ΠΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΡΡΠ΅Π»ΡΡΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΠ°ΠΌΡΡΠΈ Ρ ΡΡΠ°ΡΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
ΠΠ° Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΏΠ°ΠΌΡΡΠΈ ΠΈ ΡΡΠ°ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΊΡΡΠΈΡΠΎΠ²Π°Π½ΠΎ Π½Π° ΡΠ°Π±ΠΎΡΠ΅ Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ°, Π΅Π³ΠΎ Π°ΡΡΠ΅ΡΠ΅Π½ΡΠ½ΡΡ ΠΈ ΡΡΡΠ΅ΡΠ΅Π½ΡΠ½ΡΡ ΡΠ²ΡΠ·ΡΡ . ΠΠ°ΡΡΠ΄Ρ Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ Π² ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ, ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π±ΠΈΠΎΡ ΠΈΠΌΠΈΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΈΡΠΎΠΊΠΈΠΉ ΡΠΏΠ΅ΠΊΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π½Π΅ΠΉΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΈΡΠ½ΠΎΡΡΠΈ ΠΌΠΎΠ·Π³Π° Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΡΠ°ΡΠ΅Π½ΠΈΡ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡΠΌ, Π΄Π²Π° ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½Ρ Π² ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
- Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΡΠ΄Π΅ΡΠΆΠΊΠ°
- ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ°
- ΠΡΡΠ³ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ
- ΠΠΎΠΌΠΎΡΡ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈ
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- 1. ΠΠΠΠΠΠΠΠ
- 2. ΠΠΠΠΠ ΠΠΠ’ΠΠ ΠΠ’Π£Π Π«
- 2. 1. ΠΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ°
- 2. 1. 1. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ°Π»ΡΠ½ΡΡ ΡΠ²ΡΠ·Π΅ΠΉ
- 2. 1. 2. Π‘ΡΠΌΠΌΠ°ΡΠ½Π°Ρ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ°
- 2. 1. 3. ΠΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΆΠΈΠ²Π°ΡΡΠΈΡ ΡΡΠ΅Π·ΠΎΠ² Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ°
- 2. 2. ΠΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ Π½Π΅ΠΉΡΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ
- 2. 2. 1. ΠΠΎΠ·ΡΠ°ΡΡΠ½ΡΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΠ°ΠΌΡΡΠΈ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Π² Π²ΠΎΠ΄Π½ΠΎΠΌ Π»Π°Π±ΠΈΡΠΈΠ½ΡΠ΅ ΠΠΎΡΡΠΈΡΠ°
- 2. 3. Π€Π΅Π½ΠΎΠΌΠ΅Π½ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΡΠΈΠ½Π°ΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»Π°ΡΡΠΈΡΠ½ΠΎΡΡΠΈ (ΠΠ‘Π)
- 2. 3. 1. ΠΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΡ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΠΈ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΠ‘Π
- 2. 3. 2. ΠΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΠ‘Π
- 2. 3. 3. ΠΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΠΠ‘Π ΠΏΡΠΈ ΡΡΠ°ΡΠ΅Π½ΠΈΠΈ
- 2. 3. 4. ΠΠ½Π΄ΡΠΊΡΠΈΡ ΠΠ‘Π ΠΏΡΠΈ ΡΡΠ°ΡΠ΅Π½ΠΈΠΈ
- 2. 3. 5. ΠΠ°ΡΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΠ‘Π ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΡΠΌ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ΠΌ Ρ ΡΡΠ°ΡΡΡ ΠΆΠΈ both ΡΡ
- 2. 3. 6. ΠΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΠ‘Π ΠΏΡΠΈ ΡΡΡΠ΅Π½ΠΈΠΈ
- 2. 4. VDCC-Π·Π°Π²ΠΈΡΠΈΠΌΠ°Ρ ΡΠΎΡΠΌΠ° ΠΠ‘Π
- 2. 4. 1. ΠΠ½Π΄ΡΠΊΡΠΈΡ VDCC-ΠΠ‘Π
- 2. 4. 2. ΠΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² VDCC ΠΠ‘Π ΠΏΡΠΈ ΡΡΠ°ΡΠ΅Π½ΠΈΠΈ
- 2. 5. ΠΠ»ΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΡΠΈΠ½Π°ΠΏΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π΄Π΅ΠΏΡΠ΅ΡΡΠΈΡ
- 2. 6. Π‘ΠΈΠ½Π°ΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΏΡΠΈ ΡΡΠ°ΡΠ΅Π½ΠΈΠΈ
- 2. 7. ΠΠ΅Π΄Π»Π΅Π½Π½Π°Ρ ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ Π³ΠΈΠΏΠ΅ΡΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΡ
- 2. 1. ΠΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ°
ΠΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΡΡΠ΅Π»ΡΡΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΠ°ΠΌΡΡΠΈ Ρ ΡΡΠ°ΡΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΎΠΊΠΎΠ»ΠΎ 15% Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ ΠΌΠΈΡΠ° ΡΠΎΡΡΠ°Π²Π»ΡΡΡ Π»ΠΈΡΠ° ΠΏΠΎΠΆΠΈΠ»ΠΎΠ³ΠΎ ΠΈ ΡΡΠ°ΡΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°. ΠΠΎ ΠΏΡΠΎΠ³Π½ΠΎΠ·Π°ΠΌ, ΠΊ 2020 Π³ΠΎΠ΄Ρ ΠΈΡ ΡΠΈΡΠ»Π΅Π½Π½ΠΎΡΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ΅Ρ Π²Π΄Π²ΠΎΠ΅. Π ΡΠ°Π·Π²ΠΈΡΡΡ ΡΡΡΠ°Π½Π°Ρ Π»ΠΈΡΠ° ΠΏΠΎΠΆΠΈΠ»ΠΎΠ³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ° ΠΌΠΎΠ³ΡΡ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠ°ΡΡΡ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ. Π‘ΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΡΠ΅Π»ΡΠΌ ΡΡΠ΄ΠΎΠΌ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ°ΡΡΡΠΎΠΉΡΡΠ², ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ Π±ΠΎΠ»Π΅Π·Π½Ρ ΠΠ»ΡΡΠ³Π΅ΠΉΠΌΠ΅ΡΠ°, Π±ΠΎΠ»Π΅Π·Π½Ρ ΠΠ°ΡΠΊΠΈΠ½ΡΠΎΠ½Π° ΠΈ Π΄Π΅ΠΌΠ΅Π½ΡΠΈΡ. Π ΠΏΠΎΠ΄Π°Π²Π»ΡΡΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π΅ ΡΠ»ΡΡΠ°Π΅Π², Π΄Π°ΠΆΠ΅ ΠΏΡΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠΉ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΠΎΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΡΡΡΠΈΡ ΠΊΠΎΠ³Π½ΠΈΡΠΈΠ²Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΠΊΠ°ΠΊ ΡΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠ³Π½ΠΈΡΠΈΠ²Π½ΡΠ΅ ΡΠ°ΡΡΡΠΎΠΉΡΡΠ²Π° (mild cognitive impairments, MCI). ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠ³Π½ΠΈΡΠΈΠ²Π½ΡΠ΅ ΡΠ°ΡΡΡΠΎΠΉΡΡΠ²Π° ΡΠ²Π»ΡΡΡΡΡ ΠΏΡΠ΅Π΄ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΈΠΊΠ°ΠΌΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΡΡΠ΅Π·Π½ΠΎΠΉ ΠΏΠ°ΡΠ°Π»ΠΎΠ³ΠΈΠΈ. Π ΡΡΠΎΠΉ ΡΠ²ΡΠ·ΠΈ, ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΏΠ°ΠΌΡΡΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠΈΡΠΊ ΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ², ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΡ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡΡ Π·Π°ΠΌΠ΅Π΄Π»ΡΡΡ/ΠΏΡΠ΅Π΄ΠΎΡΠ²ΡΠ°ΡΠ°ΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠΈ ΡΠ»ΡΡΡΠ°ΡΡ ΠΏΠ°ΠΌΡΡΡ Π² ΡΠ»ΡΡΠ°Π΅ ΡΠΌΠ΅ΡΠ΅Π½Π½ΡΡ ΠΊΠΎΠ³Π½ΠΈΡΠΈΠ²Π½ΡΡ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ², ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡΡΠ°Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π½Π΅ΠΉΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π½Π΅ΠΉΡΠΎΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ.
Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΡΠ°ΡΠ΅Π½ΠΈΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ·Π³Π°, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ΠΎΠ΅ ΠΊΠ°ΠΊ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌ Π΄Π΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ², ΡΠ°ΠΊ ΠΈ ΠΈΠ½ΡΠ΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠ΅ΠΉ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΎΡΠ½ΡΡ ΡΠ²Π»Π΅Π½ΠΈΠΉ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΡΡΠ΄ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΡΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ Π² ΠΏΠ΅ΡΠ²ΡΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ ΠΎΡΠ»Π°Π±Π»Π΅Π½ΠΈΡ ΠΏΠ°ΠΌΡΡΠΈ ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΎΠ±ΡΡΠ°ΡΡΡΡ. ΠΠ΄Π½Π° ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ, ΡΡΠΎΡΡΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΡΠ΅Π½ΡΠΌΠΈ, ΡΡΠΎ Π½Π°ΠΉΡΠΈ ΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΡΠΈΡΠ΅ΡΠΈΠΈ, ΡΠ°Π·Π΄Π΅Π»ΡΡΡΠΈΠ΅ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΠΎΡ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ. ΠΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ ΡΡΠ΅Π½ΡΠ΅ ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΊΠ°ΠΊ Π΄Π»Ρ Π½Π΅ΠΉΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ Π±ΠΎΠ»Π΅Π·Π½Π΅ΠΉ, ΡΠ°ΠΊ ΠΈ Π΄Π»Ρ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΠ°Π½Π½ΡΠ΅, ΠΏΠΎΠ»ΡΡΠ΅Π½ΡΠ΅ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ² Π½Π° Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΡ Π΄Π»Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ , Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ, ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡΠΈΡ Ρ Π»ΡΠ΄Π΅ΠΉ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΡΡΠ°ΡΠ΅Π½ΠΈΡ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ Π»ΡΠ΄Π΅ΠΉ, Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΠ΅ ΠΆΠΈΠ²ΠΎΡΠ½ΡΠ΅ Π½Π΅ ΡΠ°Π·Π²ΠΈΠ²Π°ΡΡ Π½Π΅ΠΉΡΠΎΠ΄Π΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΡΠ΅ Π±ΠΎΠ»Π΅Π·Π½ΠΈ, ΡΠΈΠΏΠ° Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠΠ»ΡΡΠ³Π΅ΠΉΠΌΠ΅ΡΠ°, ΡΠΎ Π΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΡΠ΅Π½ΠΈΡ Π² ΡΠΈΡΡΠΎΠΌ Π²ΠΈΠ΄Π΅. ΠΠ΄Π½Π°ΠΊΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΏΡΠΎΠ±Π»Π΅ΠΌ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΡ ΠΏΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ ΡΠΎ ΡΡΠ°ΡΡΠΌΠΈ ΠΆΠΈΠ²ΠΎΡΠ½ΡΠΌΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎ, ΡΡΠΎ ΡΠ΅Π½ΠΎΡΠΈΠΏ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΡΠ΅Π½ΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π±ΠΎΠ»ΡΡΡΡ Π²Π°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ. ΠΡΠ° Π²Π°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠΎ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΠΊΠ°ΠΊ ΠΌΠ΅ΠΆΠ΄Ρ Π»ΠΈΠ½ΠΈΡΠΌΠΈ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ , ΡΠ°ΠΊ ΠΈ Π²Π½ΡΡΡΠΈ ΠΎΠ΄Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΡΠΎΡΠ΅ΡΡ ΡΡΠ°ΡΠ΅Π½ΠΈΡ ΠΎΠΏΠΎΡΡΠ΅Π΄ΠΎΠ²Π°Π½ ΡΠ΅Π»ΡΠΌ ΡΡΠ΄ΠΎΠΌ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ°ΠΊΡΠΎΡΠΎΠ², ΠΏΡΠΎΡΠ²Π»ΡΡΡΠΈΡ ΡΡ Π² Π²ΠΈΠ΄Π΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠ΅Π½ΠΎΡΠΈΠΏΠΎΠ². ΠΠΎ ΡΡΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½Π΅ ΠΏΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΡΡΠ°ΡΠ΅Π½ΠΈΡ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π²ΡΠ΅ΠΌΡ ΡΡΠ°Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΌΡΡΠ΅ΠΉ Ρ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡΠΌΠΈ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΡΡΠ΅ΠΉ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ ΠΌΡΡΠ°ΡΠΈΠ΅ΠΉ Π³Π΅Π½ΠΎΠ², ΠΊΠ°ΠΊ ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΌΠ°Π½ΠΈΡΠ΅ΡΡΠ°ΡΠΈΠΉ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΡΠΈΡΠΎΠΊΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠΠ»ΡΡΠ³Π΅ΠΉΠΌΠ΅ΡΠ°, ΡΠΈΠ½ΠΈΠ»ΡΠ½ΡΡ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ² ΠΈ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠΠ°ΡΠΊΠΈΠ½ΡΠΎΠ½Π°.
ΠΠ° Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΏΠ°ΠΌΡΡΠΈ ΠΈ ΡΡΠ°ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΊΡΡΠΈΡΠΎΠ²Π°Π½ΠΎ Π½Π° ΡΠ°Π±ΠΎΡΠ΅ Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ°, Π΅Π³ΠΎ Π°ΡΡΠ΅ΡΠ΅Π½ΡΠ½ΡΡ ΠΈ ΡΡΡΠ΅ΡΠ΅Π½ΡΠ½ΡΡ ΡΠ²ΡΠ·ΡΡ . ΠΠ°ΡΡΠ΄Ρ Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ Π² ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ, ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π±ΠΈΠΎΡ ΠΈΠΌΠΈΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΈΡΠΎΠΊΠΈΠΉ ΡΠΏΠ΅ΠΊΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π½Π΅ΠΉΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΈΡΠ½ΠΎΡΡΠΈ ΠΌΠΎΠ·Π³Π° Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΡΠ°ΡΠ΅Π½ΠΈΡ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡΠΌ, Π΄Π²Π° ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½Ρ Π² ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΠ°ΠΌΡΡΡ. ΠΠ΅ΡΠ²ΡΠΉ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΠΉ, ΡΡΠΎ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΡΠΈΠ½Π°ΠΏΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°ΡΠΈΡ (ΠΠ‘Π), ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΠ°Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΈΠ½Π°ΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π² ΠΎΡΠ²Π΅Ρ Π½Π° ΠΊΡΠ°ΡΠΊΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ Π²ΡΡΠΎΠΊΠΎΡΠ°ΡΡΠΎΡΠ½ΡΡ ΡΡΠΈΠΌΡΠ»ΡΡΠΈΡ (Bliss, 2003). ΠΡΠΎΡΠΎΠΉ, ΠΌΠ΅Π½Π΅Π΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΉ, ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π²ΠΎΠ·Π±ΡΠ΄ΠΈΠΌΠΎΡΡΠΈ Π½Π΅ΠΉΡΠΎΠ½ΠΎΠ², ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅ΠΌΡΠ΅ ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΉ ΡΠ»Π΅Π΄ΠΎΠ²ΠΎΠΉ Π³ΠΈΠΏΠ΅ΡΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΠ΅ΠΉ (ΠΠ‘Π) Π½Π° ΡΡΠΎΠ²Π½Π΅ ΡΠ΅Π»Π° ΠΊΠ»Π΅ΡΠΊΠΈ (Daudal and Debanne, 2003; Disterhoft et al., 2004; Giese et al., 2001; Murphy et al., 2004; Sourdet et al., 2003). ΠΠ±Π° ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½Ρ Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅/ΡΡΠΈΠ»Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ ΡΠ²ΡΠ·Π΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π½Π΅ΠΉΡΠΎΠ½Π°ΠΌΠΈ Π»ΠΈΠ±ΠΎ Π·Π° ΡΡΠ΅Ρ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΡΠΈΠ»Ρ ΡΠΈΠ½Π°ΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ²ΡΠ·Π΅ΠΉ, Π»ΠΈΠ±ΠΎ Π·Π° ΡΡΠ΅Ρ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ Π²ΠΎΠ·Π±ΡΠ΄ΠΈΠΌΠΎΡΡΠΈ Π½Π΅ΠΉΡΠΎΠ½ΠΎΠ². ΠΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ Π»ΡΠ±ΠΎΠ³ΠΎ ΠΈΠ· ΡΡΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ Π²Π»ΠΈΡΠ΅Ρ Π½Π° ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΠ°ΠΌΡΡΡ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ (Disterhoft et al., 2004; Giese et al., 1998). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠΎΠ»Π΅Π·Π½Ρ Π΄Π»Ρ Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡΠ±ΠΎΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π»Π΅ΠΆΠ°ΡΠΈΡ Π² ΠΎΡΠ½ΠΎΠ²Π΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΠ°ΠΌΡΡΠΈ ΠΏΡΠΈ ΡΡΠ°ΡΠ΅Π½ΠΈΠΈ.
Π¦Π΅Π»ΠΈ ΠΈ Π·Π°Π΄Π°ΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΡΠ°ΡΠ΅Π½ΠΈΡ Π² ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ΅ in vitro, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌΠΈ. ΠΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠ΅ Π·Π°Π΄Π°ΡΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠΎΡΠ»ΠΈ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ:
1. ΠΠ΄Π°ΠΏΡΠΈΡΠΎΠ²Π°ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΡ ΠΏΠ΅ΡΠ΅ΠΆΠΈΠ²Π°ΡΡΠΈΡ ΡΡΠ΅Π·ΠΎΠ² Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ° Π΄Π»Ρ ΡΠ°Π±ΠΎΡΡ ΡΠΎ ΡΡΠ°ΡΡΠΌΠΈ ΠΆΠΈΠ²ΠΎΡΠ½ΡΠΌΠΈ.
2. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΠ‘Π ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΡΡΠΈΠΌΡΠ»ΡΡΠΈΠΈ ΠΈ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ Π°Π³Π΅Π½ΡΠΎΠ².
3. ΠΠΏΠΈΡΠ°ΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΠ‘Π Ρ ΡΡΠ°ΡΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ ΠΈ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ.
4. Π‘ΡΠ°Π²Π½ΠΈΡΡ Π£ΠΠ‘Π‘ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΠΠ‘Π Ρ ΠΌΠΎΠ»ΠΎΠ΄ΡΡ ΠΈ ΡΡΠ°ΡΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ ΠΈ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π±Π»ΠΎΠΊΠ°ΡΠΎΡΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΠ΅Π²ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² Π½Π° Π£ΠΠ‘Π‘ ΠΈ Π«ΠΠΠΠ·Π°Π²ΠΈΡΠΈΠΌΡΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΠΠ‘Π.
5. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌΠΈ ΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Ρ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ .
6. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΠ»Ρ ΠΠ‘Π ΠΈ ΠΠ‘Π Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ.
ΠΠ°ΡΡΠ½Π°Ρ Π½ΠΎΠ²ΠΈΠ·Π½Π° ΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ Π±ΡΠ»ΠΈ ΠΎΠΏΠΈΡΠ°Π½Ρ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π²ΠΎΠ·Π±ΡΠ΄ΠΈΠΌΠΎΡΡΠΈ Π½Π΅ΠΉΡΠΎΠ½ΠΎΠ². ΠΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΡΠΎΡ ΠΏΡΠΎΡΠ΅ΡΡ, ΠΎΠΏΠΎΡΡΠ΅Π΄ΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ΅ΡΠ΅Π· ΠΠ‘Π Π½Π°ΡΡΡΠ΅Π½ Ρ ΡΡΠ°ΡΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ . ΠΡΠ»Π° ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΠΏΡΡΠΌΠ°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΎΠ²Π½Π΅ΠΌ ΡΠΠΠ€ Π² Π½Π΅ΠΉΡΠΎΠ½Π΅ ΠΈ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ΠΎΠΉ ΠΠ‘Π. ΠΠΏΠ΅ΡΠ²ΡΠ΅ Π±ΡΠ»Π° ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ Ρ ΡΡΠ°ΡΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ Π°Π³Π΅Π½ΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ²ΡΡΠ°ΡΡ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠΠΠ€ Π² Π½Π΅ΠΉΡΠΎΠ½Π΅. ΠΡΠΎ Π΄Π°Π΅Ρ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎ Π±ΠΈΠΎΡ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ , ΠΊΠΎΡΠΎΡΡΠ΅ Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½Ρ Π² ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ ΠΠ‘Π, Π° ΡΠ°ΠΊΠΆΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² Π΄Π»Ρ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΏΠ°ΠΌΡΡΠΈ Π² ΠΏΠΎΠΆΠΈΠ»ΠΎΠΌ Π²ΠΎΠ·ΡΠ°ΡΡΠ΅.
