Π”ΠΈΠΏΠ»ΠΎΠΌ, курсовая, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°
ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚

ГСнСтичСский ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ гомСостаза ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Ρ€ΠΎΠ΄Π° Ogataea

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π’ ΠΆΠΈΠ²ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ происходит ΠΎΠ³Ρ€ΠΎΠΌΠ½ΠΎΠ΅ количСство Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΡΠ±Π°Π»Π°Π½ΡΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… процСссов. И Π²ΡΠ΅ эти Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌ количСством Π±Π΅Π»ΠΊΠΎΠ². НапримСр, Π² Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ синтСзируСтся всСго ΠΎΠΊΠΎΠ»ΠΎ 6000 Π±Π΅Π»ΠΊΠΎΠ². Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ поддСрТания большого количСства слоТных процСссов ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌ количСством ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ²… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок сокращСний

ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. ΠšΠ°Π»ΡŒΡ†ΠΈΠΉ Π² ΡΠ΅ΠΊΡ€Π΅Ρ‚ΠΎΡ€Π½ΠΎΠΌ ΠΏΡƒΡ‚ΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ: ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ баланса Π² ΠΎΡ€Π³Π°Π½Π΅Π»Π»Π°Ρ… ΠΈ ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ сСкрСции Π±Π΅Π»ΠΊΠ°.

1. Π­Ρ‚Π°ΠΏΡ‹ сСкрСции Π±Π΅Π»ΠΊΠΎΠ².

1.1. Вранслокация Π±Π΅Π»ΠΊΠ° ΠΈΠ· Ρ†ΠΈΡ‚озоля Π² ΡΠ½Π΄ΠΎΠΏΠ»Π°Π·ΠΌΠ°Ρ‚ичСский Ρ€Π΅Ρ‚ΠΈΠΊΡƒΠ»ΡƒΠΌ (Π­Π ).

1.2. Π“Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅.

1.2.1. N-Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅.

1.2.2. О-Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅.

1.2.3. ΠŸΡ€ΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»Ρ„ΠΎΡΡ„Π°Ρ‚ΠΈΠ΄ΠΈΠ»ΠΈΠ½ΠΎΠ·ΠΈΡ‚ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ якоря.

1.3. Π£ΠΊΠ»Π°Π΄ΠΊΠ° Π±Π΅Π»ΠΊΠΎΠ² ΠΈ ΡΠ±ΠΎΡ€ΠΊΠ° Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… комплСксов Π² Π­Π .

1.4. ВнутриклСточная систСма транспорта сСкрСторных Π±Π΅Π»ΠΊΠΎΠ².

1.4.1. ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ‹ окаймлСния БОРИ ΠΈ Π‘ОРВ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Ρ‚ранспортС Π±Π΅Π»ΠΊΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρƒ Π­Π  ΠΈ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠΌ Π“ΠΎΠ»ΡŒΠ΄ΠΆΠΈ.

1.4.2. Вранспорт сСкрСтируСмых Π±Π΅Π»ΠΊΠΎΠ² Ρ‡Π΅Ρ€Π΅Π· Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ Π“ΠΎΠ»ΡŒΠ΄ΠΆΠΈ.

1.4.3. ΠšΠ»Π°Ρ‚Ρ€ΠΈΠ½ΠΎΠ²ΠΎΠ΅ ΠΎΠΊΠ°ΠΉΠΌΠ»Π΅Π½ΠΈΠ΅ участвуСт Π² Ρ‚ранспортС Π±Π΅Π»ΠΊΠΎΠ² ΠΈΠ· ΠΏΠΎΠ·Π΄Π½ΠΈΡ… ΠΊΠΎΠΌΠΏΠ°Ρ€Ρ‚ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° Π“ΠΎΠ»ΡŒΠ΄ΠΆΠΈ Π² Π»ΠΈΠ·ΠΎΡΠΎΠΌΡ‹ (Π²Π°ΠΊΡƒΠΎΠ»ΡŒ) ΠΈ ΠΎΡ‚ ΠΏΠ»Π°Π·ΠΌΠ°Ρ‚ичСской ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ Π² Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ Π“ΠΎΠ»ΡŒΠ΄ΠΆΠΈ ΠΈΠ»ΠΈ лизосому (Π²Π°ΠΊΡƒΠΎΠ»ΡŒ).

