ Π½Π°ΠΌΠΈ ΡΠΈΠ»ΡΠ½ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠ΅ ΠΌΡΠ»ΡΡΠΈΡΡΠ°ΠΊΠ³Π°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠ²ΡΠ·Π°Π½Ρ Π»ΠΈΡΡ Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΠΌΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ Π²ΡΠ΅ΠΌΠ΅Π½ ΠΆΠΈΠ·Π½ΠΈ ΠΊΠ°Π½Π°Π»Π° Π² ΠΎΡΠΊΡΡΡΡΡ ΠΈΠ»ΠΈ Π·Π°ΠΊΡΡΡΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡΡ . ΠΠΎ ΠΌΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΡΠ°ΠΌΠΎΠ³ΠΎ Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠ»Π°Π±ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½Π°. ΠΠ°ΡΠΈ Π΄Π°Π½Π½ΡΠ΅ Π΄Π°ΡΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠΈΡΠ°ΡΡ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΡ ΡΠ²ΠΎΠΉΡΡΠ² Π± ΠΊΠ°Π½Π°Π»ΠΎΠ² Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°ΠΊΡΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ ΠΊΠ°Π½Π°Π»Π°.
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- ΠΡΡΠ°ΡΡΠ΅Π²Π° Π. Π. ΠΠ΅ΠΉΠ²Π»Π΅Ρ-Π°Π½Π°Π»ΠΈΠ·: ΠΎΡΠ½ΠΎΠ²Ρ ΡΠ΅ΠΎΡΠΈΠΈ ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ. Π£ΡΠΏΠ΅Ρ ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π°ΡΠΊ. 1998. Π’. 166. № 11. Π‘. 1145−1170.
- ΠΡΡΠ°ΡΠ΅Π² Π.Π., ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π. Π., ΠΡΠΈΠ³ΠΎΡΡΠ΅Π² Π. Π. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ Π°Π»Π°ΠΌΠ΅ΡΠΈΡΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° ΡΠ»ΡΠΊΡΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΌ ΠΈ ΠΌΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠΌ ΡΠ»ΡΠΊΡΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ. ΠΠΈΠΎΠ». ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. 2007. Π’.24. № 3. Π‘. 251−258.
- ΠΡΡΠ°ΡΠ΅Π² Π.Π., ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π. Π., ΠΡΠΈΠ½Π΅Π²ΠΈΡ Π. Π. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ Π* ΠΊΠ°ΠΊ ΠΏΡΠΎΠ½ΠΈΠΊΠ°ΡΡΠ΅Π³ΠΎ ΠΈΠΎΠ½Π° Π½Π° Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ Π±ΠΊΠ°Π½Π°Π»ΠΎΠ². ΠΠΈΠΎΠ». ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. 2004. Π’. 21. Π‘. 233−240.
- ΠΡΠ°ΠΆΠ΅ Π.Π ., ΠΡΡΠ°ΡΠ΅Π² Π. Π., ΠΠ°ΠΊΡΠΈΠΌΠΎΠ² Π. Π., ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π. Π., Π ΡΠ±ΠΈΠ½ Π. Π. Π Π°ΡΡΠ΅Ρ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π₯Π΅ΡΡΡΠ° Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ ΠΆΠΈΠ·Π½ΠΈ Π‘Π° -Π°ΠΊΡΠΈΠ²ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ Π -ΠΊΠ°Π½Π°Π»Π°. ΠΠΈΠΎΡΠΈΠ·ΠΈΠΊΠ°. 2004. Π’. 49. Π‘. 1075−1083.
- ΠΡΠΈΠ½Π΅Π²ΠΈΡ Π. Π., ΠΡΡΠ°ΡΠ΅Π² Π. Π., ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π. Π. ΠΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠ° Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° ΠΈΠΎΠ½Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π°Ρ .. ΠΠΈΠΎΠ». ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. 2007. Π’.24. № 3. Π‘. 234−250.
- ΠΡΡΠ΅Π² Π.Π. ΠΠ½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠ΅ ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΠ΅ Π±Π΅Π»ΠΊΠΈ ΡΠ°ΡΡΡ 1. ΠΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΈ ΡΡΡΡΠΊΡΡΡΠ°. Π‘ΠΎΡΠΎΡΠΎΠ²ΡΠΊΠΈΠΉ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΆΡΡΠ½Π°Π». 1998. № 5. Π‘. 5−9.
- ΠΡΠ΅ΠΌΠΈΠ½ Π. Π., ΠΠ²Π°Π½ΠΎΠ² Π. Π., ΠΠ΅ΡΠΈΡΠ°ΠΉΠ»ΠΎ Π. Π. ΠΠ΅ΠΉΠ²Π»Π΅ΡΡ ΠΈ ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅. Π£ΡΠΏΠ΅Ρ ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π°ΡΠΊ. 2001. Π’. 171. № 5. Π‘. 465−561.
- ΠΠ°Π±Π°Π½ΠΎΠ²Π° Π.Π., ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π. Π., ΠΡΡΠ°ΡΠ΅Π² Π. Π. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΠΈΠΌΠ΅ΡΠΎΡΠ°Π»Π° ΠΈ Π΄ΠΈΡΠΈΠΎΡΡΠ΅ΠΈΡΠΎΠ»Π° Π½Π° «Π²ΠΎΡΠΎΡΠ½ΡΠΉ» ΠΏΡΠΎΡΠ΅ΡΡ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΡΡ ΠΊΠ°Π»ΠΈΠ΅Π²ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² Π½Π΅ΠΉΡΠΎΠ½ΠΎΠ² ΠΌΠΎΠ»Π»ΡΡΠΊΠ° Lymnaea stagnalis. ΠΠΈΠΎΠ». ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. 2006. Π’. 23. № 3. Π‘. 195−204.
- ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π.Π., ΠΡΡΠ°ΡΠ΅Π² Π. Π., ΠΡΠΈΠ½Π΅Π²ΠΈΡ Π. Π. ΠΡΠ»ΡΡΠΈΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π±ΠΊΠ°Π½Π°Π»ΠΎΠ². ΠΠΈΠΎΠ». ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. 2007. Π’. 24. № 2. Π‘. 167−174.
- ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π.Π., ΠΠ΅Π»Π΅ΡΡΠΊ Π. Π. ΠΠ²Π° ΡΠΈΠΏΠ° ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΡΡ Π±ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² Π½Π΅ΠΉΡΠΎΠ½Π°Ρ ΠΌΠΎΠ»Π»ΡΡΠΊΠ°. ΠΠ»Π°ΡΡΠ΅ΡΠ½Π°Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡ. ΠΠΈΠΎΠ». ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. 1984. Π’. 1. Π‘. 629−639.
- ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π.Π., ΠΠ΅Π»Π΅ΡΡΠΊ Π. Π., Π§Π΅ΠΌΠ΅ΡΠΈΡ Π. Π., Π€Π΅ΡΠ΅Π½ΠΊΠΎ Π. Π. ΠΠ΄ΠΈΠ½ΠΎΡΠ½ΡΠ΅ Π‘Π°2±Π°ΠΊΡΠΈΠ²ΠΈΡΡΠ΅ΠΌΡΠ΅ Π±ΠΊΠ°Π½Π°Π»Ρ Π² ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΡΠ΅ΠΌΡΡ ΠΏΠΎΡΠ΅ΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΊΠ°Ρ Vero. ΠΠΈΠΎΡΠΈΠ·ΠΈΠΊΠ°. 1996 Π’. 41. Π‘. 1322−1331.
- ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π.Π., ΠΠΎΡΠ΅ΡΠΊΠΎΠ² Π. Π., ΠΡΠ»Π°Π½ΠΈΠ΄ΠΈ Π. Π., ΠΡΠΈΠ½Π΅Π²ΠΈΡ Π. Π. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΡ ΡΠ²ΠΎΠΉΡΡΠ² «Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ» ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ°ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ ΠΈΠΎΠ½Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π±ΡΡΡΡΠΎΠ³ΠΎ Π€ΡΡΡΠ΅-ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ. ΠΠΈΠΎΡΠΈΠ·ΠΈΠΊΠ°. 2001. Π’. 46. № 1. Π‘. 1062−1070.
- ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π.Π., ΠΠΎΡΠ΅ΡΠΊΠΎΠ² Π. Π., ΠΡΡΠ°ΡΠ΅Π² Π. Π., ΠΡΠΈΠΏΠ΅Π²ΠΈΡ Π. Π. Π€ΡΠ°ΠΊΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π²ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΡΡ Π±ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² Π½Π΅ΠΉΡΠΎΠ½Π°Ρ Lymnaea stagnalis. ΠΠΈΠΎΡΠΈΠ·ΠΈΠΊΠ°. 2004. Π’. 40. Π‘. 852−865.
- ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π.Π., Π§Π°ΠΏΠ»ΡΠ³ΠΈΠ½Π° C.JI., ΠΠ°Π±Π°Π½ΠΎΠ²Π° Π. Π., ΠΡΡΠ°ΡΠ΅Π² Π. Π. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΠΌΠ΅ΡΠ°ΡΠΈΠ½Π° ΠΈ ΠΠ° Π½Π° Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΡΡ ΠΊ±ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² Π½Π΅ΠΉΡΠΎΠ½Π°Ρ ΠΌΠΎΠ»Π»ΡΡΠΊΠ° lymnaea stagnalis. ΠΠΈΠΎΠ». ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. 2006. Π’.23. № 5. Π‘. 370−374.
- ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π.Π., Π§Π΅ΠΌΠ΅ΡΠΈΡ Π. Π. ΠΠΎΠ΄ΡΠ»ΡΡΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π‘Π° -Π°ΠΊΡΠΈΠ²ΠΈΡΡΠ΅ΠΌΡΡ Π -ΠΊΠ°Π½Π°Π»ΠΎΠ² Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΠΌ Mg Π² ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΡΠ΅ΠΌΡΡ ΠΏΠΎΡΠ΅ΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΊΠ°Ρ Vero. ΠΠΈΠΎΠ». ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. 1998. Π’. 15. Π‘. 395−413.
- ΠΠΎΡΠ΅ΡΠΊΠΎΠ² Π.Π., ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π. Π., ΠΡΠ»Π°Π½ΠΈΠ΄ΠΈ Π. Π. ΠΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ ΡΠΎΠ±ΡΡΠΈΠΉ Π² «Π²ΠΎΡΠΎΡΠ½ΠΎΠΌ» ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΈΠΎΠ½Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ². ΠΠ΅ΡΠΎΠ΄ Π½ΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΠΌΠ°Ρ Π°. ΠΠΈΠΎΠ». ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. 2001. Π’. 18. Π‘. 82−97.
- ΠΠΎΡΠ΅ΡΠΊΠΎΠ² Π.Π., ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π. Π., ΠΡΠ»Π°Π½ΠΈΠ΄ΠΈ Π. Π. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²Π΅ΠΉΠ²Π»Π΅Ρ-ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ Π°Π½Π°Π»ΠΈΠ·Π° Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ ΠΈΠΎΠ½Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ². ΠΠΈΠΎΠ». ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. 2003. Π’. 20. № 4. Π‘. 313−368.