ΠΠ°Π½Π½ΡΠ΅, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Π£ΠΠ‘Π‘ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ° Ρ ΠΌΠΎΠ»ΠΎΠ΄ΡΡ ΠΈ ΡΡΠ°ΡΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ ΠΏΠΎΠ΄ΡΠ΅ΡΠΊΠΈΠ²Π°ΡΡ ΡΠΎΠ»Ρ ΠΊΠ°Π»ΡΡΠΈΡ ΠΈ ΠΊΠ°Π»ΡΡΠΈΠ΅Π²ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΏΡΠΈ ΡΡΠ°ΡΠ΅Π½ΠΈΠΈ. ΠΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π±Π»ΠΎΠΊΠ°ΡΠΎΡΡ ΠΊΠ°Π»ΡΡΠΈΠ΅Π²ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΏΠΎΠ΄Π°Π²Π»ΡΡΡ Π£ΠΠ‘Π‘ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΠΠ‘Π, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ Ρ ΡΡΠ°ΡΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ , ΡΡΠΎ Π΄Π΅Π»Π°Π΅Ρ ΡΡΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ Π΄Π»Ρ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ ΡΡΠ°ΡΠ΅Π½ΠΈΡ.
ΠΠΏΠ΅ΡΠ²ΡΠ΅ Π±ΡΠ»ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ, ΡΡΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΎΠ·Π±ΡΠ΄ΠΈΠΌΠΎΡΡΠΈ Π½Π΅ΠΉΡΠΎΠ½ΠΎΠ², Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΠ‘Π ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Ρ ΠΌΡΡΠ΅ΠΉ. ΠΠ°Π»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ Π±ΡΠ»Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° ΡΠΎΠ»Ρ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΌ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠΈΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ²: ΠΠ‘Π ΠΈ ΠΠ‘Π. ΠΠ·ΡΡΠ°Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π°Π½Π½ΡΡ Ρ ΠΊΠ°ΠΆΠ΄ΡΠΌ Π΄Π½Π΅ΠΌ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ Π² Π²ΠΎΠ΄Π½ΠΎΠΌ Π»Π°Π±ΠΈΡΠΈΠ½ΡΠ΅ ΠΠΎΡΡΠΈΡΠ°, Π±ΡΠ»ΠΎ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΠ‘Π ΠΈ ΠΠ‘Π ΡΠ²Π»ΡΡΡΡΡ Π΄Π²ΡΠΌΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΠΌΠΈ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ°ΠΌΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ. ΠΡΠΎ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅Ρ Π½ΠΎΠ²ΡΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΠ°ΠΌΡΡΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ Π΅ΡΠ΅ Π½Π΅ Π±ΡΠ»ΠΈ ΠΎΠΏΠΈΡΠ°Π½Ρ Π² Π½Π°ΡΡΠ½ΠΎΠΉ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅.
2. ΠΠ±Π·ΠΎΡ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ.
ΠΡΠ²ΠΎΠ΄Ρ.
1) Π£ ΡΡΠ°ΡΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΠ‘Π ΠΈ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΉΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ Π²ΠΎΠ·Π±ΡΠ΄ΠΈΠΌΠΎΡΡΠΈ. ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΎΠ·Π±ΡΠ΄ΠΈΠΌΠΎΡΡΠΈ Π½Π΅ΠΉΡΠΎΠ½ΠΎΠ² ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΠ°ΠΌΡΡΠΈ.
2) ΠΠ‘Π ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΏΠΎΡΡΠ΅Π΄ΠΎΠ²Π°ΡΡ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π²ΠΎΠ·Π±ΡΠ΄ΠΈΠΌΠΎΡΡΠΈ Π½Π΅ΠΉΡΠΎΠ½ΠΎΠ². ΠΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ° ΡΠΎΡΡΠΎΠ΄ΠΈΠ΅ΡΡΠ΅ΡΠ°Π·Ρ 4, ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΡΡΠ΅Π³ΠΎ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠΠΠ€ Π² ΠΊΠ»Π΅ΡΠΊΠ΅, ΡΠ»ΡΠΆΠΈΡ Π·Π°ΡΠ²ΠΎΡΠ½ΡΠΌ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠΌ ΡΡΠΈΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ.
3) ΠΡΠΎΡΠ΅ΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ Π²ΠΎΠ·Π±ΡΠ΄ΠΈΠΌΠΎΡΡΠΈ Π½Π΅ΠΉΡΠΎΠ½ΠΎΠ² Π½Π°ΡΡΡΠ΅Π½ Ρ ΡΡΠ°ΡΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ . ΠΡΠΎ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡΠΎΠ²Π°ΡΡ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±Π»ΠΎΠΊΠ°Π΄Ρ ΡΠΎΡΡΠΎΠ΄ΠΈΠ΅ΡΡΠ΅ΡΠ°Π·Ρ 4 ΡΠΎΠ»ΠΈΠΏΡΠ°ΠΌΠΎΠΌ.
4) ΠΡΠΈ ΡΡΠ°ΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ VDCC ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ° ΠΠ‘Π, ΠΊΠΎΡΠΎΡΡΠΉ Π·Π°ΠΌΠ΅ΡΠ°Π΅Ρ NMDA Π·Π°Π²ΠΈΡΠΈΠΌΡΡ ΠΠ‘Π. ΠΡΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ Π±ΠΎΠ³ΡΡ Π±ΡΡΡ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Ρ Π±Π»ΠΎΠΊΠ°ΡΠΎΡΠ°ΠΌΠΈ VDCC ΠΊΠ°Π½Π°Π»ΠΎΠ² (Π½Π΅ΡΠ΅Π΄Π΅ΠΏΠΈΠ½).
5) ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΠ‘Π Ρ ΠΌΠΎΠ»ΠΎΠ΄ΡΡ ΠΌΡΡΠ΅ΠΉ Π»ΠΈΠ½ΠΈΠΈ DBA Π±ΡΠ»Π° Π²ΡΡΠ΅, ΡΠ΅ΠΌ Ρ C57BL6 ΠΌΡΡΠ΅ΠΉ, ΡΡΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°Π»ΠΎ ΠΈΡ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΊ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ. ΠΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ ΡΡΠΎ ΠΌΠΎΠ»ΠΎΠ΄ΡΠ΅ DBA ΠΌΡΡΠΈ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½Ρ ΠΊΠ°ΠΊ ΠΌΠΎΠ΄Π΅Π»Ρ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ Π°ΡΠΏΠ΅ΠΊΡΠΎΠ² ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΠ°ΠΌΡΡΠΈ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ ΡΠΎ ΡΡΠ°ΡΠ΅Π½ΠΈΠ΅ΠΌ.
6) ΠΡΡ ΠΎΠ΄Ρ ΠΈΠ· Π½Π°ΡΠΈΡ Π΄Π°Π½Π½ΡΡ , ΠΠ‘Π, ΠΈ ΠΠ‘Π ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ Π΄Π²Π° Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΡ /ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ Π½Π΅ΠΉΡΠΎΠ½Π°Π»ΡΠ½ΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° ΠΏΠ°ΠΌΡΡΠΈ, ΠΏΡΠΈΡΠ΅ΠΌ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΉΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ Π²ΠΎΠ·Π±ΡΠ΄ΠΈΠΌΠΎΡΡΠΈ (ΠΠ‘Π) ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΠΌ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌ ΡΠΈΠ½Π°ΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ²ΡΠ·ΠΈ (ΠΠ‘Π).
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡ ΠΊ ΡΠ΅Π»ΠΎΠΌΡ ΡΡΠ΄Ρ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ, ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π½ΠΎΠ²ΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΠ°ΠΌΡΡΠΈ ΠΏΡΠΈ ΡΡΠ°ΡΠ΅Π½ΠΈΠΈ.
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Abdulla F.A., Abu-Bakra M.A.J., Calaminici M.R., Stephenson J.D., Sinden J.D. (1995) Importance of forebrain cholinergic and GABAergic systems to the aged-related deficits in water maze performance of rats. Neurobiol. Aging 16:41−52.
- Abraham W.C., Mason S.E., Demmer J., Williams J.M., Richardson C.L., Tate W.P., Lawlor P.A., Dragunow M. (1993) Correlation between immediate-early genes induction and the persistence of long-term potentiation. Neuroscience 56: 717−727.
- Aitken D.H., Meaney M.J. (1989) Temporally graded, age-related impairments in spatial memory in the rat. Neurobiol. Aging 10: 273−276.
- Amaral D.G., Witter M.P. (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. J. Neurosci. 31(3): 571−591.
- Andersen P. (1963) Interhippocampal impulses. 1. Basal dendritic activation of CA1 neurons. Acta physiol. Scand. 48: 178−208.
- Andersen P., Eccles J.C., Loyning Y. (1963) Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses. Nature 198: 540−542.
- Andersen P., Eccles J.C., Loyning Y. (1964a) Location of postsynaptic inhibitory synapses on hippocampal pyramids. J. Neurophysiol. 27: 592−607.
- Andersen P., Eccles J.C., Loyning Y. (1964b) Pathway of postsynaptic inhibition in the hippocampus. J. Neurophysiol. 27: 608−619.