1.5. ΠŸΡ€ΠΎΡ‚Π΅ΠΎΠ»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ процСссинг.

1.6. ДСградация Π±Π΅Π»ΠΊΠΎΠ² Π² ΡΠ΅ΠΊΡ€Π΅Ρ‚ΠΎΡ€Π½Ρ‹Ρ… путях.

1.6.1. ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ качСства ΡƒΠΊΠ»Π°Π΄ΠΊΠΈ Π±Π΅Π»ΠΊΠΎΠ² Π² Π­Π .

1.6.2. ΠžΡ‚Π²Π΅Ρ‚ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π½Π° Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ свСрнутых Π±Π΅Π»ΠΊΠΎΠ² (UPR).

1.6.3. ДСградация Π±Π΅Π»ΠΊΠΎΠ², ассоциированная с ΡΠ½Π΄ΠΎΠΏΠ»Π°Π·ΠΌΠ°Ρ‚ичСским Ρ€Π΅Ρ‚ΠΈΠΊΡƒΠ»ΡƒΠΌΠΎΠΌ

ERAD).

1.6.4. ДСградация Π±Π΅Π»ΠΊΠΎΠ² Π² Π²Π°ΠΊΡƒΠΎΠ»ΠΈ.

2. Баланс ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΠΈ ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ ΠΈ Π΅Π³ΠΎ влияниС Π½Π° Ρ„изиологичСскиС процСссы.

2.1. ГомСостаз ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ.

2.1.1. ΠšΠ°Π»ΡŒΡ†ΠΈΠ΅Π²Ρ‹Π΅ АВЀазы.

2.1.2. ΠšΠ°Π»ΡŒΡ†ΠΈΠ΅Π²Ρ‹Π΅ АВЀазы Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ ΠΏΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ Π² Π³Π΅Π½Π°Ρ…, ΠΈΡ… ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ….

2.1.3. ΠšΠ°Π½Π°Π»Ρ‹, проводящиС ΠΈΠΎΠ½Ρ‹ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ, Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ.

2.1.4. Роль Ρ€Π΅Ρ‚Ρ€ΠΎΠ³Ρ€Π°Π΄Π½ΠΎΠ³ΠΎ вСзикулярного Π‘ΠžΠ Π†-транспорта Π² ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠΈ гомСостаза ΠΊΠ°Π»ΡŒΡ†ΠΈΡ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅.

2.1.5. ΠšΠ°Π»ΡŒΡ†ΠΈΠ½Π΅Π²Ρ€ΠΈΠ½ — ΠΊΠ»ΡŽΡ‡Π΅Π²ΠΎΠΉ эффСктор ΠΊΠ°Π»ΡŒΡ†ΠΈΠΉ-зависимой рСгуляции Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… физиологичСских процСссов.

2.1.5.1. Роль ΠΊΠ°Π»ΡŒΡ†ΠΈΠ½Π΅Π²Ρ€ΠΈΠ½Π° Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ гомСостаза ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ.

2.1.5.2. Роль сигнального ΠΏΡƒΡ‚ΠΈ ΠΊΠ°Π»ΡŒΡ†ΠΈΠ½Π΅Π²Ρ€ΠΈΠ½Π° Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ Π±ΠΈΠΎΠ³Π΅Π½Π΅Π·Π° ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ стСнки, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΡ‡ΠΊΠΈ ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π°.

2.1.5.3. Роль ΠΊΠ°Π»ΡŒΡ†ΠΈΠ½Π΅Π²Ρ€ΠΈΠ½Π° Π² ΡΠΈΠ³Π½Π°Π»ΡŒΠ½ΠΎΠΌ ΠΏΡƒΡ‚ΠΈ Π·Π°ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ смСрти ΠΊΠ»Π΅Ρ‚ΠΊΠΈ.

2.2. ГомСостаз ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° ΠΈ Π΅Π³ΠΎ рСгуляция.

2.2.1. ΠžΠ±Ρ‰Π°Ρ характСристика транспортСров ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² сСмСйства Nramp.

2.2.2. ВранспортСры Smflp ΠΈ Smf2p ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ S. cerevisiae.