- Π€Π΅Π΄Π΅Ρ Π. Π€ΡΠ°ΠΊΡΠ°Π»Ρ. Π.: ΠΠΈΡ. 1991. 260 Ρ.
- Aggarwal S.K., MacKinnon R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron. 1996. 16(6): 1169— 1177.
- Aldrich R.W., Corey D.P., Stevens C.F. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983. V. 306. P. 436−441.
- Allen T.W., Kuyucak S., Chung S.-H. Molecular dynamics study of the KscA potassium channel. Biophys. J. 1999. 77: 2502−2516.
- Aon M.A., O’Rourke Π., Cortassa S. The fractal architecture of cytoplasmic organization: scaling, kinetics and emergence in metabolic networks. Mol. Cell. Biochem. 2004.V. 256. P. 169−84.
- Arandaa J.S., Salgadoa E., and Munoz-Diosdadob A. Multifractality in intracellular enzymatic reactions. J. of Theor. Biol. 2006. V. 240. P. 209−217.
- Armstrong C.M., Bezanilla F.M. Charge movement associated with the opening and closing of the activation gates of Na channels J. Gen. Physiol. 1974. 63: 533−552.
- Armstrong and Hille. The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. J. Gen. Physiol. 1972. 59:388−400.
- Armstrong C.M. 1966. Time course of TEA±induced anomalous rectification in scuid giant axons. J.Gen.Physiol. 50: 491−503.
- Armstrong C.M. 1969. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injected in scuid axons. J. Gen. Physiol. 54: 553−575.
- Annstrong C.M., Bezanilla F. Currents related to movement of the gating particles of the sodium channels. Nature. 1973. 242:459−461
- Armstrong C.M., Bezanilla F. Inactivation of sodium channel. II. Gating current experiments. J. Gen. Physiol. 1977. V. 70. P. 567−590.
- Atkinson N.S., Robertson G. A1, Ganetzky B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science. 1991. V. 253. P. 551−555.
- Auerbach A. A statistical analysis of acetylcholine receptor activation in Xenopus myocytes: stepwise versus concerted models of gating. J. Physiol. 1993. V. 461. P. 339−378.
- Aziz O.H., Partridge C.J., Munsey T.S., and Sivaprasadarao A. Depolarization induces intersubunit cross-linking in a S4 cysteine mutant of the Shaker potassium channel. // J. Biol. Chem. 2002. V. 277. P.42 719−42 725.
- Bajorath J., Raghunathan S., Hinrichs W., Saenger W. Long-range structural changes in proteinase Π triggered by calcium ion removal. Nature. 1989. V. 337. P. 481−484.
- Baker O.S., Larsson H.P., Mannuzzu L.M., IsacofF E.Y. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating. Neuron. 1998. 20(6): 1283−1294.
- Ball F.G., Sansom M.S.P. Ion channel gating mechanisms: model identification and parameter estimation from single channel recording. Proc. R. Soc. Lond. B. Biol. 1989. V. 236. P. 385−416.
- Beckstein O.B., Biggin P.C., Bond P., Bright N., Domene C., Grottesi A., Holyoake J., Sansom M.S.P. Ion channel gating: insights via molecular simulation // FEBS Lett. 2003. V. 555. P. 85−90.
- Bezanilla F. The Voltage Sensor in Voltage-Dependent Ion Channels. Physiol. Rev. 2000. 80: 555−592.
- Bezanilla F., Perozo E., Stefani E. Gating of Shaker K+ channels. II. The components of gating currents and a model of channel activation. Biophys. J. 1994. V. 66. P. 1011−1021.
- Blatz A.L., Magleby K.L. Quantitative description of three modes of activity of fast chloride channels from rat skeletal muscle. J. Physiol. 1986. V. 378. P. 141−174.
- Cavalcanti S., Fontanazzi F. Deterministic model of ion channel flipping with fractal scaling of kinetics rates // Ann. Biomed. Engr. 1999. V. 27. P. 682−695.
- Cha A., Bezanilla F. Structural implications of fluorescence quenching in the Shaker Π' channel. J. Gen. Physiol. 1998. V. 112. P. 391−408.
- Cha, A., Snyder G. E., Selvin P. R., and Bezanilla F. Atomic scale movement of the voltage sensing region in a potassium channel measured via spectroscopy. Nature. 1999. 402:809−813.
- Chung S., Allen T.W., Kuyucak S. Conducting-State Properties of the KcsA Potassium Channel from Molecular and Brownian Dynamics Simulations//Biophys. J. 2002. V. 82. P. 628−645.
- Chung S.-H., Allen T.W., Kuyucak S. Conducting-state properties of the KscA potassium channel from molecular and Brownian dynamics study. Biophys. J. 2002. 82: 628−645.
- Clauner K.S., Manuzzu L.M., Gandhi C.F., Isakoff E.Y. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature. 1999. V. 402. P. 813−817.
- Cohen B.E., Grabe M., Jan L.Y. Answers and questions from the KvAP structures. Neuron. 2003. 39: 395−400
- Colquhoun D., Hawkes A.G. On the stochastic properties of single ion channels. Proc. R. Soc. Lond. B. Biol. Sci. 1981. V. 211. P. 205−235.