- Andersen P., Holmquist B., Voorholve P.E. (1968) Excitatory synapses on hippocampal apical dendrites activated by enthorinal stimulation. Acta physiol. Scand. 66(4): 461−473.
- Andersen P., Bliss T.V., Skrede K.K. (1971) Lamellar organization of hippocampal excitatory pathways. Exp. Brain Res. 13: 222−238.
- Andrade R., Nicoll R.A. (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol. 394: 99 124.
- Anikszejn L., Ben-Ari Y. (1991) Novel form of long-term potentiation produced by K+ channel blocker in hippocampus. Nature. 341:67−69.
- Artola A., Singer W. (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci. 16:480−487.
- Aura J., Riekkinen M., Riekkinen P. Jr. (1998) Tetrahydroaminoacridine and D-cycloserine stimulate acquisition of water maze spatial navigation in aged rats. Eur. J. Pharmacol. 342: 15−20.
- Ayyagari P.V., Gerber M., Joseph J.A., Crews F.T. (1998) Uncoupling of muscarinic cholinergic phosphoinositide signals in senescent cerebral cortical and hippocampal membranes. Neurochem Int. 32(1): 107−15.
- Barnes C.A. (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93:74−104.
- Barnes C.A. (1988) Aging and the physiology of spatial memory. Neurobiol. Aging. 9: 563−568.
- Barnes C.A. (1990) Animal models of age-related cognitive decline. In: Boiler F., Grafman J. (Eds.), Handbook of Neuropsychology. Elsevier, Amsterdam, pp. 169−196.
- Barnes C.A. (1999) Do synaptic markers provide a window on synaptic effectiveness in the aged hippocampus? Neurobiol. Aging 20: 349−351.
- Barnes C.A. (1994) Normal aging: regionally specific changes in hippocampal synaptic transmission. Trends Neurosci. 17: 13−18.
- Barnes C.A., McNaughton B.L. (1979) Neurophysiological comparison of dendritic cable properties in adolescent, middle-aged, and senescent rats. Exp. Brain Res. 5:195 206.
- Barnes C.A., McNaughton B.L. (1980a) Physiological compensation for loss of afferent synapses in rat hippocampus granule cells during senescence. J. Physiol. (London) 309: 473−485.
- Barnes C.A., McNaughton B.L. (1980b) Spatial memory and hippocampal synaptic plasticity in middle-aged and senescent rats. In: Stein, D. (Ed.), Psychobiology of Aging: Problems and Perspectives. Elsevier, New York, pp. 253−272.
- Barnes C.A., McNaughton B.L. (1985) An age comparison of the rates of acquisition and forgetting of spatial information in relation to long-term enhancement of hippocampal synapses. Behav. Neurosci. 99:1040−1048.
- Barnes C.A., Nadel L., Honig W.K. (1980) Spatial memory deficit in senescent rats. Can. J. Psychol. 34: 29−39.
- Barnes C.A., McNaughton B.L., O’Keefe J. (1983) Loss of place specificity in hippocampal complex spike cells of senescent rat. Neurobiol. Aging 4:113−119.
- Barnes C. A, Rao G., Foster T.C., McNaughton B.L. (1992) Region-specific age effects on AMPA sensitivity: electrophysiological evidence for loss of synaptic contacts in hippocampal field CA1. Hippocampus. 2(4): 457−68.
- Barnes C.A., Rao G., Shen J. (1997a) Age-related decrease in the N-methyl-D-aspartateR-mediated excitatory postsynaptic potential in hippocampal region CA1. Neurobiol. Aging 18:445−452.
- Barnes C.A., Rao G., McNaugthon B.L. (1996) Functional integrity of NMDA-dependent LTP induction mechanisms across the lifespan of F344 rats. Learn. Mem. 3: 124−137.
- Barnes C.A., Suster M.S., Shen J., McNaughton B.L. (1997b) Multistability of cognitive maps in the hippocampus of old rats. Nature 388: 272−275.
- Barnes C.A., Meltzer J., Houston F., Orr G., McGann K., Wenk G.L. (2000a) Chronic treatment of old rats with donepezil or galantamine: effects on memory, hippocampal plasticity and nicotinic receptors. Neuroscience 99: 17−23.
- Barnes C.A., Rao G., Houston F.P. (2000b) LTP induction threshold change in old rats at the perforant path-granule cell synapse. Neurobiol. Aging 21: 613−620.
- Barnes C.A., Rao G., Orr G. (2000c) Age-related decrease in the Schaffer collateral-evoked EPSP in awake, freely behaving rats. Neural Plast. 7: 167−178.
- Barria A., Muller D., Derkach V., Griffith L.C., Soderling T.R. (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaMKlI during long-term potentiation. Science 276: 2043−2045.
- Baxter M.G., Lanthorn T.H., Frick K.M., Golski S., Wan R.Q., Olton D.S. (1994) D-Cycloserine, a novel cognitive enhancer, improves spatial memory in aged rats. Neurobiol. Aging 15: 207−213.
- Bear M.F., Abraham W.C. (1996) Long-term depression in hippocampus. Annu Rev Neurosci. 19: 437−62. Review.
- Belcadi-Abassi W., Destrade C. (1995) Post-test apamin injection suppresses a Kamin-like effect following a learning session in mice. NeuroReport 6: 437−462.
- Benke T.A., Luthi A., Isaac J.T., Collingridge G.L. (1998) Modulation of AMPA receptor unitary conduction by synaptic activity. Nature 393: 793−797.
- Benardo L.S., Prince D.A. (1982) Cholinergic excitation of mammalian hippocampal pyramidal cells. Brain Res. 249(2): 315−31.
- Bickford-Wimcr P.C., Miller J. A, Freedman R., Rose G.M. (1988) Age-related reduction in responses of rat hippocampal neurons to locally applied monoamines. Neurobiol Aging. 9(2): 173−9.
- Bienenstock E.L., Cooper L.N., Munro P.W. (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex.1. J Neurosci. 2(1): 32−48.
- Bliss T.V.P., Gardner-Medwin A.R. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetised rabbit following stimulation of the perforant path. J. Physiol. (London) 232: 357−374.
- Bliss T.V.P. Lomo T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetised rabbit following stimulus of the perforant path. J. Physiol. (London) 232: 331−356.
- Bliss T.V.P, Collingridge G.L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31−39.
- Bliss T.V.P. (2003) A journey from neocortex to hippocampus. Philos. Trans. R. Soc. Lond B Biol. Sci. 358: 621−623.
- Blitzer R.D., Wong T., Nouranifar R., Iyengar R., Landau E.M. (1995) Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron. 15: 1403−1414.
- Blitzer R.D., Connor J.H., Brown G.P., Wong T., Shenokilar S., Iyengar R., Landau E.M. (1998) Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science. 280: 1940−1942.
- Blockland A. (1996) Acetylcholine: a neurotransmitter for learning and memory? Brain Res. Rev. 21:285−300.
- Bowden S.E., Fletcher S., Loane D.J., Marrion N.V. (2001) Somatic colocalization of rat SKI and D class (Ca (v)1.2) L-type calcium channels in rat CA1 hippocampal pyramidal neurons. J Neurosci. 21(20): RC175.
- Bukanova Y., Solntseva E.L., Skrebitsky V.G. (2002) Long-term potentiation of the glutamate-activated inward current induced by 8-Br-cGMP in nerve cell.1. Dokl Biol Sci. 384:191−4.
- Burwell R.D., Gallagher M. (1993) A longitudinal study of reaction time performance in Long-Evans rats. Neurobiol. Aging 14: 57−64.
- Cajal S.R. (1955) Studies on the cerebral cortex (limbic structures). London.
- Campbell L. W, Hao S.Y., Thibault O., Blalock E.M., Landfield P.W. (1996) Aging changes in voltage-gated calcium currents in hippocampal CA1 neurons. J Neurosci. 16(19):6286−95.
- Cavus I., Teyler T.J. (1996) Two forms of long-term potentiation in area CA1 activate different signal transduction pathways. J. Physiol. (London) 76:3038−3047.
- Charpak S., Gahwiler B.H., Do K.Q., Knopfel T. (1990) Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature. 47(6295): 765−7.
- Chen C., Tonegava S. (1997) Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning and memory in mammalian brain. Annu. Rev. Neurosci. 20:157−184.
- Clayton D.A., Browning M.D. (2001) Deficits in the expression of the NR2B subunit in the hippocampus of aged Fisher 344 rats. Neurobiol Aging. 22(1): 165−8.
- Cloues R.K., Tavalin S.J., Marrion N.V. (1997) Beta-adrenergic stimulation selectively inhibits long-lasting L-type calcium channel facilitation in hippocampal pyramidal neurons. J Neurosci. 17(17): 6493−503.
- Cohen A.S., Raymond C.R., Abraham W.C. (1998) Priming of long-term potentiation induced by activation of metabotropic glutamate receptors coupled to phospholipase C. Hippocampus. 8(2): 160−70.
- Cole A.E., Nicoll RA. (1983) Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science. 221(4617): 1299−301.
- Colino A., Halliwell J.V. (1987) Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature. 328(6125): 73−7.
- Collingridge G.L., Lester R.A.J. (1989) Excitatory amino acide receptors in the vertebrate central neurvous system. Pharmacol. Rev. 40: 143−210.
- Collingridge G.L., Kehl, S.J., McLennan H. (1983a) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (London) 334: 33−46.
- Colombo P.J., Wetsel W.C., Gallagher M. (1997) Spatial memory is related to hippocampal subcellular concentrations of calcium-dependent protein kinase C isoforms in young and aged rats. Proc. Natl. Acad. Sci. USA 94: 14 195−14 199.
- Coussens C.M., Teyler T.J. (1996a) Long-term potentiation induces synaptic plasticity at nontetanized adjacent synapses. Learn. Mem. 3:106−114.
- Coussens C.M., Teyler T.J. (1996b) Protein kinase and phosphatase activity regulate the form of synaptic plasticity expressed. Synapse 24(2):97-l 03.
- Cudmore R.H., Turrigiano G.G. (2004) Long-term potentiation of intrinsic excitability in LV visual cortical neurons. J Neurophysiol 92:341−348.
