ΠΠ΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·Π° ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ Ρ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ ΡΠΎΠ΄Π° Ogataea
Π ΠΆΠΈΠ²ΠΎΠΉ ΠΊΠ»Π΅ΡΠΊΠ΅ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΎΠ³ΡΠΎΠΌΠ½ΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΡ ΡΠ΅Π°ΠΊΡΠΈΠΉ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΡ ΡΠ±Π°Π»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΡΡΡ ΠΈ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΡΡΡ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ². Π Π²ΡΠ΅ ΡΡΠΈ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡΡΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ Π±Π΅Π»ΠΊΠΎΠ². ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² Π΄ΡΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ ΠΊΠ»Π΅ΡΠΊΠ΅ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΡΠ΅ΡΡΡ Π²ΡΠ΅Π³ΠΎ ΠΎΠΊΠΎΠ»ΠΎ 6000 Π±Π΅Π»ΠΊΠΎΠ². ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΡΠ»ΠΎΠΆΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ²… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
- Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΡΠ΄Π΅ΡΠΆΠΊΠ°
- ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ°
- ΠΡΡΠ³ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ
- ΠΠΎΠΌΠΎΡΡ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈ
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- Π‘ΠΏΠΈΡΠΎΠΊ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠΉ
ΠΠ±Π·ΠΎΡ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ. ΠΠ°Π»ΡΡΠΈΠΉ Π² ΡΠ΅ΠΊΡΠ΅ΡΠΎΡΠ½ΠΎΠΌ ΠΏΡΡΠΈ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ: ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π±Π°Π»Π°Π½ΡΠ° Π² ΠΎΡΠ³Π°Π½Π΅Π»Π»Π°Ρ ΠΈ ΡΡΠ°ΡΡΠΈΠ΅ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ΅ΠΊΡΠ΅ΡΠΈΠΈ Π±Π΅Π»ΠΊΠ°.
1. ΠΡΠ°ΠΏΡ ΡΠ΅ΠΊΡΠ΅ΡΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ².
1.1. Π’ΡΠ°Π½ΡΠ»ΠΎΠΊΠ°ΡΠΈΡ Π±Π΅Π»ΠΊΠ° ΠΈΠ· ΡΠΈΡΠΎΠ·ΠΎΠ»Ρ Π² ΡΠ½Π΄ΠΎΠΏΠ»Π°Π·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΡΠΈΠΊΡΠ»ΡΠΌ (ΠΠ ).
1.2. ΠΠ»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅.
1.2.1. N-Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅.
1.2.2. Π-Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅.
1.2.3. ΠΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΡΠΎΡΡΠ°ΡΠΈΠ΄ΠΈΠ»ΠΈΠ½ΠΎΠ·ΠΈΡΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΠΎΡΡ.
1.3. Π£ΠΊΠ»Π°Π΄ΠΊΠ° Π±Π΅Π»ΠΊΠΎΠ² ΠΈ ΡΠ±ΠΎΡΠΊΠ° Π±Π΅Π»ΠΊΠΎΠ²ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Π² ΠΠ .
1.4. ΠΠ½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ° ΡΠ΅ΠΊΡΠ΅ΡΠΎΡΠ½ΡΡ Π±Π΅Π»ΠΊΠΎΠ².
1.4.1. ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ ΠΎΠΊΠ°ΠΉΠΌΠ»Π΅Π½ΠΈΡ Π‘ΠΠ Π ΠΈ Π‘ΠΠ Π’ ΡΡΠ°ΡΡΠ²ΡΡΡ Π² ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ΅ Π±Π΅Π»ΠΊΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρ ΠΠ ΠΈ Π°ΠΏΠΏΠ°ΡΠ°ΡΠΎΠΌ ΠΠΎΠ»ΡΠ΄ΠΆΠΈ.
1.4.2. Π’ΡΠ°Π½ΡΠΏΠΎΡΡ ΡΠ΅ΠΊΡΠ΅ΡΠΈΡΡΠ΅ΠΌΡΡ Π±Π΅Π»ΠΊΠΎΠ² ΡΠ΅ΡΠ΅Π· Π°ΠΏΠΏΠ°ΡΠ°Ρ ΠΠΎΠ»ΡΠ΄ΠΆΠΈ.
1.4.3. ΠΠ»Π°ΡΡΠΈΠ½ΠΎΠ²ΠΎΠ΅ ΠΎΠΊΠ°ΠΉΠΌΠ»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠ²ΡΠ΅Ρ Π² ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ΅ Π±Π΅Π»ΠΊΠΎΠ² ΠΈΠ· ΠΏΠΎΠ·Π΄Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠ°ΡΡΠΌΠ΅Π½ΡΠΎΠ² Π°ΠΏΠΏΠ°ΡΠ°ΡΠ° ΠΠΎΠ»ΡΠ΄ΠΆΠΈ Π² Π»ΠΈΠ·ΠΎΡΠΎΠΌΡ (Π²Π°ΠΊΡΠΎΠ»Ρ) ΠΈ ΠΎΡ ΠΏΠ»Π°Π·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ Π² Π°ΠΏΠΏΠ°ΡΠ°Ρ ΠΠΎΠ»ΡΠ΄ΠΆΠΈ ΠΈΠ»ΠΈ Π»ΠΈΠ·ΠΎΡΠΎΠΌΡ (Π²Π°ΠΊΡΠΎΠ»Ρ).
1.5. ΠΡΠΎΡΠ΅ΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠ½Π³.
1.6. ΠΠ΅Π³ΡΠ°Π΄Π°ΡΠΈΡ Π±Π΅Π»ΠΊΠΎΠ² Π² ΡΠ΅ΠΊΡΠ΅ΡΠΎΡΠ½ΡΡ ΠΏΡΡΡΡ .
1.6.1. ΠΠΎΠ½ΡΡΠΎΠ»Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΡΠΊΠ»Π°Π΄ΠΊΠΈ Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΠ .
1.6.2. ΠΡΠ²Π΅Ρ ΠΊΠ»Π΅ΡΠΊΠΈ Π½Π° Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ ΡΠ²Π΅ΡΠ½ΡΡΡΡ Π±Π΅Π»ΠΊΠΎΠ² (UPR).
1.6.3. ΠΠ΅Π³ΡΠ°Π΄Π°ΡΠΈΡ Π±Π΅Π»ΠΊΠΎΠ², Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ Ρ ΡΠ½Π΄ΠΎΠΏΠ»Π°Π·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠ΅ΡΠΈΠΊΡΠ»ΡΠΌΠΎΠΌ
ERAD).
1.6.4. ΠΠ΅Π³ΡΠ°Π΄Π°ΡΠΈΡ Π±Π΅Π»ΠΊΠΎΠ² Π² Π²Π°ΠΊΡΠΎΠ»ΠΈ.
2. ΠΠ°Π»Π°Π½Ρ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ ΠΈ ΠΌΠ°ΡΠ³Π°Π½ΡΠ° Π² ΠΊΠ»Π΅ΡΠΊΠ΅ ΠΈ Π΅Π³ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ.
2.1. ΠΠΎΠΌΠ΅ΠΎΡΡΠ°Π· ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ.
2.1.1. ΠΠ°Π»ΡΡΠΈΠ΅Π²ΡΠ΅ ΠΠ’Π€Π°Π·Ρ.
2.1.2. ΠΠ°Π»ΡΡΠΈΠ΅Π²ΡΠ΅ ΠΠ’Π€Π°Π·Ρ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ ΠΈ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΌΡΡΠ°ΡΠΈΠΉ Π² Π³Π΅Π½Π°Ρ , ΠΈΡ ΠΊΠΎΠ΄ΠΈΡΡΡΡΠΈΡ .
2.1.3. ΠΠ°Π½Π°Π»Ρ, ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠΈΠ΅ ΠΈΠΎΠ½Ρ ΠΊΠ°Π»ΡΡΠΈΡ, Ρ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ.
2.1.4. Π ΠΎΠ»Ρ ΡΠ΅ΡΡΠΎΠ³ΡΠ°Π΄Π½ΠΎΠ³ΠΎ Π²Π΅Π·ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ Π‘ΠΠ Π-ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ° Π² ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠΈ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·Π° ΠΊΠ°Π»ΡΡΠΈΡ Π² ΠΊΠ»Π΅ΡΠΊΠ΅.
2.1.5. ΠΠ°Π»ΡΡΠΈΠ½Π΅Π²ΡΠΈΠ½ — ΠΊΠ»ΡΡΠ΅Π²ΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΎΡ ΠΊΠ°Π»ΡΡΠΈΠΉ-Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ².
2.1.5.1. Π ΠΎΠ»Ρ ΠΊΠ°Π»ΡΡΠΈΠ½Π΅Π²ΡΠΈΠ½Π° Π² ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·Π° ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ.
2.1.5.2. Π ΠΎΠ»Ρ ΡΠΈΠ³Π½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΈ ΠΊΠ°Π»ΡΡΠΈΠ½Π΅Π²ΡΠΈΠ½Π° Π² ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ Π±ΠΈΠΎΠ³Π΅Π½Π΅Π·Π° ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΡΡΠ΅Π½ΠΊΠΈ, ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΡΠΊΠΈ ΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π°.
2.1.5.3. Π ΠΎΠ»Ρ ΠΊΠ°Π»ΡΡΠΈΠ½Π΅Π²ΡΠΈΠ½Π° Π² ΡΠΈΠ³Π½Π°Π»ΡΠ½ΠΎΠΌ ΠΏΡΡΠΈ Π·Π°ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΌΠ΅ΡΡΠΈ ΠΊΠ»Π΅ΡΠΊΠΈ.
2.2. ΠΠΎΠΌΠ΅ΠΎΡΡΠ°Π· ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°ΡΠ³Π°Π½ΡΠ° ΠΈ Π΅Π³ΠΎ ΡΠ΅Π³ΡΠ»ΡΡΠΈΡ.
2.2.1. ΠΠ±ΡΠ°Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ΅ΡΠΎΠ² ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²Π° Nramp.
2.2.2. Π’ΡΠ°Π½ΡΠΏΠΎΡΡΠ΅ΡΡ Smflp ΠΈ Smf2p ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°ΡΠ³Π°Π½ΡΠ° Ρ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ S. cerevisiae.
2.2.2.1. Bsd2p ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅Ρ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ΅ΡΡ Smflp ΠΈ Smf2p ΠΏΡΠΈ ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°ΡΠ³Π°Π½ΡΠ°.
2.2.2.2. Π Π΅Π³ΡΠ»ΡΡΠΈΡ Smflp ΠΈ Smf2p ΠΏΡΠΈ Π΄Π΅ΡΠΈΡΠΈΡΠ΅ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°ΡΠ³Π°Π½ΡΠ°.
2.2.2.3. Π Π΅Π³ΡΠ»ΡΡΠΈΡ Smflp Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΈΠ·Π±ΡΡΠΊΠ° ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°ΡΠ³Π°Π½ΡΠ°.
2.2.2.4. Π Π΅Π³ΡΠ»ΡΡΠΈΡ Smflp ΠΈΠΎΠ½Π°ΠΌΠΈ ΠΊΠ°Π΄ΠΌΠΈΡ.
2.2.3. Pmrlp ΠΊΠ°ΠΊ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ΅Ρ ΠΌΠ°ΡΠ³Π°Π½ΡΠ°.
2.2.4. Π’ΡΠ°Π½ΡΠΏΠΎΡΡ ΠΌΠ°ΡΠ³Π°Π½ΡΠ° Π² Π²Π°ΠΊΡΠΎΠ»Ρ.
2.3. ΠΠ·Π°ΠΈΠΌΠΎΠ·Π°ΠΌΠ΅Π½ΡΠ΅ΠΌΠΎΡΡΡ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ ΠΈ ΠΌΠ°ΡΠ³Π°Π½ΡΠ°.
Π¦Π΅Π»ΠΈ ΠΈ Π·Π°Π΄Π°ΡΠΈ.
ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ.
1. Π¨ΡΠ°ΠΌΠΌΡ ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ².
1.1. ΠΠΈΠ΄Ρ ΠΈ ΡΡΠ°ΠΌΠΌΡ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ ΡΠΎΠ΄Π° Ogataea.
1.1.1. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°ΠΌΠΌΠ° 1Π-ΠΡΡΡ Π. polymorpha.
1.1.2. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°ΠΌΠΌΠ° lMA27/12GA
1.1.3. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΠ°ΠΌΠΌΠΎΠ² 64MA70Q ΠΈ 64MA70U Π. polymorpha.
1.1.4. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ·ΠΎΠ³Π΅Π½Π½ΡΡ ΡΡΠ°ΠΌΠΌΠΎΠ² Π. polymorpha, ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΡ ΡΡ Π°Π»Π»Π΅Π»ΡΡ Π³Π΅Π½Π° RET1, ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΊΠ°ΡΡΠ΅ΡΡ ΠΈΠ Π ΠΈ uPA-Q
1.1.5. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°ΠΌΠΌΠΎΠ² Π. polymorpha Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΡΡΠ°ΡΠΈΠΉpmcl-Π ΠΈ Π³ et 1−27.
1.1.6. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°ΠΌΠΌΠΎΠ² Π. polymorpha Ρ ΠΌΡΡΠ°ΡΠΈΡΠΌΠΈ, ΡΡΠΏΡΠ΅ΡΡΠΈΡΡΡΡΠΈΠΌΠΈ ΡΡΠ΅ J Π.
1.2. Π¨ΡΠ°ΠΌΠΌΡ Escherichia coli.
2. ΠΠ»Π°Π·ΠΌΠΈΠ΄Ρ.
3. Π‘ΠΎΡΡΠ°Π² ΡΡΠ΅Π΄ ΠΈ ΡΡΠ»ΠΎΠ²ΠΈΡ Π΄Π»Ρ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ².
3.1. Π‘ΡΠ΅Π΄Ρ Π΄Π»Ρ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π. coli.
3.2. Π‘ΡΠ΅Π΄Ρ Π΄Π»Ρ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ.
3.3. Π£ΡΠ»ΠΎΠ²ΠΈΡ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ.
4. ΠΠ΅ΡΠΎΠ΄Ρ.
4.1. Π’ΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π. coli SEM (Inoue Π. et al., 1990) Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡΠΌΠΈ.
4.2. ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ ΠΠΠ ΠΈΠ· ΠΊΠ»Π΅ΡΠΎΠΊ Π. coli ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ΅Π»ΠΎΡΠ½ΠΎΠ³ΠΎ Π»ΠΈΠ·ΠΈΡΠ° (Sambrook J. et al., 1989) Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡΠΌΠΈ.
4.3. ΠΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΈΠΈ Ρ ΠΠΠ in vitro.
4.3.1. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ ΠΠΠ ΡΠ½Π΄ΠΎΠ½ΡΠΊΠ»Π΅Π°Π·Π°ΠΌΠΈ.
4.3.2. ΠΠ΅ΡΠ΅ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΠΠ ΠΏΠΎΡΠ»Π΅ ΡΠ΅ΡΡΡΠΈΠΊΡΠΈΠΈ Π΄Π»Ρ ΠΎΡΠΈΡΡΠΊΠΈ ΠΎΡ ΡΠ½Π΄ΠΎΠ½ΡΠΊΠ»Π΅Π°Π· ΠΈ ΡΠΌΠ΅Π½Ρ Π±ΡΡΠ΅ΡΠ°.
4.3.3. ΠΠΈΠ³ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅.
4.3.4. ΠΠ»Π΅ΠΊΡΡΠΎΡΠΎΡΠ΅Π· Π² Π°Π³Π°ΡΠΎΠ·Π½ΠΎΠΌ Π³Π΅Π»Π΅.
4.3.5. ΠΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈΠ²Π½ΡΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΎΡΠ΅Π· ΠΈ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΠΠ ΠΈΠ· 1% Π°Π³Π°ΡΠΎΠ·Π½ΠΎΠ³ΠΎ Π³Π΅Π»Ρ.
4.3.6. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°Π·Π½ΠΎΠΉ ΡΠ΅ΠΏΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ.
4.4. ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ Π°Π½Π°Π»ΠΈΠ· ΠΠΠ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ ΡΠΎΠ΄Π° Ogataea.
4.5. Π’ΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΡ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ ΡΠΎΠ΄Π° Ogataea.
4.6. ΠΠ΅ΡΠΎΠ΄Ρ ΡΠ°Π±ΠΎΡΡ Ρ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ.
4.6.1. Π’Π΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈΠ Π.
4.6.2. ΠΠ½Π΄ΡΠΊΡΠΈΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΈΠ Π Π² ΡΡΠ°ΠΌΠΌΠ°Ρ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ ΡΠΎΠ΄Π° Ogataea.
4.6.3. ΠΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°.
4.6.4. ΠΠ»Π΅ΠΊΡΡΠΎΡΠΎΡΠ΅Π· ΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΠ±Π»ΠΎΡΡΠΈΠ½Π³.
4.6.5. ΠΠ½Π°Π»ΠΈΠ· ΠΈΠ Π ΠΈΠ· ΠΊΡΠ»ΡΡΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅Π΄Ρ.
4.6.6. ΠΡΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠΆΠΆΠ΅Π²ΡΡ Π»ΠΈΠ·Π°ΡΠΎΠ².
4.7. ΠΠ½Π°Π»ΠΈΠ· ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ ΡΠΎΠ΄Π° Ogataea ΠΊ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π² ΡΡΠ΅Π΄Π΅ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ, SDS, ΡΠΎΡΠ±ΠΈΡΠΎΠ»Π° ΠΈ NaCl.
4.8. ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ ΠΠΏ2+ Π½Π° ΡΠΎΡΡ ΠΌΡΡΠ°Π½ΡΠΎΠ² Π. polymorpha Ρ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·Π° ΠΊΠ°Π»ΡΡΠΈΡ.
4.9. ΠΠ½Π°Π»ΠΈΠ· ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ ΡΠΎΠ΄Π° Ogataea ΠΊ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π² ΡΡΠ΅Π΄Π΅ ΠΠ’Π’Π.
4.10. ΠΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ß--Π³Π°Π»Π°ΠΊΡΠΎΠ·ΠΈΠ΄Π°Π·Ρ.
4.11. ΠΠ½Π°Π»ΠΈΠ· ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° Π³ΠΈΠ±Π΅Π»ΠΈ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΌΡΡΠ°Π½ΡΠ°pmrlA ret 1−27 Π. polymorpha.
4.12. ΠΡΡΠ³ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ.
1. ΠΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ Π³Π΅Π½Π° Π ΠΠ―1.
1.1. ΠΠ°ΡΡΡΠ΅Π½ΠΈΠ΅ Π³Π΅Π½Π° Π ΠΠ¨ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ Ρ Π. ΡΠΎ1ΡΡΠΎΠ³ΡΠΠ°.
1.2. Π‘Π΅ΠΊΡΠ΅ΡΠΈΡ ΡΡΠΆΠ΅ΡΠΎΠ΄Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° ΠΈΠ Π Ρ ΠΌΡΡΠ°Π½ΡΠ°ΡΡΠ³1 ΡΠΈΠ»ΡΠ½ΠΎ ΡΠ½ΠΈΠΆΠ΅Π½Π° ΠΏΡΠΈ Π½Π°Π»ΠΈΡΠΈΠΈ Π² ΠΈΠ½Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Π΅ Π°ΠΌΠΌΠΎΠ½ΠΈΠΉ-ΡΠΎΡΡΠ°ΡΠ½ΠΎΠ³ΠΎ Π±ΡΡΠ΅ΡΠ°.
1.3. Π ΠΊΠ»Π΅ΡΠΊΠ°Ρ ΡΡΠ°ΠΌΠΌΠ°ΡΡΠ³1Π Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΡΠΎΡΡΠ°ΡΠ° Π°ΠΌΠΌΠΎΠ½ΠΈΡ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΡ
2. ΠΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ Π³Π΅Π½Π° Π ΠΠ‘1.
2.1. ΠΠ°ΡΡΡΠ΅Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ² Π‘Π‘Π1 ΠΈ #067, ΡΡΠΏΡΠ΅ΡΡΠΈΡΡΠ΅Ρ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΊ ΠΠΠ Ρ ΡΡΠ΅]Π.
2.1.1. ΠΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΌΡΡΠ°ΡΠΈΠΈ hoglA.
2.1.2. ΠΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΌΡΡΠ°ΡΠΈΠΈ ΡΡΠ«Π.
2.2. ΠΠ°ΡΡΡΠ΅Π½ΠΈΠ΅ Π³Π΅Π½Π° VEE1, ΡΡΠΏΡΠ΅ΡΡΠΈΡΡΠ΅Ρ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΊ ΠΠΠ ΡΡΡΡ1Π Π½Π° ΡΠΎΠ½Π΅ Ρ ΡΠΎΠΌΠΎΡΠΎΠΌΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΡΡΠΎΠΉΠΊΠΈ.
2.2.1. Π£ ΠΌΡΡΠ°Π½ΡΠ° 8Π8116 ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ Π³Π΅Π½Π°, ΠΊΠΎΠ΄ΠΈΡΡΡΡΠ΅Π³ΠΎ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ ΠΊΠΈΠ½Π°Π·Ρ Π΅Π΅1/8ΡΠ΅1.
2.2.2. ΠΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ Π³Π΅Π½ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΡΠΎΠ»ΠΎΠ³ΠΎΠΌ Π³Π΅Π½Π° 8ΠΠ1^ΠΠ1 Π. ΡΠ΅Π³Π΅Ρ (Π·1Π°Π΅.
2.2.3. Π‘ΡΠΏΡΠ΅ΡΡΠΈΡ ΡΡΡ! Π Π² ΡΡΠ°ΠΌΠΌΠ΅ ΠΠΠ 116 ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΌΡΡΠ°ΡΠΈΠ΅ΠΉ Π² Π³Π΅Π½Π΅ VEE1.
2.2.4. ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ Π³Π΅Π½Π° VEE1 Π½Π΅ ΡΡΠΏΡΠ΅ΡΡΠΈΡΡΠ΅Ρ ΠΌΡΡΠ°ΡΠΈΡΡΡΡ1Π ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΊ 8Π8 Π² ΡΡΠ°ΠΌΠΌΠ΅ Ρ ΠΈΠ½ΡΠ°ΠΊΡΠ½ΡΠΌ Π³Π΅Π½ΠΎΠΌ Π ΠΠ‘1.
2.2.5. ΠΠ΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π΄Π΅ΡΠ΅ΡΠΌΠΈΠ½Π°Π½Ρ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠΉ ΡΡΠΏΡΠ΅ΡΡΠΈΡ ΠΌΡΡΠ°ΡΠΈΠΈΡΡΡ1Π, ΡΡΠ΅ΠΏΠ»Π΅Π½ Ρ Π°Π»Π»Π΅Π»ΡΡ veel-l.
2.2.6. ΠΠ»Π»Π΅Π»ΠΈ veel-l Π½Π΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π΄Π»Ρ ΡΡΠΏΡΠ΅ΡΡΠΈΠΈ ΡΡΡ1Π.
2.3. ΠΠΊΡΠΏΡΠ΅ΡΡΠΈΡ Ρ ΠΈΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π°, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅Π³ΠΎ Π«-ΠΊΠΎΠ½ΡΠ΅Π²ΠΎΠΉ ΡΡΠ°ΡΡΠΎΠΊ Π³Π΅Π½Π° 1 Ρ.Π΅.Π1, Π² ΡΡΠ°ΠΌΠΌΠ΅ Ρ ΠΌΡΡΠ°ΡΠΈΠ΅ΠΉ ΡΡΡ1Π Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ.
3. ΠΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π³Π΅Π½Π°ΠΌΠΈ, Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½Π½ΡΡ Π² ΡΠ΅Π³ΡΠ»ΡΡΠΈΡ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·Π° ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ.
3.1. Π‘ΠΎΠ²ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΡΡΠ°ΡΠΈΠΉ Π³Π΅/7−27 ΠΈΡΡΠ³1Π ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π³ΠΈΠ±Π΅Π»ΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΏΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΡ Π°ΠΏΠΎΠΏΡΠΎΠ·Π°.
3.2. Π‘ΠΎΠ²ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄Π΅Π»Π΅ΡΠΈΠΉ Π² Π³Π΅Π½Π°Ρ Π ΠΠ¨ ΠΈ Π£Π Π’Π± ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΊΠ°Π»ΡΡΠΈΠΉ-Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΌΡ ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΡ ΡΠ΄ΡΠ΅Π½ΠΈΡ ΡΠΎΡΡΠ°.
3.3. ΠΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΡΠΎΠ²ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΡΡΠ°ΡΠΈΠΉΡΡΡ1Π ΠΈ Π³Π΅//-27.
3.3.1. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΠΌΡΡΠ°ΡΠΈΠΉ ΡΡΡ1 Π ΠΈ Π³Π΅Π-27 Π½Π° ΡΠ΅ΠΊΡΠ΅ΡΠΈΡ ΠΈΠ Π ΠΈ ΠΈΠ Π-Π
3.3.1.1. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ Π³Π΅Π½Π° Π ΠΠ‘1 Π½Π° ΡΠ΅ΠΊΡΠ΅ΡΠΈΡ ΡΡΠΎΠΊΠΈΠ½Π°Π·Ρ.
3.3.1.2. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΠΌΡΡΠ°ΡΠΈΠΈ Π³Π΅Π-27 Π½Π° ΡΠ΅ΠΊΡΠ΅ΡΠΈΡ ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠ½Π³ ΠΈΠ Π-Π‘}
3.3.1.3. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΠΎΠ²ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΡΡΠ°ΡΠΈΠΉpmclA ΠΈ ret 1−27 Π½Π° ΡΠ΅ΠΊΡΠ΅ΡΠΈΡ uPA-Q
3.3.2. ΠΡΡΠ°ΡΠΈΡ retl-27 Π½Π΅ Π²Π»ΠΈΡΠ΅Ρ Π½Π° ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ Π³Π΅Π½Π° Π ΠΠ‘1 Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΈΠ·Π±ΡΡΠΊΠ° ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ Π² ΡΡΠ΅Π΄Π΅.
3.3.3. ΠΠ΅Π»Π΅ΡΠΈΡpmclA Π½Π΅ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΡΡ ΠΌΡΡΠ°ΡΠΈΠ΅ΠΉ retlΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΊ ΠΠΠ’Π.
3.4. ΠΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠ²ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π΅Π»Π΅ΡΠΈΠΈ cchl, Π Ρ ΠΌΡΡΠ°ΡΠΈΠ΅ΠΉ retl-27 ΠΈ Π΄Π΅Π»Π΅ΡΠΈΠ΅ΠΉpmrl Π.
3.4.1. ΠΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠ²ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π΅Π»Π΅ΡΠΈΠΉ cchlΠ ΠΈpmrl Π.
3.4.2. ΠΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠ²ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π΅Π»Π΅ΡΠΈΠΈ cchl, Π Ρ ΠΌΡΡΠ°ΡΠΈΠ΅ΠΉ retl-27.
4. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΠΠΏ2+ Π½Π° ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΌΡΡΠ°Π½ΡΠΎΠ² Ρ Π½Π°ΡΡΡΠ΅Π½Π½ΡΠΌ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·ΠΎΠΌ Π‘Π°2+.
4.1. ΠΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² ΡΡΠ΅Π΄Ρ ΠΠΏΠ‘Π¬ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²Π»ΠΈΡΠ΅Ρ Π½Π° ΡΠΎΡΡpmrlΠ ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ.
4.2. ΠΠ°ΡΡΡΠ΅Π½ΠΈΠ΅ Π³Π΅Π½Π° Π ΠΠ‘1 Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ ΠΊ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°ΡΠ³Π°Π½ΡΠ° Π² ΡΡΠ΅Π΄Π΅.
2+ 2+
4.3. ΠΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² ΡΡΠ΅Π΄Ρ ΠΠΏ, ΠΈΠ»ΠΈ Π‘Π° Π½Π΅ Π²ΠΎΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π΅Ρ ΡΠΎΡΡ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΌΡΡΠ°Π½ΡΠ°pmclΠ pmrl Π.
4.4. ΠΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠ²ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΡΡΠ°ΡΠΈΠΉ cchl, Π ΠΈ pmrl, Π ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΡ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°ΡΠ³Π°Π½ΡΠ° Π² ΡΡΠ΅Π΄Π΅.
4.5. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ Π³Π΅Π½Π° YPT6 Π½Π° ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΡΠΉ ΠΈ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΠΠΏ
4.6. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°ΡΠ³Π°Π½ΡΠ° Π½Π° Π²ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡΡ ΡΡΠ°ΠΌΠΌΠ° retl-27 Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ Π² ΡΡΠ΅Π΄Π΅.
4.7. ΠΡΡΠ°ΡΠΈΡ retl-27 ΡΡΠΏΡΠ΅ΡΡΠΈΡΡΠ΅Ρ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ pmclA ΠΊ ΠΠΏ2+.
ΠΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ².
1. ΠΠ°ΡΡΡΠ΅Π½ΠΈΠ΅ Π³Π΅Π½Π° Π ΠΠ‘1 ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΏΠ°ΡΠ·Π΅ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° Π² ΡΠ°Π·Π΅ G2.
2. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΠΌΡΡΠ°ΡΠΈΠΈ retl-27 Π½Π° ΠΏΡΠΎΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° uPA-Q302 ΡΡ ΠΎΠ΄Π½ΠΎ Ρ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ ΠΌΡΡΠ°ΡΠΈΠΉ, Π½Π°ΡΡΡΠ°ΡΡΠΈΡ Π²Π°ΠΊΡΠΎΠ»ΡΡΠ½ΡΡ ΡΠΎΡΡΠΈΡΠΎΠ²ΠΊΡ.
3. ΠΡΡΠ°ΡΠΈΠΈ, Π²Π»ΠΈΡΡΡΠΈΠ΅ Π½Π° ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π. polymorpha ΠΊ ΠΠΏ
4. Π ΠΎΠ»Ρ Π²Π΅Π·ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ° Π² ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠΈ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·Π° ΠΊΠ°Π»ΡΡΠΈΡ ΠΈ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΈ ΡΡΠΎΠ³ΠΎ ΠΈΠΎΠ½Π° Π΄Π»Ρ ΡΠ΅ΠΊΡΠ΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΈ.
ΠΡΠ²ΠΎΠ΄Ρ.
ΠΠ΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·Π° ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ Ρ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ ΡΠΎΠ΄Π° Ogataea (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
Π ΠΆΠΈΠ²ΠΎΠΉ ΠΊΠ»Π΅ΡΠΊΠ΅ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΎΠ³ΡΠΎΠΌΠ½ΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΡ ΡΠ΅Π°ΠΊΡΠΈΠΉ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΡ ΡΠ±Π°Π»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΡΡΡ ΠΈ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΡΡΡ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ². Π Π²ΡΠ΅ ΡΡΠΈ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡΡΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ Π±Π΅Π»ΠΊΠΎΠ². ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² Π΄ΡΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ ΠΊΠ»Π΅ΡΠΊΠ΅ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΡΠ΅ΡΡΡ Π²ΡΠ΅Π³ΠΎ ΠΎΠΊΠΎΠ»ΠΎ 6000 Π±Π΅Π»ΠΊΠΎΠ². ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΡΠ»ΠΎΠΆΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ², ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡ, ΠΎΠ±ΡΡΡΠ½ΡΠ΅ΡΡΡ ΠΈΡ ΠΏΠΎΠ»ΠΈΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΡΡΡΡ. ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ³ΠΎ, Π΄Π»Ρ ΠΈΠ΄Π΅Π°Π»ΡΠ½ΠΎΠΉ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΡΡΠΈ Π²ΡΠ΅Ρ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΈΡ ΡΠ΅ΡΠ½Π°Ρ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠΏΡΠΎΠ½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅. ΠΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΠΈ ΠΈΠ·ΡΡΠ°ΡΡ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠ΅ ΠΈΠ·ΡΡΠ°Π΅ΠΌΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π΅Π΅ Π°Π½Π°Π»ΠΈΠ·Π°.
ΠΠ°Π½Π½Π°Ρ ΡΠ°Π±ΠΎΡΠ° Π±ΡΠ»Π° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠΉ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·Π° ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ. ΠΠ°Π»ΡΡΠΈΠΉ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΡΡΠ°ΡΡΠΈΠ΅ ΠΈ Π² ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΈΠΈ ΡΠ°Π±ΠΎΡΡ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ, ΡΠ²Π»ΡΡΡΡ Π²ΡΠΎΡΠΈΡΠ½ΡΠΌ ΠΌΠ΅ΡΡΠ΅Π½Π΄ΠΆΠ΅ΡΠΎΠΌ ΠΏΡΠΈ ΠΏΡΠΎΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΡΠΈΠ³Π½Π°Π»Π°, ΠΈ Π² ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ΅ΠΊΡΠ΅ΡΠΎΡΠ½ΡΡ ΠΎΡΠ³Π°Π½Π΅Π»Π». ΠΡΠΈ ΡΡΠΎΠΌ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΊΡΠ΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΈ ΡΠ°ΠΌΠΎ ΠΏΠΎ ΡΠ΅Π±Π΅ ΠΌΠΎΠΆΠ΅Ρ Π²ΡΠ·ΡΠ²Π°ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠ΅ ΠΎΡΠ²Π΅ΡΡ. Π Π½Π°ΡΠ΅ΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΡ ΠΏΡΠ΅Π΄ΠΏΡΠΈΠ½ΡΠ»ΠΈ ΠΏΠΎΠΏΡΡΠΊΡ Π½Π°ΠΉΡΠΈ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Ρ Π΄Π»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊΠ°Π»ΡΡΠΈΡ Π² ΡΠ΅ΠΊΡΠ΅ΡΠΈΠΈ ΠΈ Π² ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΡΠΈΠ³Π½Π°Π»ΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ½Π΄ΠΎΠΏΠ»Π°Π·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΠΈΠΊΡΠ»ΡΠΌΠ° ΠΊΠ°ΠΊ ΡΠ΅ΠΊΡΠ΅ΡΠΎΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½Π΅Π»Π»Ρ ΠΈ ΠΊΠ°ΠΊ ΠΎΡΠ³Π°Π½Π΅Π»Π»Ρ, ΡΡΠ°ΡΡΠ²ΡΡΡΠ΅ΠΉ Π² ΠΊΠ°Π»ΡΡΠΈΠΉ-Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΌ ΡΠΈΠ³Π½Π°Π»Π»ΠΈΠ½Π³Π΅.
ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΡΠ΅ΡΠ½ΠΎ ΡΠ²ΡΠ·Π°Π½Π½ΡΠΌΠΈ Ρ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·ΠΎΠΌ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°ΡΠ³Π°Π½ΡΠ°. Π ΡΡΠΎΠΉ ΡΠ²ΡΠ·ΠΈ ΡΠ°ΡΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΡΠΈΡ ΠΈΠΎΠ½ΠΎΠ².
Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΊΡΠ° Π² ΡΠ°Π±ΠΎΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ Π΄ΡΠΎΠΆΠΆΠΈ Π΄Π²ΡΡ Π±Π»ΠΈΠ·ΠΊΠΎΡΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΡ Π²ΠΈΠ΄ΠΎΠ²: Ogataea ΡΠΎ1ΡΡΠΎΠ³Ρ1Π³Π° ΠΈ Π. ΡΠ°Π³Π°ΡΠΎ1ΡΡΠΎΠ³ΡΠΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ Π΄ΠΎ 2011 Π³. Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΠΈ Π³Π΅Π½ΠΎΠΌΠΎΠ², ΡΡ ΠΎΠ΄ΡΡΠ² Π² ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ ΡΠΎΡΡΠ° ΠΈ ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΊΡΠ»ΡΡΠΈΠ²ΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΠ»ΠΈΡΡ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡ Π²ΠΈΠ΄Ρ — ΠΠ°ΡΠ΅ΠΏΠΈ1Π° ΡΠΎ1ΡΡΠΎΠ³ΡΠΊΠ°. ΠΠ»Ρ ΠΏΡΠΎΡΡΠΎΡΡ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΈΡ, Π² ΡΠ΅Ρ ΡΠ»ΡΡΠ°ΡΡ , ΠΊΠΎΠ³Π΄Π° ΡΠ΅ΡΡ ΠΈΠ΄Π΅Ρ ΠΎΠ± ΠΎΠ±ΡΠΈΡ Π΄Π»Ρ ΡΡΠΈΡ Π²ΠΈΠ΄ΠΎΠ² ΡΠ²ΠΎΠΉΡΡΠ²Π°Ρ ΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΡΡ , ΠΎΠ±Π° Π²ΠΈΠ΄Π° ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠΎΠ΄ ΡΠΎΠ΄ΠΎΠ²ΡΠΌ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ΠΌ Ogataea.
ΠΠ±Π·ΠΎΡ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ:
ΠΠ°Π»ΡΡΠΈΠΉ Π² ΡΠ΅ΠΊΡΠ΅ΡΠΎΡΠ½ΠΎΠΌ ΠΏΡΡΠΈ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ: ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π±Π°Π»Π°Π½ΡΠ° Π² ΠΎΡΠ³Π°Π½Π΅Π»Π»Π°Ρ ΠΈ ΡΡΠ°ΡΡΠΈΠ΅ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ΅ΠΊΡΠ΅ΡΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ².
ΠΡΠ²ΠΎΠ΄Ρ.
1. ΠΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ ΠΌΡΡΠ°ΡΠΈΠΈ, ΡΡΠΏΡΠ΅ΡΡΠΈΡΡΡΡΠΈΠ΅ Ρ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ Π. ΡΠΎ1ΡΡΠΎΠ³ΡΠͺΠ° ΠΈ Π. ΡΠ°Π³Π°ΡΠΎ1ΡΡΠΎΠ³ΡΠΊΠ° ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΊ 808, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ Π²Π°ΠΊΡΠΎΠ»ΡΡΠ½ΠΎΠΉ ΠΊΠ°Π»ΡΡΠΈΠ΅Π²ΠΎΠΉ ΠΠ’Π€Π°Π·Ρ Π ΡΠ΅ 1Ρ. ΠΠ½Π°Π»ΠΈΠ· ΡΡΠΈΡ ΠΌΡΡΠ°ΡΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ Π³ΠΈΠΏΠ΅ΡΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΊ 808 ΠΌΡΡΠ°Π½ΡΠ° ΡΡΡ1&ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ.
2+.
Π‘Π° Π² ΡΠΈΡΠΎΠ·ΠΎΠ»Π΅ ΠΈ ΡΠ²ΡΠ·Π°Π½Π° Ρ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π° ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° ΠΎΡ ΡΠ°Π·Ρ Π²2 ΠΊ Π.
2. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ Ρ Π. ΡΠΎ1ΡΡΠΎΠ³ΡΠΊΠ° ΠΏΡΠΈ ΠΈΠ½Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ Π³Π΅Π½Π° Π ΠΠ¨ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π‘Π°2+ ΠΈ ΠΠΏ2+ Π² ΡΠ΅ΠΊΡΠ΅ΡΠΎΡΠ½ΡΡ ΠΎΡΠ³Π°Π½Π΅Π»Π»Π°Ρ . ΠΡΠΎΡ ΡΡΡΠ΅ΠΊΡ ΡΡΠΈΠ»ΠΈΠ²Π°Π΅ΡΡΡ Π½Π° ΡΠΎΠ½Π΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ Π²Π΅Π·ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ°, Π²ΡΠ·Π²Π°Π½Π½ΡΡ ΠΈΠ½Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠ΅ΠΉ Π£Ρ1Π±Ρ ΠΈ Π΄Π΅Π»Π΅ΡΠΈΠ΅ΠΉ Π‘-ΠΊΠΎΠ½ΡΠ΅Π²ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Π°-Π‘ΠΠ .
3. ΠΠ΅Π»Π΅ΡΠΈΡ Π‘-ΠΊΠΎΠ½ΡΠ΅Π²ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Π°-Π‘ΠΠ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠ½Π³Π° ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° ΠΈΠ Π-Π‘)302, ΡΡΠΎ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° ΡΡΠ°ΡΡΠΈΠ΅ Π°-Π‘ΠΠ Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π²Π΅Π·ΠΈΠΊΡΠ», ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡΠΈΡ ΡΡΠ°Π½ΡΠΏΠΎΡΡ ΠΌΠ΅ΠΆΠ΄Ρ Π°ΠΏΠΏΠ°ΡΠ°ΡΠΎΠΌ ΠΠΎΠ»ΡΠ΄ΠΆΠΈ ΠΈ Π²Π°ΠΊΡΠΎΠ»ΡΡ.
4. ΠΠΎΠ½Π½ΡΠΉ ΠΊΠ°Π½Π°Π» Π‘ΡΠ«Ρ/Π1Ρ11Ρ ΡΡΠ°ΡΡΠ²ΡΠ΅Ρ Π² ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ΅ ΠΠΏ2+ Π² ΠΊΠ»Π΅ΡΠΊΡ, Π° Π±Π΅Π»ΠΊΠΈ Π£Ρ1Π±Ρ ΠΈ Π°-Π‘ΠΠ ΡΡΠ°ΡΡΠ²ΡΡΡ Π² ΠΊΠΎΠ½ΡΡΠΎΠ»Π΅ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ° ΠΠΏ2+ Ρ Π. ΡΠΎ1ΡΡΠΎΠ³ΡΠΊΠ°.
5. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π΄Π°Π½Π½ΡΡ Π²ΡΠ΄Π²ΠΈΠ½ΡΡΠ° Π³ΠΈΠΏΠΎΡΠ΅Π·Π°, ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡΡΠ°Ρ, ΡΡΠΎ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ Π‘Π°2+ Π² ΠΠ ΠΌΠΎΠΆΠ΅Ρ Π΄ΠΎΡΡΠ°Π²Π»ΡΡΡΡΡ ΠΈΠ· ΡΠ½Π΄ΠΎΡΠΎΠΌ ΠΏΡΠΈ ΡΡΠ°ΡΡΠΈΠΈ Π²Π΅Π·ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ°.
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- ΠΠ°Ρ Π°ΡΠΎΠ² Π.Π., ΠΠΎΠΆΠΈΠ½ Π‘. Π., ΠΠΎΠΆΠΈΠ½Π° Π’. Π., Π€Π΅Π΄ΠΎΡΠΎΠ²Π° Π. Π. Π‘Π±ΠΎΡΠ½ΠΈΠΊ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΠΏΠΎ Π³Π΅Π½Π΅ΡΠΈΠΊΠ΅ Π΄Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ-ΡΠ°Ρ Π°ΡΠΎΠΌΠΈΡΠ΅ΡΠΎΠ². // ΠΠ΅Π½ΠΈΠ½Π³ΡΠ°Π΄. ΠΠ°ΡΠΊΠ°. 1984.
- Π§Π΅ΡΠ΅Π½ΠΎΠ²Π° Π.Π. Π°-ΡΡΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΡΠ° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° Π‘ΠΠ 1 Π΄ΡΠΎΠΆΠΆΠ΅ΠΉ Hansenula polymorpha: Π‘ΡΡΡΠΊΡΡΡΠ½ΠΎ-ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡ ΠΈ ΡΠΎΠ»Ρ Π² Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·Π΅ ΠΊΠ°Π»ΡΡΠΈΡ// ΠΠ²ΡΠΎΡΠ΅ΡΠ΅ΡΠ°Ρ Π΄ΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΠΈ Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ° Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π°ΡΠΊ, ΠΠΈΠ½Π·Π΄ΡΠ°Π² Π Π€ Π ΠΠΠΠ ΠΠΠ ΠΠΎΡΠΊΠ²Π°. 2004.
- Agaphonov Π.Π., Beburov. M.Y., Ter-Avanesyan M.D., Smirnov V.N. A disruption-replacement approach for the targeted integration of foreign genes in Hansenula polymorpha. II Yeast. 1995. V. 11.№ 3:P. 1241−1247.
- Agostinho P., Oliveira C.R. Involvement of calcineurin in the neurotoxic effects induced by amyloid-beta and prion peptides. // European Journal of Neuroscience. 2003. V. 17 № 6. P. 11 891 196.
- Andrews N. C. Iron homeostasis: Insights from genetics and animal models. // Nature Reviews Genetics. 2000. V. 1. P. 208−217.
- Antebi A. and Fink G.R. The yeast Ca (2+)-ATPase homologue, Pmrl, is required for normal Golgi function and localizes in a novel Golgi-like distribution. // Molecular Biology of the Cell. 1992. V. 3№ 6.P. 633−654.
- Aragon T., van Anken E., Pincus D., Serafimova I.M., Korennykh A.V., Rubio C.A., and Walter P. mRNA targeting to ER stress signaling sites. //Nature. 2009. V. 457. № 7230. P. 736 740.
- Aramburu J., Rao A., Klee C.B. Calcineurin: From structure to function. // Curr. Top. Cell. Regul. 2000. V. 36. P. 237−295.
- Aridor M., Traub L.M. Cargo selection in vesicular transport: The making and breaking of a CoA. // Traffic. 2002. V. 3. № 8. P. 537−546.
- Asai A., Qiu J., Narita Y., Chi S., Saito N., Shinoura N., Hamada H., Kuchino Y., Kirino T. High level calcineurin activity predisposes neuronal cells to apoptosis. // The Journal of Biological Chemistry. 1999. V. 274. № 48. P. 34 450−34 458.
- Astrup T., Mullertz S. The fibrin plate method for estimating fibrinolytic activity. // Arch Biochem Biophys. 1952. V. 40. № 2. P. 346−351.
- Axelsen K.B., Palmgren M.G. Evolution of substrate specificities in the P-type ATPase superfamily. //Journal of Molecular Evolution. 1998. V. 46. № 1. P. 84−101.
- Axelsen K.B., Palmgren M.G. Inventory of the superfamily of P-type ion pumps in Arabidopsis. II Plant Physiology. 2001. V. 126. № 2. P. 696−706.
- Baksh S., Burns K., Andrin C., Michalak M. Interaction of calreticulin with protein disulfide isomerase. // The Journal ofBiological Chemistry. 1995. V. 270 № 52. P. 31 344.
- Balch W.E., McCaffery. J.M., Plutner H., Farquhar M.G. Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. // Cell. 1994. V. 76. № 5. P. 841−852.
- Ballou C. E. Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. // Methods Enzymol. 1990. V. 185. P. 440−470.
- Bankaitis V.A., Johnson L.M., Emr S.D. Isolation of yeast mutants defective in protein targeting to the vacuole. // Proc. Natl. Acad. Sci. USA. 1986. V. 83. № 23. P. 9075−9079.
- Bays N.W., Gardner R.G., Seelig L.P., Joazeiro C.A., Hampton R.Y. Hrdlp/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. // Nature Cell Biology. 2001. V. 3. № 1. P. 24−29.