- Colquhoun D., Hawkes A.G., Srodzinski K. Joint distribution of apparent open times and shut times of single ion channel and maximum likelihood fitting of mechanisms. Philos. Trans. R. Soc. Lond. A. 1996. V. 354. P. 2555−2590.
- Π‘ΠΎΡ D.H., Cui J., Aldrich R.W. Allosteric gating of large conductance Ca2←activated K' channel. J. Gen. Physiol. 1997. V. 110. P. 257−281.2+
- Cui J., Cox D.H., Aldrich R.W. Intrinsic voltage dependence and Ca regulation of mslo large conductance Ca-activated K' channels. J. Gen. Physiol. 1997. V. 109. P. 647−673.
- Daubechies I. Ten Lectures on Wavelets. Philadelphia, PA: Soc. Ind. and Appl. Math. 1992.
- Dewey T.G. Fractals in Molecular Biophysics. Oxford. Oxford Univer. Press, 1997.
- Diaz L., Meera P., Amigo J., Stefani E., Alvarez Π., Π’ΠΎΠ³ΠΎ L., Latorre R. Role of the S4 segment in a voltage-dependent calcium sensitivepotassium (hS/o) channel. J. Biol. Chem. 1998. V. 273. P. 3 243 032 436.
- Doyle D.A., Cabral J.M., Pfuetzer R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. The structure of potassium channel: Molecular basis of K+ conduction and selectivity. Science. 1998. V. 280. P. 69−77.
- Durell S.R., Shrivastava I.H., Guy H.R. Models of the structure and voltage-gating mechanism of the shaker K+ channel. Biophys J. 2004 87:2116−30.
- Easton D.M. Exponentiated exponential model (Gompertz kinetics) of Na+ and K4 conductance changes in squid giant axon. Biophys. J. 1978. V. 22. P. 15−28.
- FitzHugh R. Mathematical models of excitation and propagation in nerve. H.P. Schwan. ed. Biological Engineering. McGraw-Hill Book Co. 1969. N.Y. Chapter 1. P. 1−85.
- Frisch, U. & Parisi, G. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics Proc. Int. School of Physics Enrico Fermi, Course LXXXVIII. 1985 (eds Ghil, M" Benzi, R. & Parisi G.). North-Holland, Amsterdam.
- Gagnon J.-S., Lovejoy S., Schertzer D. Multifractal surfaces and terrestrial topography. Europhys. Lett. 2003. V62 (6)., P. 801−807.
- Garneaii L., Klein H., Parent, L., and Sauve R. Contribution of cysteine residues to the gating properties of the K, r 2.1 inward rectifier.// Biophys. J. 2003. V. 84. P. 3717−3729.
- Gibb A.J., Colquhoun D. Activation of N-methyl-D-aspartate receptors by L-glutamate in cells dissociated from adult rat hippocampus. J. Physiol. 1992. V. 456. P. 143−179.
- Glauner, K. S., Mannuzzu L. M., Gandhi C. S., and Isacoff E. Y. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature. 1999. 402:813−817.
- Glazier, J.A., S. Raghavachari, C.L. Berthlesen and M.H. Skolnick. Reconstructing phylogeny from the multifractal spectrum of mitochondrial DNA. Physical Review E 1995. V. 51. P. 2665−2668.
- Glenny, R.W., Robertson H.T., Yamashiro S., Bassingthwaighte J.Π. Applications of fractal analysis to physiology. J. Appl. Physiol. 1991. V. 70. P. 2351−2367.
- Goldberger, A.L., D.G. Rigney and B.J. West. Chaos and fractals in human physiology. Sci. Am. 1990. V. 262(2). P. 42−49. Goldberger, A.L. 1992. Fractal mechanisms in the electrophysiology of the heart. IEEE Eng. Medicine Biol. ll: 47−52.
- Gomez-Lagunas F., Armstrong C.M. Inactivation in Shaker Π K+ channels: a test for the number of inactivating particles on each channel. Biophys. J. 1995. V. 68. P. 89−95.
- Guidoni L., Torre V., Carloni P. Water and potassium dynamics inside the KcsA Π channel // FEBS Lett. 2000. V. 477. P. 37−42.
- Gulbis J., Zhou M., Mann S., MacKinnon R. Structure of the cytoplasmic p subunit-Tl assembly of voltage-dependent Π channels. Science. July 2000, Vol 289, 123−127.
- Hamill O.P., Marty A., Neher E., Sakmann Π., Sigworth F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfltigers Arch. 1981. V. 391. P. 85−100.
- Hanaoka K., Wright J.M., Cheglakov I.B., Morita Π’., Guggino W.B. A 59 aminoacid insertion increases Ca2+ sensitivity of rbslol, a Ca -activated K±channel in renal epithelia. J. Biol. Membr. 1999. V. 172. P. 193−201.
- Hasty J., Collins J.J., Wiesenfeld K., Grigg P. Wavelets of excitability in sensory neurons. J. Neurophysiol. 2001. V. 86. P. 2097−2101.
- Hicks G.A., Marrion N.V. Ca2±dependent inactivation of large conductance Ca2^-activated K^ (BK) channels in rat hippocampal neurones produced by pore block from an associated particle. J. Physiol. (London) 1998. V. 508 (Pt. 3) P. 721−734.
- Hille B. Ionic Channels of Exitable Membranes. 2rd. ed. Sinauer Associates. Sunderland. MA. 1992.
- Hille B. Ionic Channels of Exitable Membranes. 3rd. ed. Sinauer Associates. Sunderland. MA. 2001.
- Hodgkin A.L., Huxley A.F. and Katz B. 1949. Ionic currents underlying activity in the giant axon of scuid. Arch. Sci. Physiol. 3: 129−150.