- Daoudal G., Debanne D. (2003) Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn. Mem. 10: 456−465.
- Decker M.W., McGaugh J.L. (1991) The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse. 7(2): 151−68. Review.
- De Jong G.I., Buwalda B., Schuurman T., Luiten P.G. (1992) Synaptic plasticity in the dentate gyrus of aged rats is altered after chronic nimodipine application. Brain Res 596:345−348.
- Deschaux O., Bizot J.C. (1997) Effect of apamin, a selective blocker of Ca2±activated K+ channel, on habituation and passive-avoidance responses in rats. Neurosci. Lett. 222: 57−60.
- Deschaux O., Bizot J.C., Goyffron M. (1997) Apamin improves learning in an object recognition task in rats. Neurosci. Lett. 222: 159−162.
- Deupree D.L., Turner D.A., Watters C.L. (1991) Spatial performance correlates with in vitro potentiation in young and aged Fischer 344 rats. Brain Res. 554:1−9
- Deupree D.L., Bradley D.A., Turner D.A., (1993) Age-related alternations in potentiation in the CA1 region in F344 rats. Neurobiol. Aging 14: 249−258.
- Deyo R.A., Straube K.T., Disterhoft J.F. (1989) Nimodipine facilitates associative learning in aging rabbits. Science 243:809−811.
- Diana G., Domenici M.R., Loizzo A., Scotti de Carolis A., Sagratella S. (1994a) Age and strain differences in rat place cell learning and hippocampal dentate gyrus frequency potentiation. Neurosci. Lett. 171:113−116.
- Diana G., Scotti de Carolis A., Frank C., Domenici M.R., Sagratella S (1994b) Selective reduction of hippocampal dentate frequency potentiation in aged rats with impaired place learning. Brain Res. Bull. 35:107−111.
- Disterhoft J.F., Coulter D.A., Alkon D.L. (1986) Conditioning-specific membrane changes of rabbit hippocampal neurons measured in vitro. Proc Natl Acad Sci USA. 83(8): 2733−7.
- Disterhoft J.F., Moyer J.R. Jr, Thompson L.T. (1994) The calcium rationale in aging and Alzheimer’s disease. Evidence from an animal model of normal aging. Ann N Y Acad Sci. 15- 747: 382−406. Review.
- Disterhoft J. F, Thompson L.T., Moyer J.R. Jr, Mogul D.J. (1996) Calcium-dependent afterhyperpolarization and learning in young and aging hippocampus. Life Sci. 59(5−6): 413−20. Review.
- Disterhoft J.F., Wu W.W., Ohno M. (2004) Biophysical alterations of hippocampal pyramidal neurons in learning, aging and Alzheimer disease. Ageing Res. Rev. 3: 383 406.
- Douglas R.M., Goddard G.V. (1975) Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain. Res. 86: 205−215.
- Dudck S.M., Bear M.F. (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci. 13(7): 2910−8.
- Dunnct S.B., Evendcn J.L., Iversen S.D. (1988) Delay-dependent short-term memory deficits in aged rats. Psychopharmacology 96: 174−180.
- Dunnet S.B., Martel F.L., Iversen S.D. (1990) Proactive interference effects on short-term memory in rats: II. Effects in young and aged rats. Behav. Neurosci. 104: 666 670.
- Eckles-Smith K., Clayton D., Bickford P., Browning M.D. (2000) Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression. Brain Res Mol Brain Res. 78(1−2): 154−62.
- Faber E.S., Sah P. (2003) Ca2±activated K+ (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala. J Physiol 552:483 497.
- Fedorov N.B., Sergeeva O.A., Skrebitsky V.G. (1993) Priming stimulation facilitates Hebb-type plasticity in the Schaffer collateral-commissural pathways of the mouse hippocampus. Exp Brain Res. 94(2): 270−2.
- Figurov A. Boddeke H., Mueller D. (1992) Enhancement of AMPA-mediated synaptic transmission by protein phosphatase inhibitor calyculin A in rat hippocampal slices. Eur. J. Neurosci. 2: 1035−1041.
- Fischer W., Chen K.S., Gage F.H., Bjorklund A. (1991) Progressive decline in spatial learning and integrity of forebrain cholinergic neurons in rats during aging. Neurobiol. Aging 13: 9−23.
- Fleming K.M., Mogul D.J. (1997) Adenosine A3 receptors potentiate hippocampal calcium current by a PKA-dependent/PKC-independent pathway. Neuropharmacology. 36(3): 353−62.
- Fordyce D.E., Wehner J.M. (1993) Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase Π‘ activity in C57BL/6 and DBA/2 mice. Brain Res. 619(1−2): 111−9.
- Fordyce D.E., Clark V.J., Paylor R., Wehner J.M. (1995) Enhancement of hippocampally-mediated learning and protein kinase C activity by oxiracetam in learning-impaired DBA/2 mice. Brain Res. 672(1−2): 170−6.
- Foster T.C., Barnes C.A., Rao G., McNaughton B.L. (1991) Increase in perforant path quantal size in aged F-344 rats. Neurobiol. Aging. 12: 441−448.
- Foster T.C., Norris C.M. (1997) Age-associated changes in Ca(2+)-dependent processes: relation to hippocampal synaptic plasticity. Hippocampus 7:602−612.
- Foster T.C., Norris C.M. (1998) On slices, synaptosomes and dissociated neurones to study in vitro ageing physiology. Trends Neurosci. 21(7): 286−7.
- Foster T.C., Fugger H.N., Cunningham S.G. (1999) Experience-dependent enhancement of perforant path synaptic transmission: relation to hippocampal function. Submitted.
- Foster T.C., Sharrow K.M., Masse J.R., Norris C.M., Kumar A. (2001) Calcineurin links Ca2+ dysregulation with brain aging. J Neurosci. 21(11):4066−73.
- Foster T.C., Kumar A. (2002) Calcium dysregulation in the aging brain. Neuroscientist 8:297−301.
- Frankland P.W., O’Brien C., Ohno M., Kirkwood A., Silva A.J. (2001) Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature. 411:309−313.
- Frick K.M., Baxter M.G., Markowska A.L., Olton D.S., Price D.L. (1995) Age-related spatial reference and working memory deficits assessed in the water maze. Neurobiol. Aging 16:149−160.
- Frick K.M., Stillner E.T., Berger-Sweeney J. (2000) Mice are not little rats: species differences in a one-day water maze task. Neuroreport. 11(16): 3461−5.
- Frick A., Johnston D. (2005) Plasticity of dendritic excitability. J. Neurobiol. 64: 100−115.
- Fugger H.N., Lichtenvoort J.M., Foster T.C. (1997) Enthorhinal cortex lesions as a model of age-related changes in hippocampal function. Psychobiology 25: 277−285.
- Gage F.H., Bjorklund A., Stenevi U., Dunnett S.B., Kelly P.A.T. (1984a) Intrahippocampal spatial grafts ameliorate learning impairments in aged rats. Science. 225:533−536.
- Gage F.H., Dunnett S.B., Bjorklund A. (1984b) Spatial learning and motor deficits in aged rats. Neurobiol. Aging. 5:43−48.
- Gage F.H., Kelly P.A.T., Bjorklund A. (1984c) Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats. J. Neurosci. 4:2856−2865.
- Gage F.H., Dunnett S.B., Bjorklund A. (1989) Age-related impairments in spatial memory are independent of those in sensory-motor skills. Neurobiol. Aging. 10:347−352.
- Gallagher M., Colombo P.J. (1995) Aging: the cholinergic hypothesis of cognitive decline. Curr. Opin. Neurobiol. 5:161−168.
- Gallagher M., Pelleymounter M.A. (1988) Spatial learning deficits in old rats: a model for memory decline in the aged. Neurobiol. Aging. 9:363−369.
- Gallagher M., Bostock E., King R. (1985) Effects of opiate antagonists on spatial memory in young and aged rats. Behav. Neural Biol. 44:374−385.
- Gallagher M., Burwell R.D., Kodsi M.H., McKinney M., Southerland S., Vella-Rountree L., Lewis M.H. (1990) Markers for biogenic amines in the aged rat brain: relationship to decline in spatial learning ability. Neurobiol. Aging. 11:507−514.
- Gallagher M., Burwell R.D., Burchinal M. (1993) Severity of spatial learning impairment in aging: development of a learning index for performance in Morris Water Maze. Behav. Neurosci. 107(4): 618−626.
- Geinisman Y. (1979) Loss of axosomatic synapses in the dentate gyrus of aged rats. Brain Res. 168:485−492.
- Geinisman Y., de Toledo-Morrell L., Morrell F. (1986) Aged rats need a preserved complement of perforated axospinous synapses per hippocampal neuron to maintain good spatial memory. Brain Res. 398(2): 266−75.
- Geinisman Y., de Toledo-Morrell L., Morrell F., Heller R.E. (1995) Hippocampal markers of age-related memory dysfunction: behavioral, electrophysiological and morphological perspectives. Prog. Neurobiol. 45: 223−252.
- Gerber U., Gahwiler B.H. (1994) Modulation of potassium conductances by metabotropic glutamate receptors in the hippocampus. Ren Physiol Biochem. (3−4): 12 931.
- Giese K. P, Fedorov N.B., Filipkowsli R.K., Silva A.J. (1998) Autophosphorylation at Thr286 of the alpha-calcium-calmodulin kinase II in LTP and learning. Science 279: 870−873.
- Giese K. P, Peters M., Vernon J. (2001) Modulation of excitability as a learning and memory mechanism: a molecular genetic perspective. Physiol. Beh. 73: 803−810.
- Gold P.E., McGaugh J.L., Hankins L.L., Rose R.P., Vasques B.J. (1981) Age-dependent changes in retention in rats. Exp. Aging Res. 8: 53−58.
- Green J.D. (1960) The hippocampus. In: Handbook of physiology1.Neurophysiology. Ed. Fiels, Magoun and Hall. 2. Baltimore, Williams and Wilkins, 1373−1389.
- Green J.D., Maxwell D.S. (1961) Hippocampal electrical activity: 1. Morphological aspects. EEG clin. Neurophysiol., 13: 837−846.