- Beck R., Sun Z., Adolf F" Rutz C., Bassler J, Wild K., Sinning I., Hurt E., BrUgger B., Bethune J., and Wieland F. Membrane curvature induced by Arfl-GTP is essential for vesicle formation. // Proc. Nat. Acad. Sci. U.S.A. 2008. V. 105. № 33. P. 11 731.
- Belde P.J., Vossen J.H., Borst-Pauwels G.W., Theuvenet A.P. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae. II FEBS Letters. 1993. V. 323. № 1−2. P. 113−118.
- Bertolotti A., Zhang Y., Hendershot L.M., Harding H.P., Ron D. Dynamic interaction of Bip and ER stress transducers in the unfolded-protein response. // Nature Cell Biology. 2000. V. 2. № 6. P. 326−332.
- Bogdanova A.I., Agaphonov M.O., Ter-Avanesyan M.D. Plasmid reorganization during integrative transformation in Hansenulapolymorpha. II Yeast. 1995. V. 11. № 4. P. 343−353.
- Bogdanova A.I., Kustikova O.S., Agaphonov M.O., Ter-Avanesyan M.D. Sequences of Saccharomyces cerevisiae 1 microns DNA improving plasmid partitioning in Hansenula polymorpha. II Yeast. 1998. V. 14. № 1. P. 1−9.
- Bonifacino J.S., Wiessman A.M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. // Annual Review of Cell and Developmental Biology. 1998. V. 14. P. 19−57.
- Bonilla M., Nastase K.K., Cunningham K.W. Essential role of calcineurin in response to endoplasmic reticulum stress. //The EMBO Journal. 2002. V. 21 № 10. P. 2343−2353.
- Booher R.N., Deshaies R.J., Kirschner M.W. Properties of Saccharomyces cerevisiae Weel and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. // The EMBO Journal. 1993. V. 12 № 9. P. 3417−3426.
- Brewis I.A. Ferguson M.A., Mehlert A., Turner A.J., Hooper N.M. Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. // The Journal of Biological Chemistry. 1995. V. 270. P. 22 946−22 956.
- Brodsky J.L., McCraccken A.A. ER protein quality control and proteasome-mediated protein degradation. // Seminars in Cell & Developmental Biology. 1999. V. 10. № 5. P. 507−513.
- Brown D.A. and London E. Functions of lipid rafts in biological membranes. // Annual Review of Cell and Developmental Biology. 1998. V. 14. P. 111−136.
- Bryant N.J., Stevens Π’.Π. Vacuole biogenesis in Saccharomyces cerevisiae: Protein transport pathways to the yeast vacuole. // Microbiology and Molecular Biology Reviews. 1998. V. 62. № 1. P. 230−247.
- Burk S.E., Lytton J., MacLennan D.H., Shull G.E. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. // The Journal of Biological Chemistry. 1989. V. 264. № 31. P. 18 561−18 568.
- Button D., Eidsath A. Aequorin targeted to the endoplasmic reticulum reveals heterogeneity in luminal Ca++ concentration and reports agonist- or IP3-induced release of Ca++. // Molecular Biology of the Cell. 1996. V. 7. № 3. P. 419−434.
- Caldwell S.R., Hill K.J. and Cooper A.A. Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. // The Journal of Biological Chemistry. 2001. V. 276. P. 23 296−23 303.
- Carafoli E., Brini M. Calcium pumps: Structural basis for and mechanism of calcium transmembrane transport. // Current Opinion in Chemical Biology. 2000. V. 4. № 2. P. 152−161.
- Carvalho P., Stanley A.M., and Rapoport T.A. Retro-translocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrdlp. //Cell. 2010. V. 143. № 4. P. 579−591.
- Casadaban M.J., Martinez-Arias A., Shapira S.K., Chou J. Beta-galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. // Methods Enzymol. 1983. V. 100. P. 293−308.
- Ceccarelli B., Hurlbut W. P., Mauro A. Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation. // The Journal of Cell Biology. 1972. V. 54. β l.P. 30−38.
- Cellier M., Prive G., Belouchi A., Kwan T., Rodrigues V., Chia W., and Gros P. Nramp defines a family of membrane proteins. // Proc. Nat. Acad. Sci. USA. 1995. V. 92. № 22. P. 10 089−10 093.
- Chen X.-Z., Peng J.-B., Cohen A., Nelson H., Nelson N. and Hediger M.A. Yeast SMF1 mediates H±coupled iron uptake with concomitant uncoupled cation currents. // The Journal of Biological Chemistry. 1999. V. 274. № 49. P. 35 089−35 094.
- Christianson J.C., Shaler T.A., Tyler R.E., and Kopito R.R. OS-9 and GRP94 deliver mutant a 1-antitrypsin to the Hrdl-SELIL ubiquitin ligase complex for ERAD. // Nature Cell Biology. 2009. V. 10. № 3. P. 272−282.
- Clerc S., Hirsch C., Oggier D.M., Deprez P., Jakob C., Sommer T., and Aebi M. Html protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. //The Journal of Cell Biology. 2009. V. 184. β LP. 159−172.
- Clotet J., Escote X., Adrover M.A., Yaakov G., Gari E., Aldea M., de Nadal E., and Posas F. Phosphorylation of Hsll by Hogl leads to a G2 arrest essential for cell survival at high osmolarity. // The EMBO Journal. 2006. V. 25. № 11. P. 2338−2346.
- Clotet J., Posas F. Control of cell cycle in response to osmostress: Lessons from yeast. // Methods Enzymol. 2007. V. 428. P. 63−76.
- Cohen A., Nelson H. and Nelson N. The family of SMF metal ion transporters in yeast cells. //The Journal of Biological Chemistry. 2000. V. 275. № 43. P. 33 388−33 394.
- Courville P., Chaloupka R., Cellier M.F.M. Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. // Biochemistry and Cell Biology. 2006. V. 84. № 6. P. 960−978.
- Cowles C.R., Snyder W.B., Burd C.G., Emr S.D. Novel Golgi to vacuole delivery pathway in yeast: Identification of a sorting determinant and required transport component. // The EMBO Journal. 1997. V. 16. № 10. P. 2769−2782.
- Crabtree G.R. Calcium, calcineurin, and the control of transcription. // The Journal of Biological Chemistry. 2001. V. 276. № 4. P. 2313−2316.
- Cunningham K.W. and Fink G.R. Ca2+ transport in Saccharomyces cerevisiae. II The Journal of Experimental Biology. 1994a. V. 196. P. 157−166.
- Cunningham K.W. and Fink G.R. Calcineurin-dependent growth control in Saccharomyces2+ cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca ATPases. // The Journalof Cell Biology. 1994b. V. 124. № 3. P. 351−363.2+
- Cunningham K.W. and Fink G.R. Calcineurin inhibits VCX1-dependent H /Ca exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. II Molecular Biology of the Cell. 1996. V. 16. № 5. P. 2226−2237.
- Cyert M.S., Kunisawa R., Kaim D., Thorner J. Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc Natl Acad Sci USA. 1991. V. 88. № 16. P. 7376−7380.
- Dedhar S. Novel functions for calreticulin: Interaction with integrins and modulation of gene expression?//Trends Biochem Sci. 1994. V. 19. № 7. 2669−2671.
- Devasahayam G., Burke D.J., and Sturgill T.W. Golgi manganese transport is required for rapamycin signaling in Saccharomyces cerevisiae. II Genetics. 2007. V. 177. № 1. P. 231−238.
- Devasahayam G., Ritz D., Helliwell S.B., Burke D.J., and Sturgill T.W. Pmrl, a Golgi Ca2+/Mn2±ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast. // Proc. Nat. Acad. Sci. USA. 2006. V. 103. № 47. P. 17 840−17 845.
- Dill K.A., Chan H.S. From levinthal to pathways to funnels. // Nat Struct Biol. 1997. V. 4. № 1. P. 10−19.
- Duden R., Kajkawa L., Wuestehube L., Schekman R. Epsilon-COP is a structural component of coatomer that functions to stabilize alpha-COP. // The EMBO Journal. 1998. V. 17. № 4. P.985.995.
- Dunn T., Gable K., Beeler T. Regulation of cellular Ca2+ by yeast vacuoles. // The Journal of Biological Chemistry. 1994. V. 269. № 10. P. 7273−7278.
- Eguez L., Chung Y.-S., Kuchibhatla A., Paidhungat M. and Garrett S. Yeast Mn2+ transporter, Smflp, is regulated by ubiquitin-dependent vacuolar protein sorting. // Genetics. 2004. V. 167. № 1. P. 107−117.
- Eide D.J., Bridgham J.T., Zhao Z., Mattoon J.R. The vacuolar H (+)-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. // Mol Gen Genet. 1993. V. 241. № 3−4. P. 447−456.
- Farquhar R., Honey N., Murant S.J., Bossier P., Schultz L., Montgomery D., Ellis R.W., Freedman R.B., Tuite M.F. Protein disulfide isomerase is essential for viability in Saccharomyces cerevisiae. II Gene. 1991. V. 108. № 1. P. 81 -89.
- Ferguson M.A., Homans S.W., DwekR.A., Rademacher T.W. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. // Science. 1988. V. 239 № 4841. Pt. 1. P. 753−759.
- Fischer M., Schnell N., Chattaway J., Davies P., Dixon G., Sanders D. The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. // FEBS Letters. 1997. V. 419. № 2−3. P. 259−262.
- Forbes J.R. and Gros P. Divalent-metal transport by Nramp proteins at the interface of host-pathogen interactions. // Trends in Microbiology. 2001. V. 9. № 8. P. 397−403
- Friedlander R., Jarosch E., Urban J., Volkwein C., Sommer T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. // Nature Cell Biology. 2000. V. 2. № 7. P. 379−384.
- Gabriely G., Kama R., Gerst J.E. Involvement of specific COPI subunits in protein sorting from the late endosome to the vacuole in yeast. // Molecular and Cellular Biology. 2007. V. 27. № 2. P. 526−540.
- Gaynor E.C. and Emr S.D. COPI-independent anterograde transport: Cargo-selective ER to Golgi protein transport in yeast COPI mutants. // The Journal of Cell Biology. 1997. V. 136. JV"4 789−802.
- Gentzsch M. and Tanner W. Protein-O-glycosylation in yeast: Protein-specific mannosyltransferases. //Glycobiology. 1997. V. 7. № 4. P. 481−486.
- Gething M.J. and Sambrook J. Protein folding in the cell. // Nature. 1992. V. 355. № 6355. P. 33−45.
- Graham L.A., Hill K.J., Stevens T.H. Assembly of the yeast vacuolar H±ATPase occurs in the endoplasmic reticulum and requires a Vmal2p/Vma22p assembly complex. // The Journal of Cell Biology. 1998. V. 142. № 1. P. 39−49.
- Griffiths G. Gut thoughts on the Ggolgi complex. // Traffic. 2000. V. 1. № 9. P. 738−745.
- Groenendyk J., Lynch J., Michalak M. Calreticulin, Ca2+, and calcineurin signaling from the endoplasmic reticulum. //Molecular Cells. 2004. V. 17. № 3. P. 383−389.
- Gunshin H., Mackenzie B., Berger U.V., Gunshin Y., Romero M.F., Boron W.F., Nussberger S., Gollan J.L. & Hediger M.A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. // Nature. 1997. V. 388. P. 482−488.
- Gunteski-Hamblin A.M., Clarke D.M., Shull G.E. Molecular cloning and tissue distribution of alternatively spliced mRNAs encoding possible mammalian homologues of the yeast secretory pathway calcium pump. // Biochemistry. 1992. V. 31. № 33. P. 7600−7608.
- Haas I.G. and Wable M. Immunoglobulin heavy chain binding protein. // Nature. 1983. V. 306. № 5941. P. 387−389.
- Haynes C.M., Titus E.A., Cooper A.A. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. //Molecular Cell. 2004. V. 15. № 5. P. 767−776.