- Holmgren M., Jurman M.E., Yellen G. N-type inactivation and the S4-S5 region of the Shaker K+ channel. J. Gen. Physiol. 1996. V. 108. P. 195−206.
- Horn R., Lange K. Estimating kinetic constants from single channel data. Biophys. J. 1983. V. 43. P. 207−223.
- Hoshi Π’., Zagotta V.N., Aldrich R.W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990. V. 250. P. 533−538.
- Hoshi Π’., Zagotta V.N., Aldrich R.W. Two types of inactivation in Shaker K+ channels. Effects of alteration in the carboxyterminal region. Neuron. 1991. V. 7. P. 547−556.
- Hurst H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951. V. 116. P. 770−808
- Ide Π’., Takeuchi Y., Aoki Π’., Yanagida T. Simultaneous optical and electrical recording of a single ion-channel. Jpn J. Physiol. 2002. V. 52. P. 429−434.
- Isakoff E.Y., Jan Y.-N., Jan L.-N. Putative receptor for the cytoplasmic inactivation gate in the Shaker K1 channel. Nature. 1991. V. 353. P. 86−90.
- Ivanov P.Ch., Amaral L.A.N., Goldberger A.L., Havlin S., Rosenblum M.G., Struzik Z.R., Stanley H.E. Multifractality in human heartbeat dynamics. Nature. 1999. V. 399. P. 461−465.
- Jiang Y., Lee A., Chen J., Cadene M" Chalt B.T., MacKinnon R. The open pore conformation of potassium channels. Nature. 2002. V. 417. P. 523—526.
- Jiang Y., Lee A., Chen J., Ruta V., Cadene M., Chait B.T., Mackinnon R. X-ray structure of a voltage-dependent K+ channel. Nature. 2003 V. 423 P. 33−41.
- Jiang Y., Ruta V., Chen J., Lee A., Mackinnon R. The principle of gating charge movementin a voltage-dependent K+ channel. Nature. 2003 423:42−48.
- Kantelhardt J.W., Zschiegner S.A., Koscielny-Bmde E., Bande A., Halvin S., Stanley E. Multifractal deterended fluctuation analysis of nonstationary time series. Physica A. 2002. V. 316. P. 87−114.
- Karplus M., McCammon J.A. Dynamics of proteins: elements and function. Ann. Rev. Biochem. 1983. V. 52. P. 263−300.
- Kazachenko V.N., Geletyuk V.I. The potential-dependent K4 channel in molluscan neurons is organized in a cluster of elementary channels. BBA. 1984. V. 773. P. 132−142.
- Kenkel, N.C., D.J. Walker. Fractals in the biological sciences. Coenoses. 1996. V. ll P.77−100.
- Keynes R.D., Rojas E. Kinetics and steady-state properties of the charged system controlling sodium conductancc in the squid giant axon J. Physiol. (Lond.). 1974. 239: 393−434.
- Kiss L., Kom S.J. Modulation of C-type inactivation by K4 at the potassium channel selectivity filter. Biophys. J. 1998. V. 74. P. 18 401 849.
- Kobayashi M., Musha T. 1/f fluctuation of heartbeat period. IEEE Trans. Biomed. Eng. 1982. V. 29. P. 456−457.
- Kochetkov K.V., Kazachenko V.N., Aslanidi O.V., Chemeris N.K.,β’ 9+ * 4
- Gapeev A.B. Non-Markovian Gating of Ca -Activated Π Channelsin Cultured Kidney Cells Vero. Rescaled Range Analysis. J. Biol. Phys. 1999. V. 25. P. 211−222.
- Kohler M., Hirschberg Π., Bond C.T., Kinzie J.M., Marrion N.V., Maylie J., Adelman J.P. Small-conductance, calcium-activated potassium channels from mammalian brain. Science. 1996. V. V. 273. P. 1709−1714.
- Kortis K., Goldin A. Sodium channel inactivation is altered by substitution of voltage sensor positive charges. J. Gen. Physiol. 1997. V. 110. P. 403−413.
- Krishna P M., Gadre V.M., Desai U.B. Multifractal Based Network Traffic Modeling. Springer. 2003.
- Lan Π’.Π., Xu B.Q., Yuan H.J., Lin J.R. Rescaled range analysis applied to the study delayed rectifier potassium channel kinetics. Biophys Chem. 2003. V. 106(1). P. 67−74.
- Lauger P. Internal motions in proteins and gating kinetics of ionic channels. Biophys. J. 1988. V. 53. P. 877−884.
- Lewis, M. and D.C. Rees. Fractal surfaces of proteins. Science. 1985. V. 230. P. 1163−1165.
- Liebovitch L. S. and Krekora. P. The physical basis of ion channel kinetics: the importance of dynamics. Proc. Instit. Math, and its Appl. Univ. Minn. 2002. 129, 27−52.
- Liebovitch L.S. Testing fractal and Markov models of ion channel kinetics. Biophys. J. 1989. V. 55. P. 373−377.
- Liebovitch L.S., Scheurle D., Rusek M., Zochowski M. Fractal methods to analyze ion channel kinetics. Methods. 2001 V. 24 P. 359 375.
- Liebovitch L.S., Czegledy F. A model of ion channel kinetics based on deterministic motion in a potential with two local minima. Ann. Biomed. Engr. 1992. V. 84. P. 37--68.
- Liebovitch L.S., Fischbarg J., Koniarek J.P. Ion channel kinetics: a model based on fractal scaling rather than multistate Markov procrsses. Math. Biosci. 1987. V. 84. P. 37−68.