- Grover L. M (1998) Evidence for postsynaptic induction and expression ofNMDA receptor independent LTP. J Neurophysiol. 79(3): 1167−82.
- Grover L.M., Teyler T.J. (1990) Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347:447−479.
- Grover L.M., Teyler T.J. (1992) N-Methyl-D-aspartate receptor-independent long-term potentiation in area CA1 of rat hippocampus: input-specific induction and preclusion in a non-tetanized pathway. Neuroscience, 49:7−11.
- Grover L.M., Teyler T.J. (1994) Activation ofNMDA receptors in hippocampal area CA1 by low and high frequency orthodromic stimulation and their contribution to induction of long-term potentiation. Synapse. 16:66−75.
- Gustafsson B., Wigstrom H. (1981) Shape of frequency-current curves in CAI pyramidal cells in the hippocampus. Brain Res. 223(2): 417−21.
- Gustafsson B., Wigstrom W.C. (1988) Physiological mechanisms underlying long-term potentiation. Trends Neurosci. 11: 156−162.
- Haas H.L., Konnerth A. (1983) Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature. 302(5907): 432−4.
- Haas H.L., Greene R.W. (1984) Adenosine enhances afterhyperpolarization and accommodation in hippocampal pyramidal cells. Pflugers Arch. 402(3): 244−7.
- Hayashi Y., Shi S.H., Esteban J.A. Piccini A., Poncer J.C., Malinow R. (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluRl and PDZ domain interaction. Science 287: 2262−2267.
- Hebb D.O. (1949) The organization of behavior. Wiley, New York.
- Hell J.W., Yokoyama C.T., Breeze L.J., Chavkin C., Catterall W.A. (1995) Phosphorylation of presynaptic and postsynaptic calcium channels by cAMP-dependent protein kinase in hippocampal neurons. EMBO J. 14(13):3036−44.
- Heyen A.J., Quinlan E.M. Bae D.C., Bear M.F. (2000) Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28: 527−536.
- Hinton G.E., Anderson J.A. (1981) Parallel Models of Associative Memory. Lawrence Erlbaum Associates, Hillsdale.
- Hjorth-Simonsen A.(1972) Projection of the lateral part of the enthorinal area to the hippocampus and fascia dentate. J. Comp. Neurol., 146(2): 219−232.
- Hjorth-Simonsen A. (1976) Laminar distribution and topical organization of intrinsic connections in the hippocampal region. Exp. Brain Res., Suppl. 1: 171−176.
- Hopfield J.J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79: 2554−2558.
- Hotson J.R., Prince D.A. (1980) A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. J Neurophysiol. 43(2): 409−19.
- Hrabetova S., Sacktor T.C. (1996) Bidirectional regulation of protein kinase M zeta in the maintenance of long-term potentiation and long-term depression. J Neurosci. 16(17):5324−33.
- Huerta P.T., Lisman J.E. (1995) Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron. 15(5): 1053−63.
- Huang Y.Y., Kandell E.R. (1994) Recruitment of long-lasting and protein kinase-A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn Mem. 1: 74−82.
- Isaac J.T.R., Nicoll R.A., Malenka R.C. (1995) Evidence for silent synapses: implication for the expression of LTP. Neuron 15:427−434.
- Ingram D.K., Spangler E.L., Iijima S., Kuo H., Bresnahan E.L., Greig N.H., London E.D. (1994) New pharmacological strategies for cognitive enhancement using a rat model of age-related memory impairment. Ann. N.Y. Acad. Sci. 717: 16−32.
- Jerusalinsky D., Kornisiuk E., Izquierdo I. (1997) Cholinergic neurotransmission and synaptic plasticity concerning memory processing. Neurochemistry Res. 22:507−515.
- Jones M.W., Peckham H.M., Errington M.L., Bliss T.V., Routtenberg A. (2001) Synaptic plasticity in the hippocampus of awake C57BL/6 and DBA/2 mice: interstrain difference and parallels with behavior. Hippocampus. 11(4): 391−396.
- Johnston D., Williams S., Jaffe D., Gray R. (1992) NMDA-receptor independent long-term potentiation. Annu. Rev. Physiol. 54: 489−505.
- Katsuki H., Izumi Y., Zorumski C.F. (1997) Removal of extracellular calcium after conditioning stimulation disrupts long-term potentiation in the CA1 region of rat hippocampal slices. Neuroscience. 76(4): 1113−9.
- Khachaturian Z.S. (1984) Towards theories of brain aging. In: Kay, D., Burrows, G.D. (Eds.), Handbook of Studies on Psychiatry and Old Age. Elsevier, Amsterdam, pp. 7−30.
- Khachaturian Z.S. (1989) The role of calcium regulation in brain aging: reexamination of a hypothesis. Aging (Milano). 1(1): 17−34. Review. Erratum in: Aging (Milano) 1(2):II.
- Khachaturian Z.S. (1994) Calcium hypothesis of Alzheimer’s disease and brain aging. Ann N Y Acad Sci. 747: 1−11. Review.
- Kemp J. A., Marshall G.R., Woodruff G.N. (1986) Quantitative evaluation of the potencies of GABA-receptor agonists and antagonists using the rat hippocampal slice preparation. Br. J. Pharmac., 87, 677−684.
- Kohonen T. (1978) Associative Memory: A System-Theoretic Approach. SpringerVerlag, New York.
- Kowalska M., Disterhoft J.F. (1994) Relation of nimodipine dose and serum concentration to learning enhancement in aging rabbits. Exp Neurol. 127(1): 159−66.
- Krause M., Pedarzani P. (2000) A protein phosphatase is involved in the cholinergic suppression of the Ca2±activated K+ current sI(AHP) in hippocampal pyramidal neurons. Neuropharmacology 39: 1274−1293.
- Kronforst-Collins M.A., Moriearty P.L., Schmidt B., Disterhoft J.F. (1997) Metrifonate improves associative learning and retention in aging rabbits. Behav Neurosci. 111(5): 1031−40.
- Lancaster B., Adams P.R. (1986) Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J Neurophysiol. 55(6): 1268−82.
- Landfield P.W. (1988) Hippocampal neurobiological mechanisms of age-related memory dysfunction. Neurobiol. Aging 9: 571−579.
- Landfield P.W. (1994) Increased hippocampal Ca2+ channel activity in brain aging and dementia. Hormonal and pharmacologic modulation. Ann N Y Acad Sci. 747: 351 -64. Review.
- Landfield P.W. (1996) Aging-related increase in hippocampal calcium channels. Life Sci 59:399−404.
- Landfield P.W., Lynch G. (1977) Impaired monosynaptic potentiation in vitro hippocampal slices from of aged memory-deficient rats. J. Gerontol. 150: 85−101.
- Landfield P.W., Pitler T.A. (1984) Prolonged Ca2±dependent afterhyperpolarizations in hippocampal neurons of aged rats. Science. 226(4678): 108 992.
- Landfield P.W., McGaugh J.L., Lynch G. (1978) Imapaired synaptic potentiation process in the hippocampus of aged, memory-deficient rats. Brain. Res. 32: 523−533.
- Lee H.K., Barbaroise M., Kameyama K., Bear M.F., Huganir R.L. (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405: 955−959.
- Levy W.B., Steward O. (1979) Synapses as associative memory elements in the hippocampal formation. Brain Res. 175: 233−245.
- Li C., Lu J., Wu C., Duan S., Poo M. (2004a) Bidirectional modification of presynaptic neuronal excitability accompanying spike timing-dependent synaptic plasticity. Neuron 41:257−268.
- Li C., Lu J., Wu C., Duan S., Poo M. (2004b) Bidirectional modification of presynaptic neuronal excitability accompanying spike timing-dependent synaptic plasticity. Neuron 41:257−268.
- Liao D., Hessler N.A., Malinow R. (1995) Activation of postsynaptically silent synapses during LTP in CA1 region of hippocampal slice. Nature 375: 400−404.
- Lieberman D.L., Mody I. (1994) Regulation ofNMDA channel function by endogenous Ca2±dependent phosphatase. Nature 369: 235−239.
- Linden D.J., Connors J.A. (1995) Ling-term synaptic depression. Annu. Rev. Neurosci. 18:319−358.
- Linder M.D., Schallert T. (1988) Aging and atropine effects on spatial navigation in the Morris water task. Behav. Neurosci. 102: 621−634.
- Lisman J. (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA. 86(23):9574−8.
- Lisman J., Schulman H., Cline H. (2002) The molecular basis of CaMKII function in synaptic and behavioral memory. Nat. Rev. Neurosci. 3: 175−190.
- Lledo P.M., Hjelmstad G.O., Mukheiji S., Soderling T.R., Malenka R.C., Nicoll R.A. (1995) Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci USA. 92(24): 111 759.
- Lorente de No (1934) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol. Rev., 61:829−913.
- Lovinger D.M., Routtenberg A. (1987) Protein kinase C stimulators produce a synapse specific increase in the endurance of long-term potentiation. Brain Res. 436: 177−183.
- Luscher C., Frerking M. (2001) Restless AMPA reveptors: implications for synaptic transmission and plasticity. Trends Neurosci. 24: 665−670.
- Lynch G., Baudry M. (1984) The biochemistry of memory: a new and specific hypothesis. Science 224: 1057−1063.
- Lynch G., Voss K.L. (1994) Membraine arachidonic acid concentration correlates with age and induction of long-term potentiation in the dentate gyrus of the rat. Eur. J. Neurosci. 6: 1008−1014.
- Madison D.V., Nicoll R.A. (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature. 299(5884): 636−8.
- Magee J.C. (2002) Synaptic and non-synaptic mechanisms for plasticity and learning. In: Proceedings of the Winter Conference on Neural Plasticity. Moorea, French Polynesia.
- Malenka R.C., Kauer J.A., Perkel D.J., Mauk M.D., Kelly P.T., Nicoll R.A., Waxham M.N. (1989) An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature. 340(6234): 554−7.
- Malenka R.C., Nicoll R.A. (1999) Long-term potentiation a decade of progress? Science 285: 1870−1874.