2.2.2.1. Bsd2p ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ транспортСры Smflp ΠΈ Smf2p ΠΏΡ€ΠΈ физиологичСской ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π°.

2.2.2.2. РСгуляция Smflp ΠΈ Smf2p ΠΏΡ€ΠΈ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π΅ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π°.

2.2.2.3. РСгуляция Smflp Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… ΠΈΠ·Π±Ρ‹Ρ‚ΠΊΠ° ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π°.

2.2.2.4. РСгуляция Smflp ΠΈΠΎΠ½Π°ΠΌΠΈ кадмия.

2.2.3. Pmrlp ΠΊΠ°ΠΊ транспортСр ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π°.

2.2.4. Вранспорт ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Π² Π²Π°ΠΊΡƒΠΎΠ»ΡŒ.

2.3. Π’Π·Π°ΠΈΠΌΠΎΠ·Π°ΠΌΠ΅Π½ΡΠ΅ΠΌΠΎΡΡ‚ΡŒ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΠΈ ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π°.

Π¦Π΅Π»ΠΈ ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ.

ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹.

1. Π¨Ρ‚Π°ΠΌΠΌΡ‹ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ².

1.1. Π’ΠΈΠ΄Ρ‹ ΠΈ ΡˆΡ‚Π°ΠΌΠΌΡ‹ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Ρ€ΠΎΠ΄Π° Ogataea.

1.1.1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΡˆΡ‚Π°ΠΌΠΌΠ° 1Π’-Артс О. polymorpha.

1.1.2. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΡˆΡ‚Π°ΠΌΠΌΠ° lMA27/12GA

1.1.3. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΡˆΠ°Ρ‚Π°ΠΌΠΌΠΎΠ² 64MA70Q ΠΈ 64MA70U О. polymorpha.

1.1.4. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² О. polymorpha, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ аллСлью Π³Π΅Π½Π° RET1, ΠΈ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΠΈΡ… экспрСссионныС кассСты иРА ΠΈ uPA-Q

1.1.5. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² О. polymorpha для изучСния совмСщСния ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉpmcl-Π› ΠΈ Π³ et 1−27.

1.1.6. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² О. polymorpha с ΠΌΡƒΡ‚ациями, ΡΡƒΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ Ρ€Ρ‚Π΅ J А.

1.2. Π¨Ρ‚Π°ΠΌΠΌΡ‹ Escherichia coli.

2. ΠŸΠ»Π°Π·ΠΌΠΈΠ΄Ρ‹.

3. Бостав срСд ΠΈ ΡƒΡΠ»ΠΎΠ²ΠΈΡ для выращивания ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ².

3.1. Π‘Ρ€Π΅Π΄Ρ‹ для выращивания Π•. coli.

3.2. Π‘Ρ€Π΅Π΄Ρ‹ для выращивания Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ.

3.3. Условия ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ.

4. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹.

4.1. Врансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π•. coli SEM (Inoue Н. et al., 1990) с ΠΌΠΎΠ΄ΠΈΡ„икациями.

4.2. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π•. coli ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠ³ΠΎ лизиса (Sambrook J. et al., 1989) с ΠΌΠΎΠ΄ΠΈΡ„икациями.

4.3. ΠœΠ°Π½ΠΈΠΏΡƒΠ»ΡΡ†ΠΈΠΈ с Π”ΠΠš in vitro.

4.3.1. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ расщСплСния Π”ΠΠš эндонуклСазами.

4.3.2. ΠŸΠ΅Ρ€Π΅ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π”ΠΠš послС рСстрикции для очистки ΠΎΡ‚ ΡΠ½Π΄ΠΎΠ½ΡƒΠΊΠ»Π΅Π°Π· ΠΈ ΡΠΌΠ΅Π½Ρ‹ Π±ΡƒΡ„Π΅Ρ€Π°.

4.3.3. Π›ΠΈΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅.

4.3.4. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Π· Π² Π°Π³Π°Ρ€ΠΎΠ·Π½ΠΎΠΌ Π³Π΅Π»Π΅.