- Liebovitch L.S., Sullivan J.M. Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. Biophys J. 1987 V. 52 P. 979−988.
- Liebovitch L.S., Todorov A. Using fractals and nonlinear dynamics to determine the physical properties of ion channel proteins. Crit. Rev. Neurobiol. 1996. V. 10. P. 169−187.
- Liebovitch L.S., Toth T. A model of ion channel kinetics using deterministic chaotic rather than stochastic processes. J. Theor. Biol. 1991. V. 148. P. 243−267.
- Lipsitz, L.A., A.L. Goldberger. Loss of’complexity' and aging. J. Am. Med. Assoc. 1992. V. 267. P. 1806−1809.
- Liu J.Z., Zhang L.D., Yue G.H. Fractal Dimension in Human Cerebellum Measured by Magnetic Resonance Imaging. Biophys J. 2003 V. 85(6). P. 4041^1046.
- Liu Y., Junnan M.E., Yellen G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron. 1996. V. 16. P. 859 867.
- Long S.B., Campbell E.B., Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 2005. 309: 897- 903.
- Long, C.A. Leonardo da Vinci’s rule and fractal complexity in dichotomous trees. J. Theor. Biol. 1994. V. 167 P. 107−113.
- Lopez-Quintela, M.A., Casado J. Revision of the methodology in enzyme kinetics: a fractal approach. J. Theor. Biol. 1989. V. 139 P. 129−139.
- Lowen S. Π., Liebovitch L. S., White J. A. Fractal ion-channel behavior generates fractal firing patterns in neuronal models. Phys. Rev. 1999. V. 59 P. 5970−5980.
- MacKinnon R., Aldrich R.W., Lee A.W. Functional stoichiometry of Shaker potassium channel inactivation. Science. 1993. V. 262. P. 757 759.
- Mandelbrot B.B. Fractal Geometry of Nature. 1982. Freeman, New York.
- Mandelbrot B.B. Self-affine fractal sets. 1986. Fractals in Physics, (eds. by L. Pietronero & E. Tosatti) Amsterdam: North Holland Publishing, p.3−28.
- Mannuzzu L.M., Moronne M.M., Isakoff E.Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science. 1996. V. 271. P. 213−216.
- Marban E., Yamagishi Π’., Tomaselli G.F. Structure and function of voltage-gated sodium channels. J. Physiol. (London). 1998. V. 508.3. P. 647−657.
- Masters B.R. Fractal analysis of the vascular nee in the human retina. Ann. Rev. of Biomed. Eng. 2004. V. 6 P. 427−452.
- McManus O.B. Calcium-activated potassium channels: regulation by calcium. J. Bioenerg. Biomembr. 1991. V. 23. P. 537−560.
- McManus O.B., Blatz A.L., Magleby K.L. Inverse relationship of the durations of adjacent open and shut intervals for CI and Π channels. Nature. 1985. V. 317. P. 625−628.
- McManus O.B., Magleby K.L. Accounting for the Ca2±dependent kinetics of single large-conductance Ca2±activated K+ channels in rat skeletal muscle. J. Physiol. (London). 1991. V. 443. P. 739−777.
- McManus O.B., Magleby K.L. Kinetic time constants independ of previous single-channel activity suggest Markov gating for a large conductance Ca2b-activated Π channel. J. Gen. Physiol. 1989. V. 94. P. 1037−1070.
- McManus O.B., Spivak C.E., Blatz A.L., Weiss D.S., Magleby K.L. Model selection: reliability and bias. Biophys. J. 1989. V. 55. P. 379 381.
- Meera P., Wallner M., Jiang Z., Π’ΠΎΠ³ΠΎ L. A calcium switch for the functional coupling between a (hslo) and P subunits (Kv, ca P) of maxi Π channels. FEBS Lett. 1996. V. 382. P. 84−88.
- Miller C. An overview of the potassium channel family. Genome Biol. 2000. 1: 0004.1−0004.5.
- Millhauser G.L., Salpeter E.E., Oswald R.E. Diffusion models of ion-channel gating and the origin of power-law distribution from single-channel recording. Proc. Natl. Acad. Sci. USA. 1988. V. 85. P. 15 021 507.
- Moczydlowski E., Latorre R. Gating kinetics of Ca2±activated K+ channels from rat muscle incorporated into planar lipid bilayers. J. Gen. Physiol. 1983. V. 82. P. 511−542.
- Monticelli L., Robertson K.M., MacCallum J.L., Tieleman D.P. Computer simulation of the KvAP voltage-gated potassium channel: steered molecular dynamics of the voltage sensor. FEBS Lett. 2004. V. 564. P. 325—332.
- Morais-Cabral J.H., Zhou Y., MacKinnon R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature. 2001. V. 414, P. 37 -42.
- Morita Π’., Hanaoka K., Morales M.M., Montrose-Rafizadeh C., Guggino W.B. Cloning and characterization of maxi K' channel a-subunit in rabbit kidney. Am. J. Physiol. 1997. V. 273 P. F615-F624.
- Moss B.L., Silberberg S.D., Nimigean C.M., Magleby K.L. Ca2±dependent gating mechanism for dslo, a large conductance Ca2±activated Π" (BK) channel. Biophys. J. 1999. V. 76. P. 3099−3117.
- Moss G.W., Marshall J., Moczydlowski E. Hypothesis for a serine protease like domain at the C-terminus of slowpoke calcium-activated potassium channels. J. Gen. Physiol. 1996. V. 108. P. 473 484.