- Malinow R., Madison D.V., Tsien R.W. (1988) Persistent protein kinase activity underlying long-term potentiation. Nature. 335 (6193): 820−4.
- Malinow R., Schulman H., Tsien R.W. (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245: 862−865.
- Malinow R., Malenka R.C. (2002) AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25: 103−126.
- Marby T.R., McCarty R., Gold P.E., Foster T.C. (1996) Age and stress-history effects on spatial performance in a swim task in Fischer 344 rats. Neurobiol. Learn. Mem. 66: 1−10.
- Markowska A.L., Stone W.S., Ingram D.K., Reynolds J., Gold P.E., Conti L.H., Pontecorvo M.J., Wenk J.L., Olton D.S. (1989) Individual differences in aging: behavioral and neurobiological correlates. Neurobiol. Aging 10: 31−43.
- Marr D. (1971) Simple memory: a theory for archicortex. Philos. Trans. R. Soc. B: Biol. Sci. 262:23−81.
- Marrion N.V., Tavalin S.J. (1998) Selective activation of Ca2±activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature. 395(6705): 900−5.
- Mayford M., Wang J., Kandel E.R., O’Dell T.J. (1995) CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell. 81(6): 891−904.
- Martinez J.L., Rigter H. (1983) Assessment of retention capacities in old rats. Behav. Neural Biol. 39: 181−191.
- McCann S.M. (1997) The nitric oxide hypothesis of brain aging. Exp Gerontol. 32(4−5): 431−40. Review
- McClelland J.L., Rumelhart D.E. (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge.
- McGahon B.M., Clements M.P., Lynch G. (1997) The ability of aged rats to sustain long-term potentiation is restored when the age-related decrease in membrane arachidonic acid concentration is reversed. Neuroscience. 81: 9−16.
- McGaugh J. L, (1989) Involvement of hormonal and neuromodulatory systems in the regulation of memory storage. Annu. Rev. Neurosci. 12:255−287.
- Mcllwain H. (1961) Techniques in tissue metabolism. 5. Chopping and slicing tissue samples. Biochem. J. 27: 213−218.
- Mcllwain H., Batchelard H.S. (1976) Biochemistry and the central nervous system. 4th edition. Churchill Livingston, London.
- McNaughton B.L., Barnes C.A. (1977) Physiological identification and analysis of DG cell responses to stimulation of the medial and lateral perforant pathways in the rat. Comparativ. Neur. 175(4): 439−451.
- McNaughton B.L., Douglas R.M., Goddard G.V. (1978) Synaptic enhancement in fascia dentate: cooperativity among coactive afferents. Brain Res. 157: 277−293.
- McNaughton B.L., Morris R.V.M. (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 10: 408−415.
- Monagle-Strucko K, Fanelli RJ (1993) Enhanced acquisition of reversal training in a spatial learning task in rats treated with chronic nimodipine. Pharmacol Biochem Behav 44:827−835.
- Moore C.I., Browning M.D., Rose G.M. (1993) Hippocampal plasticity induced by prime burst, but not long-term potentiation, stimulation is impaired in area CA1 of aged Fischer 344 rats. Hippocampus 3: 57−66.
- Morgan S.L., Teyler T.J. (1999) Epileptic-like activity induces multiple forms of plasticity in hippocampal area CA1. Brain Res. 917(1): 90−6.
- Morgan S.L., Teyler T.J. (2001 a) Electrical stimuli patterned after the theta-rhythm induce multiple forms of LTP. J Neurophysiol. 86(3): 1289−96.
- Morgan S.L., Teyler T.J. (2001b) VDCCs and NMDARs underlie two forms of LTP in CA1 hippocampus in vivo. J Neurophysiol. 82(2): 736−40.
- Morgan S.L., Coussens C.M., Teyler T.J. (2001) Depotentiation of vdccLTP requires NMDAR activation. Neurobiol Learn Mem. 76(3): 229−38.
- Morris R.G.M. (1981) Spatial localization does not require the presence of local cues. Learn. Motiv. 12:239−261.
- Morris R.G.M. (1989) Synaptic plasticity and learning: selective impairment of learning in rats and blockade of long-term potentiation in vivo by the 7V-methyl-D-aspartate receptor antagonist D-AP5. J. Neurosci. 2: 1016−1028.
- Morris R.G., Frey U. (1997) Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience? Philos. Trans. R. Soc. London, Ser. B Biol. Sci. 352: 1489−1503.
- Moyer J.R. Jr, Thompson L.T., Black J.P., Disterhoft J.F. (1992) Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age- and concentration-dependent manner. J Neurophysiol. 68(6):2100−9.
- Moyer J.R. Jr, Disterhoft J.F. (1994) Nimodipine decreases calcium action potentials in rabbit hippocampal CA1 neurons in an age-dependent and concentration-dependent manner. Hippocampus. 4(1):11−7.
- Moyer J.R. Jr, Thompson L.T., Disterhoft J.F. (1996) Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner.
- J Neurosci. 16(17): 5536−46.
- Moyer J.R. Jr, Power J.M., Thompson L.T., Disterhoft J.F. (2000) Increased excitability of aged rabbit CA1 neurons after trace eyeblink conditioning. J Neurosci. 20(14): 5476−82.
- Mulkey R.M., Malenka R.C. (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9: 967−975.
- Mulkey R.M., Herron C.E., Malenka R.C. (1993) An essential role for protein phosphatases in hippocampal long-term depression. Science. 261(5124): 1051−5.
- Mueller W.E., Gispen W.H. (1996) The current status of the calcium hypothesis of brain aging and Alzheimer’s disease. Life Sci. 59: 357−510.
- Murphy G.G., Fedorov N.B., Giese K.P. Ohno M., Friedman E., Chen R., Silva A.J. (2004) Increased neuronal excitability, synaptic plasticity, and learning in aged Kvbettal.l knockout mice. Curr. Biol. 14: 1907−1915.
- Nicoll R (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science. 241(4865): 545−51. Review.
- Nicoll R., Malenka R.C., Kauer J.A. (1990) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol. Rev. 70(2): 513−565.
- Norris C.M., Korol D.L., Foster T.C. (1996) Increased susceptibility to induction of long-term depression and long-term potentiation reversal during aging. J. Neurosci. 16: 5382−5392.
- Norris C.M., Halpain S., Foster T.C. (1998) Reversal of age-related alterations in synaptic plasticity by blockade of L-type Ca2+ channels. J. Neurosci. 18: 3171−3179.
- Norris C.M., Foster T.C. (1999) MK-801 improves retention in aged rats: implications for altered neural plasticity in age-related memory deficits. Neurobiol. Learn. Mem. 71: 194−206. .
- O’Dell T.J., Kandel E.R., Grant S.G. (1991) Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 353: 558−560.
- Oh M.M., Power J.M., Thompson L.T., Moriearty P.L., Disterhoft J.F. (1999) Metrifonate increases neuronal excitability in CA1 pyramidal neurons from both young and aging rabbit hippocampus. J Neurosci. 19(5): 1814−23.
- Oh M.M., Gamelli A.E., Wu W.W., Sametsky E., Disterhoft J.F. (2001) Morris watermaze learning enhances neuronal excitability of CA1 hippocampal pyramidal neurons in rats. Soc. Neurosci. Abstr. 27: 921.1.
- Ohl F., Roedel A., Binder E., Holsboer F. (2003) Impact of high and low anxiety on cognitive performance in a modified hole board test in C57BL/6 and DBA/2 mice.
- Eur J Neurosci. 17(1): 128−36.
- Ohno Y., Ishibashi T., Okada K., Ishida K., Nakamura M. (2005) Trace eyeblink conditioning requires the hippocampus but not autophosphorilation of {alpha} CaMII in mice. Learn. Mem. 12:211−215.
- Ohno M., Tseng W., Silva A.J., Disterhoft J.F. (2005) Trace eyeblink conditioning requires the hippocampus but not autophosphorylation of {alpha}CaMKII in mice. Learn. Mem. 12:211−215.
- Oler J.A., Markus E.J. (1998) Age-related deficits non the radial maze and in fear conditioning: hippocampal processing and consolidation. Hippocampus 8: 402−415.
- Oliver M.W., Kessler M., Larson J., Schottler F., Lynch G. (1990) Glycine site associated with the NMDA receptor modulates long-term potentiation. Synapse 5:265 270.
- Otmakhova N.A., Lisman J.E. (1998) D1/D5 dopamine receptors inhibit depotentiation at CA1 synapses via cAMP-dependent mechanism. J Neurosci. 18(4): 1270−9.
- Ouanounou A., Zhang L., Charlton M.P., Carlen P.L. (1999) Differential modulation of synaptic transmission by calcium chelators in young and aged hippocampal CA1 neurons: evidence for altered calcium homeostasis in aging. J Neurosci. 19(3): 906−15.
- Pascale A., Nogues X., Marighetto A., Micheau J., Battaini F., Govoni S., Jaffard R. (1998) Cytosolic hippocampal PKC and aging: correlation with discrimination performance. Neuroreport. 9(4): 725−9.
- Pedarzani P., Storm J.F. (1993) PKA mediates the effects of monoamine transmitters on the K+ current underlying the slow spike frequency adaptation in hippocampal neurons. Neuron. 11(6): 1023−35.
- Pedarzani P., Storm J.F. (1995) Dopamine modulates the slow Ca(2+)-activated K+ current IAHP via cyclic AMP-dependent protein kinase in hippocampal neurons.
- J Neurophysiol. 74(6): 2749−53.
- Pedarzani P., Storm J.F. (1996) Interaction between alpha- and beta-adrenergic receptor agonists modulating the slow Ca(2+)-activated K+ current IAHP in hippocampal neurons. Eur J Neurosci. 8(10): 2098−110.
- Pedarzani P., Krause M., Haug T., Storm J.F., Stuhmer W. (1998) Modulation of the Ca2±activated K+ current sIAHP by a phosphatase-kinase balance under basal conditions in rat CA1 pyramidal neurons. J. Neurophysiol. 79: 3252−3256.