- Hebert D. N., Foellmer B., Helenius A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. II The EMBO Journal. 1996. V. 15. JV"12. 2961−2968.
- Herbert D. Phipps P.J., and Strange R.E. Chemical analysis of microbial cells. // Methods microbial. 1971. V. 5. P. 244−249.
- Hershko A., Ciechanover A. The ubiquitin system. // Annual Review of Biochemistry. 1998. V. 67. P. 425−479.
- Hicke L. A new ticket for entry into budding vesicles-ubiquitin. // Cell. 2001. V. 106. № 5. P. 527−530.
- Hille-Rehfeld A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes.//Biochim Biophys Acta. 1995. V. 1241. № 2. P. 177−194.
- Hiller M.M., Finger A., Schweiger M., Wolf D.H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. // Science. 1996. V. 273. № 5282. P. 1725−1728.
- Hirsch C., Blom D., and Ploegh. A role for N-glycanase in the cytosolic turnover of glycoproteins. //The EMBO Journal. 2003. V. 22. № 5. P. 1036−1046.
- Holkeri H., Makarow M. Different degradation pathways for heterologous glycoproteins in yeast. // FEBS Letters. 1998. V. 429. № 2. P. 162−166.
- Hollander I.J. Plasminogen activators and their potential in therapy. // Crit. Rev. Biotechnol. 1987. V. 6.№ 3.P. 253−271.
- Homans S.W., Ferguson M.A.J., Dwek R.A., Rademacher T.W., Anand R. and Williams A.F. Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. //Nature. 1988. V. 333. P. 269−272.
- Hong E., Davidson A.R., Kaiser C.A. A pathway for targeting soluble misfolded proteins to the yeast vacuole. // The Journal of Cell Biology. 1996. V. 135. № 3. P. 623−633.
- Hosokawa N., Wada I., Hasegawa K., Yorihuzi T., Tremblay L.O., Herscovics A., Nagata K. A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. // EMBO Reports. 2001. V. 2. № 5. P. 415−422.
- Huibregtse J.M., Scheffner M., Beaudenon S., Howley P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. // Proc. Nat. Acad. Sci. USA. 1995. V. 92. № 7. P. 2563−2567.
- Iida H., Nakamura H., Ono T., Okumura M.S., Anraku Y. MIDI, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. // Molecular and Cellular Biology. 1994. V 14. № 12. P. 8259−8271.
- Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids. // Gene. 1990. V. 96. № 1. P. 23−28.
- Iodice L., Sarnataro S., Bonatti S. The carboxyl-terminal valine is required for transport of glycoprotein CD8a from the endoplasmic reticulum to the intermediate compartment. // The Journal ofBiological Chemistry. 2001. V. 276. № 31. P. 28 920−28 926.
- Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. //Journal of Bacteriology. 1983. V. 153. № 1. P. 163−168.
- Jaiswal J.K., Rivera V.M., Simon S.M. Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. // Cell. 2009. V. 137. № 7. P. 1308−1319.
- Jakob C.A., Bodmer D., Spirig U., Battig P., Marcil A., Dignard D., Bergeron J.J., Thomas D.Y., Aebi M. Htmlp, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. // EMBO Reports. 2001. V. 2. № 5. P. 423−430.
- Jakob C.A. Burda P., te Heesen S., Aebi M., Roth J. Genetic tailoring of N-linked oligosaccharides: The role of glucose residues in glycoprotein processing of Saccharomyces cerevisiae in vivo. II Glycobiology. 1998. V. 8. № 2. P. 155−164.
- Jensen L.T., Carroll M.C., Hall M.D., Harvey C.J., Beese S.E., and Culotta V.C. Down-regulation of a manganese transporter in the face of metal toxicity. // Molecular Biology of the Cell. 2009. V. 20. № 12. P. 2810−2819.
- Jiang B., Sheraton J., Ram A.F., Dijkgraaf G.J., Klis F.M., Bussey H. CWH41 encodes a novel endoplasmic reticulum membrane N-glycoprotein involved in beta 1,6-glucan assembly. // Journal of Bacteriology. 1996. V. 178. № 4. P. 1162−1171.
- Johnson L.M., Bankaitis V.A., Emr S.D. Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. // Cell. 1987. V. 48. № 5. P. 875−885.
- Jones E.W. Vacuolar proteases and proteolytic artifacts in Saccharomyces cerevisiae. Methods Enzymol. 2002. V. 351. P. 127−150.
- Jones J.S. and Prakash L. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. // Yeast. 1990. V. 6. № 5. P. 363−366.
- Kang H.A., Kim J.Y., Ko S.M., Park C.S., Ryu D.D., Sohn J.H., Choi E.S., Rhee S.K. Cloning and characterization of the Hansenula polymorpha homologue of the Saccharomyces cerevisiae PMR1 gene. //Yeast. 1998. V. 14. № 13. P. 1233−1240.
- Kawaguchi S., Hsu C.-L., Ng D.T.W. Interplay of substrate retention and export signals in endoplasmic reticulum quality control. //PLoS ONE. 2010. V. 5. № 11. P. 1−14.
- Kawasaki H., Kurosu Y., Kasai H., Isobe T. and Okuyama T. Limited digestion of calmodulin with trypsin in the presence or absence of various metal ions. // The Journal of Biochemistry. 1986. V. 99. № 5. P. 1409−1416.
- Keller C.H., LaPorte D.C., Toscano W.A.Jr., Storm D.R., Westcott K.R. Ca2+ regulation of cyclic nucleotide metabolism. // Annals of the New York Academy of Sciences. 1980. V. 356. P. 205−219.
- Kim M.W., Agaphonov M.O., Kim J.Y., Rhee S.K., Kang H.A. Sequencing and functional analysis of the Hansenula polymorpha genomic fragment containing the YPT1 and PMI40 genes. //Yeast. 2002. V. 19. № 10. 863−871.
- Kimata Y., Oikawa D., Shimizu Y., Ishiwata-Kimata Y., Kohno K. A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Irel. // The Journal of Cell Biology. 2004. V. 167. № 3. P. 445−456.
- Kirchhausen T. Clathrin. // Annual Review of Biochemistry. 2000. V. 69. P. 699−727.
- Klionsky D.J., Erm S.D. A new class of lysosomal/vacuolar protein sorting signals. // The Journal of Biological Chemistry. 1990. V. 265. № 10. P. 5349−5352.
- Knop M., Finger A., Braun T., Hellmuth K., Wolf D.H. Deri, a novel protein specifically required for endoplasmic reticulum degradation in yeast. // The EMBO Journal. 1996. V. 15. № 4. P. 753−763.
- Knop M., Hauser N., Wolf D.H. N-glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. // Yeast. 1996. V. 12. № 12. P. 12 291 238.
- Korennykh A.V., Egea P.F., Korostelev A.A., Finer-Moore J., Zhang C., Shokat K.M., Stroud R.M., and Walter P. The unfolded protein response signals through high-order assembly of Irel. //Nature. 2009. V. 457. № 7230. P. 687−693.
- Kreis T.E., Lowe M., and Pepperkok R. COPs regulating membrane traffic. // Annual Review of Cell and Developmental Biology. 1995. V. 11. P. 677−706.
- Kuehn M.J., Herrmann J.M., Schekman R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. //Nature. 1998. V. 391. № 6663. P. 187−190.
- Kurtzman C.P. A new methanol assimilating yeast, Ogataea parapolymorpha, the ascosporic state of Candida parapolymorpha. II Antonie Van Leeuwenhoek. 2011. V. 100. № 3. P. 455−462.
- Kusakawa G., Saito T., Onuki R., Ishiguro K., Kishimoto T., Hisanaga S. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. // The Journal of Biological Chemistry. 2000. V. 275. № 22. P. 17 166−17 172.
- Kushnirov V.V. Rapid and reliable protein extraction from yeast. // Yeast. 2000. V. 16. № 9. P. 857−860.
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. //Nature. 1970. V. 227. № 5259. P. 680−685.
- Lai M.M., Burnett P.E., Wolosker H., Blackshaw S., Snyder S.H. Cain, a novel physiologic protein inhibitor of calcineurin. // The Journal of Biological Chemistry. 1998. V. 273. № 29. P. 18 325−18 331.
- Lapinskas P.J., Cunningham K.W., Liu X.F., Fink G.R., and Culotta V.C. Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase. // Molecular and Cellular Biology. 1995. V. 15. № 3. 1382−1388.
- Lee M.C.S., Orci L., Hamamoto S., Futai E., Ravazzola M. and Schekman R. Sarlp N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. // Cell. 2005. V. 122. № 4. P. 605−617.
- Li L., Chen O.S., Ward D.M. and Kaplan J. CCC1 is a transporter that mediates vacuolar iron storage in yeast. //The Journal ofBiological Chemistry. 2001. V. 26. № 31. P. 29 515−29 519.
- Lijnen H. R. and Collen D. Strategies for the improvement of thrombolytic agents. // Thromb Haemost. 1991. V. 66. № 1. 88−110.
- Lilley B.N. and Ploegh H.L. A membrane protein required for dislocation of misfolded proteins from the ER. // Nature. 2004. V. 42. P. 834−840.
- Lilley B.N. and Ploegh H.L. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. // Proc. Nat. Acad. Sci. USA. 2005. V. 102. № 40. P. 14 296−14 301.
- Lin S.J. and Culotta V.C. Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles. // Molecular and Cellular Biology. 1996. V. 16. № 11. P. 6303−6312.
- Liu X.F., Supek F., Nelson N. and Culotta V.C. Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. // The Journal ofBiological Chemistry. 1997. V. 272. № 18. P. 11 763−11 769.
- Liu X.F. and Culotta V.C. Mutational analysis of Saccharomyces cerevisiae Smflp, a member of the Nramp family of metal transporters. // Journal of Molecular Biology. 1999a. V. 289. № 4. P. 885−891
- Liu X.F. and Culotta V.C. Post-translation control of Nramp metal transport in yeast. Role of metal ions and the BSD2 gene. // The Journal ofBiological Chemistry. 1999b. V. 274 № 8. P. 4863−4868.
- Locke E.G., Bonilla M., Liang L., Takita Y., and Cunningham K.W. A homolog of voltage-gated cachannels stimulated by depletion of secretory Ca in yeast. // Molecular and Cellular Biology. 2000. V. 20. № 18. P. 6686−6694.
- Loukin S. and Kung C. Manganese effectively supports yeast cell-cycle progression in place of calcium. // The Journal of Cell Biology. 1995. V. 131. № 4. P. 1025−1037.
- Love H.D., Lin C.-C., Short C.S., and Ostermann J. Isolation of functional Golgi-derived vesicles with a possible role in retrograde transport. // The Journal of Cell Biology. 1998. V. 140. № 3. P. 541−551.
- Luk E.E. and Culotta V.C. Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. The Journal of Biological Chemistry. 2001. V. 276. № 50. P. 47 556−47 562.
- Luk E., Yang M., Jensen L. T., Bourbonnais Y. and Culotta V. C. Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae. II The Journal of Biological Chemistry. 2005. V. 280. № 24. P. 22 715−22 720.
- Lundmark R., Doherty G.J., Vallis Y., Peter B. J., and McMahon H.T. Arf family GTP loading is activated by, and generates, positive membrane curvature. // Biochemical Journal. V. 414. Pt. 2. P. 189−194.
- Luo Z. and Gallwitz D. Biochemical and genetic evidence for the involvement of yeast Ypt6-GTPase in protein retrieval to different Golgi compartments. The Journal of Biological Chemistry. V. 278. № 2. P. 791−799.
- Ma X.-J., Lu Q., and Grunstein M. A search for proteins that interact genetically with histone H3 and H4 amino termini uncovers novel regulators of the Swel kinase in Saccharomyces cerevisiae. Genes & Development. 1996. V. 10. № 11. P. 1327−1340.