- Naeim F., Moatamed F., Sahimi M. Morphogenesis of the bone marrow: fractal structures and diffusion-limited growth. Blood. 1996. V. 87. P. 50 275 031.
- Neher E., Sakmann B. Single-channel currents recorded from membrane at denervated frog muscle fibers. Nature. 1976. V. 260. P. 799−802.
- Nelson, T.R., West B.J., Goldberger A.L. The fractal lung: universal and species-related scaling patterns. Experimentia 1990. V. 46 P. 251 254.
- Nogueira R.A., Varanda W.A., Liebovitch L.S. Hurst analysis in the study of ion channel kinetics. Braz J Med Biol Res. 1995. V. 28. P. 491−496.
- Oberhauser A., Alvarez O., Latorre R. Activation by divalent cations of, Π° Π‘ a2±activated K+ channel from skeletal muscle membrane. J. Gen. Physiol. 1988. V. 92. P. 67−86.
- Ogielska E.M., Zagotta W.N., Hoshi Π’., Heinemann S.H., Haab J., Aldrich R.W. Cooperative subunit interaction in C-type inactivation of K+ channels. Biophys. J. 1995. V. 69. P. 2449−2457.
- Pallikari F., Boiler E. A rescaled range analysis of random events. J. of sci. expl. 1999. V. 13. P. 25−40.
- Pallotta B.S. N-bromoacetamide removes a calcium-dependent component of channel opening from calcium-activated potassium channels in rat skeletal muscle. J. Gen. Physiol., 19 856. V. 86. P. 601 611.
- Panyi G., Sheng Z., Tu L., Deutsch C. C-type inactivation of voltage-gated K+ channel occurs by a cooperative mechanism. Biophys. J. 1995. V. 69. P. 896−903.
- Papazian D.M., Timpe L.G., Jan N.J., Jan L.J. Alteration of voltage dependence of Shaker potassium channel by mutations in the S4 sequence. Nature. 1991. V. 349. P. 305−310.
- Peng C.-K., Boldyrev S. V., Havlin S., Simons M., Stanley H. E., and Goldberger A. L. Mosaic organization of DNA nucleotides. Phys. Rev. 1994. V. 49. P. 1685−1689.
- Perozo E., Cortes D.M., Cuello L.G. Structural rearrangements underlying K±channel activation gating. Science. 1999. V. 285. P. 7378.
- Persechini A., Moncrief N.D., Kretsinger R.H. The EF-hand family of calcium-modulated proteins. TINS. 1989. V. 12. P. 462−467.
- Qin F., Auerbach A., Sachs F. Maximum likelihood estimation of aggregated Markov process. Proc. R. Soc. Lond. B. Biol. Sci. 1997. V. 264. P. 375−383.
- Ramanujan V.K., Biener G., Herman B.A. Scaling Behavior in Mitochondrial Redox Fluctuations. Biophys. J. 2006. V. 90 P. L70-L72.
- Rothberg B.S., Bello R.A., Magleby K.L. Two-dimensional components and hidden dependencies provide into channel gating mechanism. Biophys. J. 1997. V. 72. P. 2524−2544.
- Rothberg B.S., Magleby K.L. Gating kinetics of single large-conductance Ca2±activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism. J. Gen. Physiol. 1999. V. 114. P. 93−124.
- Rothberg B.S., Magleby K.L. Kinetic structure of large-conductance Ca2H-activated Kh channels suggest that the gating includes transitions through intennediate or secondary states. J. Gen. Physiol. 1998. V. 111. P. 751−780.
- Sansom M.S.P., Ball F.G., Kerry C.J., McGee R., Ramsey R.L., Usherwood P.N.R. Markov, fractal, diffusion and related models. Biophys. J. 1989. V. 56. P. 1229−1243.
- Schneider M.F., Chandler W.K. Voltage dependent charge movement in skeletal muscle: A possible step in exitation-contraction coupling. Nature (Lond.) 1973. 242: 244−246.
- Schreiber M., Salkoff L. A novel calcium-sensing domain in the BK channel. Biophys. J. 1997. V. 73. P. 1355−1363.
- Schreiber M., Yuan A., Salkoff L. Transplantable sites confer calcium sensitivity to BK channels. Nature neuroscience. 1999. V. 2. P. 416 421.
- Seoh S.A., Sigg D., Papazian D.M., Bezanilla F. Voltage-sensing residius in the S2 and S4 segments of the Shaker K+ channel. Neuron. 1996. V. 16. P. 1159−1167.
- Shapovalov G. and Lester H.A. Gating transitions in bacterial ion channels measured at 3is resolution. The J. of Gen. Phys. 2007. V. 124. P. 151−161.
- Shrivastava I.H., Durell S.R., Guy H.R. A model of voltage gating developed using the KvAP channel crystal structure. Biophys J. 2004. 87:2255−2270.
- Sigg D., Bezanilla F. A Physical Model of Potassium Channel Activation: From Energy Landscape to Gating Kinetics. Biophys. J. 2003. V. 84. P. 3703−3716.
- Sigg D., Bezanilla F., Stefani E. Fast gating in the Shaker K+ channel and the energy landscape of activation. Proc. Natl. Acad. Sci. USA. 2003. V.100(13). P. 7611−7615.
- Sigworth F.J., Sine S.M. Data transfonnation for improved display and fitting of single-channel dwell time histograms. Biophys. J. 1987. V. 52. P. 1047−1054.