- Pelleymounter M.A. Smith M.Y. Gallagher M. (1987) Spatial learning impairments in aged rats trained with a salient configuration of stimuli. Psychobiology 15:248−254.
- Pitler T.A., Landfield P.W. (1990) Aging-related prolongation of calcium spike duration in rat hippocampal slice neurons. Brain Res. 508(1): 1−6.
- Porter NM, Thibault O, Thibault V, Chen KC, Landfield PW (1997) Calcium channel density and hippocampal cell death with age in long-term culture. J Neurosci 17:5629−5639.
- Power J.M., Oh M.M., Disterhoft J.F. (2001) Metrifonate decreases sI (AHP) in CA1 pyramidal neurons in vitro. J Neurophysiol. 85(1): 319−22.
- Power J.M., Wu W.W., Sametsky E., Oh M.M., Disterhoft J.F. (2002) Age-related enhancement of the slow outward calcium-activated current in hippocampal CA1 pyramidal neurons in vitro. J. Neuroscience 22(16) 7234−7243.
- Racine R.J., Milgram S., Hafner S. (1983) Long-term potentiation phenomena in the rat limbic forebrain. Brain. Res. 260: 217−231.
- Rapp P. R, Rosenberg R.A. Gallagher M. (1987) An evaluation of spatial information processing in aged rats. Behav. Neurosci. 101: 3−12.
- Rapp P. R. (1993) Neuropsychological analysis of learning and memory in the aged nonhuman primate. Neurobiol. Aging 14(6): 627−629.
- Reinhart P.H., Levitan I.B. (1995) Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel.
- J Neurosci. 15(6): 4572−9.
- Reymann K.G., Malish R., Schulzeck K., Brodemann R., Ott T., Matties H. (1985) The duration of long-term potentiation in the CA1 region of the hippocampal slice preparation. Brain Res. Bull. 15: 249−255.
- Rosenzweig E.S., Rao G., McNaughton B.L., Barnes C.A. (1997) Role of temporal summation in age-related LTP induction deficits. Hippocampus 7: 549−558.
- Rosenzweig E.S., Barnes C.A. (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol. 69(3): 143−79. Review.
- Saar D., Grossman Y., Barkai E. (1998) Reduced after-hyperpolarization in rat piriform cortex pyramidal neurons is associated with increased learning capability during operant conditioning. Eur J Neurosci. 10(4): 1518−23.
- Sah P. (1996) Ca (2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 19(4): 150−4. Review.
- Sah P., Isaacson J.S. (1995) Channels underlying the slow afterhyperpolarization in hippocampal pyramidal neurons: neurotransmitters modulate the open probability. Neuron. 15(2): 435−41.
- Sah P., Bekkers J.M. (1996) Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: implications for the integration of long-term potentiation. J Neurosci. 16(15): 4537−42.
- Samorajski T. (1977) Central neurotransmitter substances and aging: a review. J Am Geriatr Soc. (8): 337−48. Review.
- Sejnowski T.J. (1977) Storing covariance with nonlineary interacting neurons. J. Math. Biol. 4:303−321.
- Shankar S. Teyler T.J., Robbins N. (1998) Aging differently alters forms of long-term potentiation in rat hippocampal area CA1. J. Neurophysiol. 79: 334−341.
- Sharp P.E., Barnes C.A., McNaughton B.L. (1987) Effects of aging on environmental modulation of hippocampal evoked responses. Behav Neurosci. 101(2): 170−8.
- Shen J., Barnes C.A. (1996) Age-related decrease in cholinergic synaptic transmission in three hippocampal subfields. Neurobiol. Aging 17:439−451.
- Shen J., Barnes C.A., McNaughton B.L., Skaggs W.E., Weaver K.L. (1997) The effect of aging on experience-dependent plasticity of hippocampal place cells J. Neurosci. 17: 6769−6782.
- Shi S.H., Hayashi Y., Petralia R.S., Zaman S.H., Wenthold R.J., Svoboda K., Malinow R. (19 999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284: 1811−1816.
- Shinohara S., Kawasaki K. (1997) Electrophysiological changes in rat hippocampal pyramidal neurons produced by cholecystokinin octapeptide. Neuroscience. 78(4): 100 516.
- Schurman T, Traber J (1994) Calcium antagonists in aging brain. Ann N Y Acad Sci 747:467−474.
- Skrebitsky V.G., Vorobyev V.S. (1979) A study of synaptic plasticity in hippocampal slices. Acta Neurobiol Exp (Wars). 39(6):633−42.
- Skrebitsky V.G., Chepkova A.N. (1998) Hebbian synapses in cortical and hippocampal pathways. Rev Neurosci. 9(4):243−64. Review.
- Solomon PR, Wood MS, Groccia-Ellison ME, Yang BY, Fanelli RJ, Mervis RF (1995) Nimodipine facilitates retention of the classically conditioned nictitating membrane response in aged rabbits over long retention intervals. Neurobiol Aging 16:791−796.
- Sourdet V, Russier M, Daoudal G, Ankri N, Debanne D (2003) Long-term enhancement of neuronal excitability and temporal fidelity mediated by metabotropic glutamate receptor subtype 5. J Neurosci 23:10 238−10 248.
- Squire L.R. (1987) Memory and brain, Oxford Univ. Press, New York. P. 25.
- Steward O. (1976) Topographic organization of the projection from the enthorinal are to the hippocampal formation of the rat. J. Comp. Neurol., 167(3): 287−314.
- Teyler T.J., Cavus I., Coussens C., DiScenna P., Grover L., Lee Y.P., Little Z. (1994) Multideterminant role of calcium in hippocampal synaptic plasticity. Hippocampus. 4(6):623−34. Review.
- Tielen A.M., Mollevagner W.J., Lopes da Silva F.H., Hollander C.F. (1983) Neuronal plasticity in hippocampal slices of extremely old rats. In: Gispen, W.H., Trber J. (Eds.), Aging of the Brain. Elsevier, Amsterdam, pp. 73−84.
- Thibault O., Landfield P.W. (1996) Increase in single L-type calcium channels in hippocampal neurons during aging. Science. 272(5264): 1017−20.
- Thibault O., Porter N.M., Chen K.C., Blalock E.M., Kaminker P.G., Clodfelter G.V., Brewer L.D., Landfield P.W. (1998) Calcium dysregulation in neuronal aging and Alzheimer’s disease: history and new directions. Cell Calcium. 24(5−6): 417−33. Review.
- Thibault O, Hadley R, Landfield PW (2001) Elevated postsynaptic Ca2+.i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity. J Neurosci 21:9744−9756.
- Thiels E., Norman E.D., Barrionuevo G., Klann E. (1998) Transient and persistent increases in protein phosphatase activity during long-term depression in the adult hippocampus in vivo. Neuroscience. 86(4): 1023−9.
- Thomas K.L., Davis S., Hunt S.P., Laroche S. (1996) Alterations in the expression of specific glutamate receptor subunits following hippocampal LTP in vivo.1.arn Mem. 3(2−3): 197−208.
- Thompson L.T., Moyer J.R. Jr., Disterhoft J.F. (1996a) Transient changes in excitability of rabbit CA3 neurons with a time course appropriate to support memory consolidation. J. Neurophysiol. 76: 1836−1849.
- Thompson L.T., Moyer J.R. Jr, Disterhoft J.F. (1996b) Trace eyeblink conditioning in rabbits demonstrates heterogeneity of learning ability both between and within age groups. Neurobiol Aging. 17(4): 619−29.
- Thompson L.T., Disterhoft J.F. (1997) Age- and dose-dependent facilitation of associative eyeblink conditioning by D-cycloserine in rabbits. Behav. Neurosci. Ill: 1303−1312.
- Torres G.E., Chaput Y., Andrade R. (1995) Cyclic AMP and protein kinase A mediate 5-hydroxytryptamine type 4 receptor regulation of calcium-activated potassium current in adult hippocampal neurons. Mol Pharmacol. 47(1): 191−7.
- Torres G.E., Arfken C.L., Andrade R. (1996) 5-Hydroxytryptamine4 receptors reduce afterhyperpolarization in hippocampus by inhibiting calcium-induced calcium release. Mol Pharmacol. 50(5): 1316−22.
- Verkhratsky A., Toescu E.C. (1998) Calcium and neuronal ageing. Trends Neurosci. 21(l):2−7. Review.
- Wadell J., Dunnett C., Falls W.A. (2004) C57BL/6J and DBA/2J differ in extinction and renewal of extinguished conditional fear. Behav. Brain Res. 154(2): 56 776.
- Wang Y.T., Salter M.W. (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature. 369(6477): 233−5.
- Wang L.Y., Orser B.A., Brautigan D.L., MacDonald J.F. (1994) Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatases 1 and 2A. Nature. 369(6477):230−2.
- Wang J.H., Kelly P.T. (1996) The balance between postsynaptic Ca(2+)-dependent protein kinase and phosphatase activities controlling synaptic strength.1.arn Mem. 3(2−3): 170−81.
- Wang Y., Rowan M.J., Anwyl R. (1997) LTP induction dependent on activation of Ni2±sensitive voltage-gated calcium channels, but not NMDA receptors, in the rat dentate gyrus in vitro. J. Neurophysiology. 78(5): 2574−81.
- Winocur G. (1988) A neuropsychological analysis of memory loss with age. Neurobiol. Aging 9: 487−494.
- Wu WW, Chan CS, Disterhoft JF (2004) Slow afterhyperpolarization governs the development of NMDA receptor-dependent afterdepolarization in CA1 pyramidal neurons during synaptic stimulation. J Neurophysiol 92:2346−2356.
- Wyllie D.J., Nicoll R.A. (1994) A role for protein kinases and phosphatases in the Ca(2+)-induced enhancement of hippocampal AMPA receptor-mediated synaptic responses. Neuron. 13(3):635−43.
- Xu J., Kang N., Jiang L., Nedergaard M., Kang J. (2005) Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons. J. Neurosci. 25:1750−1760.
- Yamamoto C. Mcllwain H. (1966) Electrical activities in thin sections from the mammalian brain maintained in chemically defined media in vitro. J. Neurochemistry 13: 1333−1343.