- Marchi V., Sorin A., Wei Y., Rao R. Induction of vacuolar Ca2±ATPase and H+/Ca2+ exchange activity in yeast mutants lacking Pmrl, the Golgi Ca2±ATPase. // FEBS Letters. 1999. V. 454. № 3. P. 181−183.
- Marcusson E.G., Horazdovsky B.F., Cereghino J.L., Gharakhanian E., Emr S.D. The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. // Cell. 1994. V. 77. № 4. P. 579−586.
- Marsh B.J., Volkmann N., Mcintosh J.R., and Howell K.E. Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. // Proc. Nat. Acad. Sci. USA. 2004. V. 101. № 15. P. 5565−5570.
- Matheos D.P., Kingsbury T.J., Ahsan U.S., and Cunningham K.W. Tcnlp/Crzlp, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes & Development. 1997. V. 11. № 24. P. 3445−3458.
- McCracken A.A., Brodsky J.L. Assembly of ER-associated protein degradation in vitro: Dependence on cytosol, calnexin, and ATP. // The Journal of Cell Biology. 1996. V. 132. № 3. P. 291−298.
- Medicherla B., Kostova Z., Schaefer A., and Wolf D.H. A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. // The EMBO Journal. 2004. V. 5. № 7. P. 692−697.
- Meldolesi J. and Pozzan T. The endoplasmic reticulum Ca2+ store: A view from the lumen. //Trends in Biochemical Sciences. 1998. V. 23. № 1. P. 10−14.
- Meyer C., Zizioli D., Lausmann S., Eskelinen E.L., Hamann J., Safitig P., von Figura K., Schu P. mul A-adaptin-deficient mice: Lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. The EMBO Journal. 19. № 10. P. 2193−2203.
- Micaroni M., Perinetti G., Di Giandomenico D., Bianchi, K., Spaar, A., Mironov, A. A. Synchronous intra-Golgi transport induces the release of Ca2+ from the Golgi apparatus. // Experimental Cell Research. 2010. V. 316. № 13. P. 2071−2086.
- Mironov A.A., Weidman P., and Luini A. Variations on the intracellular transport theme: Maturing cisternae and trafficking tubules. // The Journal of Cell Biology. 1997. V. 138. № 3. P. 481−484.
- Mironov A.Jr., Luinia A., and Mironov A. A synthetic model of intra-Golgi traffic. // The FASEB Journal. 1998. V. 12. P. 249−252.
- Mironov A.A., Beznoussenko G. V, Polishchuk R.S., Trucco A. Intra-Golgi transport: A way to a new paradigm? // Biochimica et Biophysica Acta. 2005. V. 1744. № 3. P. 340−350.
- Mironov A.A., Beznoussenko G.V., Polishchuk R.S., Trucco A. The Kiss-and-Run Model of Intra-Golgi Transport // Internationa Journal of Molecular Sciences. 2012. V. 13. № 6. P. 6800−6819.
- Miyawaki A., Llopis J., Heim R., McCaffery J.M., Adams J.A., Ikura M., Tsien R.Y. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. // Nature. 1997. V. 388. № 6645. P. 882−887.
- Mizunuma M., Hirata D., Miyahara K., Tsuchiya E. and Miyakawa T. Role of calcineurin and Mpkl in regulating the onset of mitosis in budding yeast. //Nature. 1998. V. 392. № 6673. P. 303−306.
- Mizunuma M., Hirata D., Miyaoka R., and Miyakawa T. Gsk-3 kinase Mckl and calcineurin coordinately mediate Hsll down-regulation by Ca2+ in budding yeast. // The EMBO Journal. 2001. V. 20. № 5. P. 1074 1085.
- Mizunuma M., Miyamura K., Hirata D., Yokoyama H., and Miyakawa T. Involvement of S-adenosylmethionine in G1 cell-cycle regulation in Saccharomyces cerevisiae. Proc. Nat. Acad. Sci. USA. 2004. V. 101. № 16. P. 6086−6091.
- Mizunuma M., Hirata D., and Miyakawa T. Implication of Pkclp protein kinase C in sustaining Cln2p level and polarized bud growth in response to calcium signaling in Saccharomyces cerevisiae. II Journal of Cell Science. 2005. V. 118. № 18. P. 4219−4229.
- Mori K. Signalling pathways in the unfolded protein response: Development from yeast to mammals. // The Journal of Biochemistry. 2009. V. 46. № 6. P. 743−750.
- Munro S. and Pelham H.R. An Hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. // Cell. 1986. V. 46. № 2.291−300.
- Nelson N. Metal ion transporters and homeostasis. // The EMBO Journal. 1999. V. 18. № 16. P. 4361 -4371.
- Neufeld T.P. Tor regulation: Sorting out the answers. // Cell Metabolism. 2007. V. 5№ 1. P. 3−5.
- Ng D.T., Brown J.D., Walter P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. // The Journal of Cell Biology. 1996. V. 134. № 2. P. 269−278.
- Nie Z., Hirsch D.S., and Randazzo P.A. Arf and its many interactors. // Current Opinion in Cell Biology. 2003. V. 15. № 4. P. 396−404.
- Nikko E., Sullivan J.A., Pelham H.R. Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smfl. // EMBO Reports. 2008. V. 9. № 12. P. 12 161 221.
- Nufer O., Guldbrandsen S., Degen M., Kappeler F., Paccaud J.P., Tani K., Hauri H.P. Role of cytoplasmic C-terminal amino acids of membrane proteins in ER export. // Journal of Cell Science. 2002. V. 115. Pt. 3. P. 619−628.
- O’Rourke S.M. and Herskowitz I. The Hogl MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes & Development. 1998. V. 12. № 18. P. 2874−2886.
- Oliver J.D. Roderick H.L., Llewellyn D.H., High S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. // Molecular Biology of the Cell. 1999. V. 10. № 8. P. 2573−2582.
- Orci L., Glick B.S., Rothman J.E. A new type of coated vesicular carrier that appears not to contain clathrin: Its possible role in protein transport within the Golgi stack. // Cell. 1986. V. 46. № 2. P. 171−184.
- Orci L., Stamnes M., Ravazzola M., Amherdt M., Perrelet A., Sollner T.H., Rothman J.E. Bidirectional transport by distinct populations of COPI-coated vesicles. // Cell. 1997. V. 90. № 2. P. 335−349.
- Paidhungat M., and Garrett S. A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdcl (ts) growth defect. // Molecular and Cellular Biology. V. 17. № 11. P. 6339−6347.
- Palade G. Intracellular aspects of the process of protein synthesis. // Science. V. 189. № 4200. P. 347−358.
- Palmer C.P., Zhou X.L., Lin J., Loukin S.H., Kung C., Saimi Y. A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca (2+)-permeable channel in the yeast vacuolar membrane. // Proc. Nat. Acad. Sei. USA. 2001. V. 98. № 14. P. 7801−7805.
- Parodi A.J. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. //Biochemical Journal. 2000. V. 348. № 1. P. 1−13.
- Pelham H.R. Insights from yeast endosomes. //Current Opinion in Cell Biology. 2002. V. 14. № 4. P. 454−462.
- Pilon M., Schekman R. and Romisch K. Secolp mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. // The EMBO Journal. 1997. V. 16. № 15. P. 4540 -4548.
- Pincus D., Chevalier M.W., Aragon T., van Anken E., Vidal S.E., El-Samad H., and Walter P. BiP binding to the ER-stress sensor Irel tunes the homeostatic behavior of the unfolded protein response. // PLoS Biology. 2010. V. 8. № 7. el000415.
- Pinton P., Pozzan T., Rizzuto R. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. //The EMBO Journal. 1998. V. 17№ 18. P. 5298−5308.
- Piper R.C., Bryant N.J., Stevens T.H. The membrane protein alkaline phosphatase is delivered to the vacuole by a route that is distinct from the VPS-dependent pathway. // The Journal of Cell Biology. 1997. V. 138. № 3. P. 531−545.
- Plemper R. K., Bohmler S., Bordallo J., Sommer T. and Wolf D.H. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. // Nature. 1997. V. 388. P. 891−895.
- Portnoy M.E., Jensen L.T., and Culotta V.C. The distinct methods by which manganese and iron regulate the Nramp transporters in yeast. // Biochemical Journal. 2002. V. 362. № 1. P. 119 124.
- Portnoy M.E., Liu X.F., and Culotta V.C. Saccharomyces cerevisiae expresses three functionally distinct homologues of the Nramp family of metal transporters. // Molecular and Cellular Biology. 2000. V. 20. № 21. P. 7893−7902.
- Pozniakovsky A.I., Knorre D.A., Markova O.V., Hyman A.A., Skulachev V.P., Severin F.F. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. // The Journal of Cell Biology. V. 168. № 2. P. 257−269.
- Pozos T.C., Sekler I., Cyert M.S. The product of HUM1, a novel yeast gene, is required for vacuolar Ca2+/H+ exchange and is related to mammalian Na+/Ca2+ exchangers. // Molecular Biology of the Cell. 1996. V. 16. № 7. P. 3730−3741.
- Ramsay L.M. and Gadd G.M. Mutants of Sacchciromyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. // FEMS Microbiol Lett 1997. V. 152. № 2. P. 293−298.
- Ray M.K., Yang J., Sundaram S., Stanley P. A novel glycosylation phenotype expressed by Lec23, a Chinese hamster ovary mutant deficient in alpha-glucosidase I. // The Journal of Biological Chemistry. 1991. V. 266. № 34. P. 22 818−22 825.
- Reddi A.R., Jensen L.T., and Culotta V.C. Manganese homeostasis in Saccharomyces cerevisiae. II Chemical Reviews. 2009a. V. 109. № 101. P. 4722−4732.
- Reddi A.R. Jensen L.T., Naranuntarat A., Rosenfeld L., Leung E., Shah R., and Culotta V.C. The overlapping roles of manganese and Cu/Zn Sod in oxidative stress protection. // Free Radical Biology and Medicine. 2009b. V. 46. № 2. P. 154−162.
- Reitman M.L. Trowbridge I.S., Kornfeld S. A lectin-resistant mouse lymphoma cell line is deficient in glucosidase II, a glycoprotein-processing enzyme. // The Journal of Biological Chemistry. V. 257. № 17. P. 10 357−10 363.
- Rexach M.F., Latterich. M., Schekman R.W. Characteristics of endoplasmic reticulum-derived transport vesicles. // The Journal of Cell Biology. V. 126. № 5. P. 1133−1148.
- Roberts R.L., Barbieri M.A., Pryse K.M., Chua M., Morisaki J.H., Stahl P.D. Endosome fusion in living cells overexpressing GFP-rab5. // The Journal of Cell Science. 1999. V. 112. № 21. P. 3667−3675.
- Rohde J.R., Bastidas R., Puria R., and Cardenas M.E. Nutritional control via Tor signaling in Saccharomyces cerevisiae. II Current Opinion in Microbiology. 2008. V. 11. № 2. P. 153−160.
- Romanos M.A., Scorer C.A., Clare J.J. Foreign gene expression in yeast: A review. // Yeast. 1992. V. 8. № 6. P. 423−488.
- Romero P.A., Dijkgraaf G.J., Shahinian S., Herscovics A., Bussey H. The yeast CWH41 gene encodes glucosidase I. // Glycobiology. 1997. V. 7. № 7. P. 997−1004.
- Ron D. and Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. //Nature Reviews Molecular Cell Biology. 2007. V. 8. № 7. P. 519−529.
- Rose M.D., Misra. L.M., Vogel J.P. Kar2, a karyogamy gene, is the yeast homolog of the mammalian BiPIGRP78 gene. // Cell. 1989. V. 57. № 7. P. 1211−1221.
- Rothman J.H. and Stevens T.H. Protein sorting in yeast: Mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. // Cell. 1986. V. 47. № 6. P. 1041−1051.