- Sine S.M., Claudo Π’., Sigworth F.J. Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts. J. Gen. Physiol. 1990. V. 96. P. 395−437.
- Smith J.Π’., Lange G.D., Marks W.B. Fractal methods and results in cellular morphology dimensions, lacunarity and multifractals. 1996. J. of Neurosci. Meth. V. 69, N. 2. P. 123−136.
- Smith, T.G., W.B. Marks, G.D. Lange, W.H. Sheriff and E.A. Neale. A fractal analysis of cell images. 1989. J.Neurosci. Meth. V. 27. P. 173−180.
- Solaro C.R., Ding J.P., Li Z.W., Lingle C.J. The cytosolic inactivation domain of BK, channels in rat chromafin cells do not behave like simple, open-channel blockers. Biophys. J. 1997. V. 73. P. 819−830.
- Solaro C.R., Lingle C.J. Trypsin-sensitive, rapid inactivation of a calcium-activated potassium channel. Science. 1992. V. 257. P. 16 941 698.
- Staracea D.M., Bezanilla F. Histidine Scanning Mutagenesis of Basic Residues of the S4 Segment of the Shaker K+ Channel. J. of Gen. Physiol. 2001. 117:469−490.
- Stone, L. and S. Ezrati. Chaos, cycles and spatiotemporal dynamics in plant ecology. J. Ecol. 1996. V. 84 P. 279−291.
- Sugihara, G. Nonlinear forecasting for the classification of natural time series. Phil. Trans. R. Soc. Lond. 1994. P. 477−495.
- Takahashi, M. A fractal model of chromosomes and chromosomal DNA replication. 1989. J. Theor. Biol. V. 141 P. 117−136.
- Teich M.C., Heneghan Π‘., Lowen S.C., Ozaki Π’., Kaplan E. Fractal character of the neural spike train in the visual system of the cat J. Opt. Soc. Am. A. 1997. V. 14. P. 529−546.
- Teich, M.C. and S.B. Lowen. Fractal patterns in auditory nerve-spike trains. IEEE Eng. Med. Biol. 1994. V. 13. P. 197−202.
- Tempel B.L., Papazian D.M., Schwarz T.L., Jan Y.N., Yan L.Y. Sequence of a probable potassium channel component encoded at a Shaker locus of Drosophila. Science. 1987. V. 237. P. 770−775.
- Tessier Y., Lovejoy S., and Schertzer D. Multifractal Analysis and Simulation of the Global Meteorological Network. Journal of Applied Meteorology. 1994. V, 33, N. 12, P. 1572−1586.
- Tieleman P., Robertson K.M., MacCallum J.L., Monticelli L. Computer simulations of voltage-gated potassium channel KvAP. Int. J. of Quant. Chem. 2004. Volume 100(6): 1071 1078.
- Π’ΠΎΠ³ΠΎ L., Stefani E., Latorre R. Internal blockade of a Ca24-activated K4″ channel by Shaker Π inactivating «ball» peptide. Neuron. 1992. V. 9. P. 237−245.
- Unvin P.N.T., Zampighi G. Structure of the junction between communicating cells. Nature. 1980. V. 283. P. 545−549.
- Varanda W.A., Liebovitch L.S., Figueiroa J.N., Nogueira R.A. Hurst analysis applied to the study of single calcium-activated potassium channel kinetics. J Theor. Biol. 2000. V. 206 P. 343−353.
- Venkataramanan L. and Sigworth F.J. Applying hidden Markov models to the analysis of single ion channel activity Biophys J. 2002. V. 82. P. 1920−1942.
- Wagner, G.C., J.T. Colvin, J.P.Allen and H.J. Stapleton. Fractal models of protein structure, dynamics and magnetic relaxation. J. Am. Chem. Soc. 1985. V. 107. P. 5589−5594.
- Wallner M., Meera P., Π’ΠΎΠ³ΠΎ L. Molecular basis of fast inactivation in voltage and Ca2±activated K+ channels: a transmembrane |3-subunit homolog. Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 4137−4142.
- Wang Z.-W., Nara M., Wang Y.-X. and Kotlikoff M.I. Redox regulation of large conductance Ca2±activated K+~channels in smooth muscle cells. J. Gen. Physiol. 1997. Vol. 110. P. 35−44.
- West, B.J., Goldberger A.L. Physiology in fractal dimensions. Am. Sci. 1987. V. 75. P. 354−365.
- Whitcher, B. and Jensen M.J. Wavelet estimation of a local long-memory parameter. Exploration Geophysics 2000. V. 31. P. 89−98.
- Xu, J., Y. Chao and R. Chen. Fractal geometry study of DNA binding proteins. 1994. J. Theor. Biol. V. 171. P. 239−249.
- Yellen G. The voltage gated potassium channels and their relatives. Nature. 2002. 419: 35−42.
- Zagotta W.N., Aldrich R.W. Voltage-dependent gating of Shaker A-type potassium channels in drosophila muscle. J.Gen. Physiol. 1990. 95:29−60.
- Zagotta W.N., Hoshi Π’., Aldrich R.W. Shaker potassium channel gating. III. Evaluation of kinetic models for activation. J. Gen. Physiol. 1994. V. 103. P. 321−362.
- Zeidner G., Sadja R. and Reuveny E. Redox-dependent gating of G-protein-coupled inwardly rectifying K+channels. J.Biol.Chem. 2001. Vol. 276(38). P. 35 564−35 570.
- ZhouY., MacKinnon R. The occupancy of ions in the K±selectivity filter: charge balanceand coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol.Biol. 2003. V. 333. P. 965−975.