- Rothman J.H., Howald I., Stevens T.H. Characterization of genes required for protein sorting and vacuolar function in the yeast Saccharomyces cerevisiae. // The EMBO Journal. 1989. V. 8. № 7. P. 2057−2065.
- Rothman J.E. and Wieland F.T. Protein sorting by transport vesicles. // Science. 1996. V. 272. № 5259. P. 227−234.
- Rudolph H.K., Antebi A., Fink G.R., Buckley C.M., Dorman T.E., LeVitre J., Davidow L.S., Mao J. and Moir D.T. The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ATPase family. //Cell. 1989. V. 58. № 1. P. 133−145.
- Rutkowski D.T. and Hegde R.S. Regulation of basal cellular physiology by the homeostatic unfolded protein response. // The Journal of Cell Biology. 2010. V. 189. № 5. P. 783−794.
- Scarborough G. A. Structure and function of the P-type atpases. // Current Opinion in Cell Biology. 1999. V. 11 № 4. P. 517−522.
- Schekman R., Orci L. Coat proteins and vesicle budding. // Science. 1996. V. 271. № 5255. P. 1526−1533.
- Scott D.C. and Schekman R. Role of Sec61p in the ER-associated degradation of shortlived transmembrane proteins. // The Journal of Cell Biology. V. 181. № 7. P. 1095−1105.
- Seeger M. and Payne G.S. A role for clathrin in the sorting of vacuolar proteins in the Golgi complex of yeast.// The EMBO Journal. 1992. V. 11. № 8. P. 2811−2818.
- Simons K. and Toomre D. Lipid rafts and signal transduction. // Nature Reviews Molecular Cell Biology. 2000. V. 1. № 1. P. 31−39.
- Singh A., Kaur N. and Kosman D.J. The metalloreductase Fre6p in Fe-efflux from the yeast vacuole. //The Journal of Biological Chemistry. 2007. V. 282. № 39. P. 28 619−28 626.
- Sipos G., Puoti A., Conzelmann A. Glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae: Absence of ceramides from complete precursor glycolipids. // The EMBO Journal. V. 13. № 12. P. 2789−2796.
- Slepnev V.I. and De Camilli P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. // Nature Reviews Neuroscience. 2000. V. 1. P. 161−172.
- Sohn J.H., Choi E.S., Kang H.A., Rhee J.S., Agaphonov M.O., Ter-Avanesyan M.D., Rhee S.K. A dominant selection system designed for copy-number-controlled gene integration in
- Hansenula polymorpha DL-1. // Applied Microbiology and Biotechnology. 1999. V. 51. № 6 P 800−807.
- Spang A., Matsuoka K., Hamamoto S., Schekman R., and Orci L. Coatomer, Arflp, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. //Proc. Nat. Acad. Sci. USA. 1998. V. 95. № 19. P. 11 199−11 204.
- Spang A. ARF1 regulatory factors and COPI vesicle formation. // Current Opinion in Cell Biology. 2002. V. 14. № 4. P. 423−427.
- Spear E.D. and Ng D.T.W. Stress tolerance of misfolded carboxypeptidase Y requires maintenance of protein trafficking and degradative pathways. // Molecular Biology of the Cell. 2003. V. 14. № 7. P. 2756−2767.
- Stathopoulos A.M. and Cyert M.S. Calcineurin acts through the CRZ1 /TCN1 -encoded transcription factor to regulate gene expression in yeast. // Genes & Development. 1997. V. 11. № 24. P. 3432−3444.
- Stimpson H.E.M., Lewis M.J. and Pelham H.R.B. Transferrin receptor-like proteins control the degradation of a yeast metal transporter. // The EMBO Journal. 2006. V. 25. № 4. P. 662 -672.
- Strahl-Bolsinger S., Gentzsch M., Tanner W. Protein O-mannosylation. // Biochimica et Biophysica Acta. V. 1426. № 2. P. 297−307.
- Strayle J., Pozzan Π’., Rudolph H.K. Steady-state free Ca (2+) in the yeast endoplasmic reticulum reaches only 10 microM and is mainly controlled by the secretory pathway pump Pmrl. The EMBO Journal. 1999. V. 18. β.17. P. 4733−4743.
- Strom M., Vollmer P., Tan T. J, Gallwitz D. A yeast gtpase-activating protein that interacts specifically with a member ofthe Ypt/Rab family. //Nature. 1993. V. 361. № 6414. P. 736−739.
- Sullivan J.A., Lewis M.J., Nikko E., and Pelham H.R.B. Multiple interactions drive adaptor-mediated recruitment of the ubiquitin ligase Rsp5 to membrane proteins in vivo and in vitro. II Molecular Biology ofthe Cell. 2007. V. 18. № 7. 2429−2440.
- Suzuki Π’., Park. H., Hollingsworth N.M., Sternglanz R., and Lennarz W.J. PNG1, a yeast gene encoding a highly conserved peptide: N-glycanase. // The Journal of Cell Biology. 2000. V. 149. № 5. P. 1039−1052.
- Swanson R., Locher M., Hochstrasser M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and matalpha2 repressor .
- Tachibana C. and Stevens Π’.Π. The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. // Molecular and Cellular Biology. 1992. V. 12. № 10. P. 4601−4611.
- Tachikawa H., Miura Π’., Katakura Y., Mizunaga T. Molecular structure of a yeast gene, PDI1, encoding protein disulfide isomerase that is essential for cell growth. // The Journal of Biochemistry. 1991. V. 110. № 2. P. 306−313.
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. // Proc. Nat. Acad. Sci. USA. 1979. V. 76. № 9. P. 4350−4354.
- Trimble R.B. and Atkinson P.H. Structural heterogeneity in the Man8−13GlcNAc oligosaccharides from log-phase saccharomyces yeast: A one- and two-dimensional 1H NMR spectroscopic study. // Glycobiology. 1992. V. 2. № 1. 57−75.
- Urbanowski J.L. and Piper R.C. The iron transporter Fthlp forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. // The Journal of Biological Chemistry. 1999. V. 274. № 53. P. 38 061−38 070.
- Vairo M.L.R. and Borzani W. Precise Adsorption Method for Measuring the Percentage of Dead Bacterial Cells. //Applied Microbiology. 1962. V. 10. № 6. P. 500−503.
- Vails L.A., Winther J.R., Stevens T.H. Yeast carboxypeptidase Y vacuolar targeting signal is defined by four propeptide amino acids. // The Journal of Cell Biology. 1990. V. 111. № 2. P. 361−368.
- Vashist S., Kim W., Belden W.J., Spear E.D., Barlowe C., and Ng D.T.W. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. // The Journal of Cell Biology. V. 155. № 3. P. 355−368.
- Veale R.A., Giuseppin M.L., van Eijk H.M., Sudbery P.E., Verrips C.T. Development of a strain of Hansenula polymorpha for the efficient expression of guar alpha-galactosidase. // Yeast. 1992. V. 8. № 5. P. 361−372.
- Vidal S.M., Malo D., Vogan K., Skamene E. and Gros P. Natural resistance to infection with intracellular parasites: Isolation of a candidate for Beg. // Cell. 1993. V. 73. № 3. P. 469 485.
- Walter P., Lingappa V.R. Mechanism of protein translocation across the endoplasmic reticulum membrane. // Annual Review of Cell Biology. 1986. V. 2. P. 499−516.
- Wang C., Eufemi M., Turano C., Giartosio A. Influence of the carbohydrate moiety on the stability of glycoproteins. // Biochemistry. 1996. V. 35. № 23. P. 7299−7307.
- Wei Y. M. V., Wang R., and Rao R. (1999). An n-terminal ef hand-like motif modulates ion transport by pmrl, the yeast golgi ca2+/mn2±atpase. Biochemistry 38(44): 14 534−14 541.
- Werner E.D., Brodsky J.L., McCracken A.A. Proteasome-dependent endoplasmic reticulum-associated protein degradation: An unconventional route to a familiar fate. // Proc. Nat. Acad. Sei. USA. V. 93. № 24. P. 13 797−13 801.
- Wiertz E., Tortorella D., Bogyo M., Yu J., Mothes W., Jones T.R., Rapoport T.A. & Ploegh H.L. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. //Nature. 1996. V. 384. P. 432 438.
- Williams R.J.P. Free manganese (II) and iron (II) cations can act as intracellular cell controls. //FEBS Letters. 1982. V. 140. № 1. P. 3−10.
- Wilson S. P. and Kirshner N. Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells. // The Journal of Biological Chemistry. 1983. V. 258. № 8. P. 4994−5000.
- YaDeau J.T., Klein C., Blobel G. Yeast signal peptidase contains a glycoprotein and the Seel 1 gene product. Proc. Nat. Acad. Sei. USA. 1991. V. 88. № 2. P. 517−521.
- Yamamoto K., Fujii R., Toyofuku Y., Saito T., Koseki H., Hsu V.W., and Aoe T. The KDEL receptor mediates a retrieval mechanism that contributes to quality control at the endoplasmic reticulum. //The EMBO Journal. 2001. V. 20. β.12. P. 3082−3091.
- Yang M., Jensen L.T., Gardner A.J., and Culotta V.C. Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family. // Biochemical Journal. 2005. V. 386. P. 47987.
- Yokoyama H., Mizunuma M., Okamoto M., Yamamoto J., Hirata D., and Miyakawa T. Involvement of calcineurin-dependent degradation of Yaplp in Ca2±induced G2 cell-cycle regulation in Saccharomyces cerevisiae. II EMBO Reports. V. 7. № 5. P. 519−524.
- Zhao C., Jung U.S., Garrett-Engele P., Roe T., Cyert M.S., and Levin D.E. Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. // Molecular and Cellular Biology. 1998. V. 18. № 2. P. 1013−1022.
- Ziegler F.D., Gemmil T.R., Trimble R.B. Glycoprotein synthesis in yeast. Early events in N-linked oligosaccharide processing in Schizosaccharomyces pombe. II The Journal of Biological Chemistry. 1994. V. 269. № 17. P. 12 527−12 535.1. ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΠ½ΠΎΡΡΠΈ
- ΠΠ»ΡΠ±ΠΎΠΊΠΎ ΠΏΡΠΈΠ·Π½Π°ΡΠ΅Π»ΡΠ½Π° Π·Π°Π²Π΅Π΄ΡΡΡΠ΅ΠΌΡ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠ΅ΠΉ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π³Π΅Π½Π΅ΡΠΈΠΊΠΈ Π.Π. Π’Π΅Ρ-ΠΠ²Π°Π½Π΅ΡΡΠ½Ρ Π·Π° ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠ°Π±ΠΎΡΡ ΠΈ ΡΠΎΠ²Π΅ΡΡ.
- ΠΡΠ΄Π΅Π»ΡΠ½Π°Ρ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΠ½ΠΎΡΡΡ Π²ΡΠ΅ΠΌ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»ΡΠΌ ΠΠ°ΡΠ΅Π΄ΡΡ Π±ΠΈΠΎΡ ΠΈΠΌΠΈΠΈ ΠΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠ»ΡΡΠ΅ΡΠ° ΠΠΠ£ ΠΈΠΌ. Π. Π. ΠΠΎΠΌΠΎΠ½ΠΎΡΠΎΠ²Π° Π·Π° Π±Π΅ΡΡΠ΅Π½Π½ΡΠ΅ Π·Π½Π°Π½ΠΈΡ ΠΈ ΠΎΠΏΡΡ. Π’ΠΎ, ΡΡΠΎ ΠΌΠ½Π΅ Π΄ΠΎΠ²Π΅Π»ΠΎΡΡ ΡΡΠΈΡΡΡΡ Ρ Π·Π°Π²Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅Π΄ΡΠΎΠΉ Π. Π. ΠΡΡΠ΅Π²Π°, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠΌ ΠΌΠΎΠ΅ΠΉ Π±ΠΎΠ»ΡΡΠΎΠΉ Π³ΠΎΡΠ΄ΠΎΡΡΠΈ.