4.3.5. ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ элСктрофорСз ΠΈ Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π”ΠΠš ΠΈΠ· 1% Π°Π³Π°Ρ€ΠΎΠ·Π½ΠΎΠ³ΠΎ гСля.

4.3.6. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ.

4.4. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ Π°Π½Π°Π»ΠΈΠ· Π”ΠΠš Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Ρ€ΠΎΠ΄Π° Ogataea.

4.5. Врансформация Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Ρ€ΠΎΠ΄Π° Ogataea.

4.6. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ.

4.6.1. ВСстированиС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ активности иРА.

4.6.2. Π˜Π½Π΄ΡƒΠΊΡ†ΠΈΡ экспрСссии иРА Π² ΡˆΡ‚Π°ΠΌΠΌΠ°Ρ… Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Ρ€ΠΎΠ΄Π° Ogataea.

4.6.3. Π˜Π·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ суммарного ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°.

4.6.4. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Π· ΠΈ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ±Π»ΠΎΡ‚Ρ‚ΠΈΠ½Π³.

4.6.5. Анализ иРА ΠΈΠ· ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ срСды.

4.6.6. ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Ρ… Π»ΠΈΠ·Π°Ρ‚ΠΎΠ².

4.7. Анализ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Ρ€ΠΎΠ΄Π° Ogataea ΠΊ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ Π² ΡΡ€Π΅Π΄Π΅ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ, SDS, сорбитола ΠΈ NaCl.

4.8. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния Мп2+ Π½Π° Ρ€ΠΎΡΡ‚ ΠΌΡƒΡ‚Π°Π½Ρ‚ΠΎΠ² О. polymorpha с Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ гомСостаза ΠΊΠ°Π»ΡŒΡ†ΠΈΡ.

4.9. Анализ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Ρ€ΠΎΠ΄Π° Ogataea ΠΊ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ Π² ΡΡ€Π΅Π΄Π΅ ЭВВА.

4.10. Π˜Π·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ активности ß--Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·ΠΈΠ΄Π°Π·Ρ‹.

4.11. Анализ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π³ΠΈΠ±Π΅Π»ΠΈ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΌΡƒΡ‚Π°Π½Ρ‚Π°pmrlA ret 1−27 О. polymorpha.

4.12. Π”Ρ€ΡƒΠ³ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹.

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹.

1. ΠŸΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ Π³Π΅Π½Π° РМЯ1.

1.1. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π³Π΅Π½Π° РМШ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡŽ ТизнСспособности Ρƒ О. Ρ€ΠΎ1ΡƒΡ‚ΠΎΠ³Ρ€Π˜Π°.

1.2. БСкрСция Ρ‡ΡƒΠΆΠ΅Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° иРА Ρƒ ΠΌΡƒΡ‚Π°Π½Ρ‚Π°Ρ€Ρ‚Π³1 сильно сниТСна ΠΏΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Π² ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ срСдС Π°ΠΌΠΌΠΎΠ½ΠΈΠΉ-фосфатного Π±ΡƒΡ„Π΅Ρ€Π°.

1.3. Π’ ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΡˆΡ‚Π°ΠΌΠΌΠ°Ρ€Ρ‚Π³1А Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии фосфата аммония происходит фрагмСнтация

2. ΠŸΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ Π³Π΅Π½Π° РМБ1.

2.1. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ² ББН1 ΠΈ #067, супрСссируСт Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊ Π‘Π‘Π‘ Ρƒ Ρ€Ρ‚Π΅]А.

2.1.1. ΠŸΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ hoglA.

2.1.2. ΠŸΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ ссЫА.

2.2. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π³Π΅Π½Π° VEE1, супрСссируСт Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊ Π‘ΠžΠ‘ уртс1А Π½Π° Ρ„ΠΎΠ½Π΅ хромосомной пСрСстройки.

2.2.1. Π£ ΠΌΡƒΡ‚Π°Π½Ρ‚Π° 8Π­8116 ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π³Π΅Π½Π°, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ ΠΊΠΈΠ½Π°Π·Ρ‹ Π΅Π΅1/8шС1.

2.2.2. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π³Π΅Π½ являСтся ΠΎΡ€Ρ‚ΠΎΠ»ΠΎΠ³ΠΎΠΌ Π³Π΅Π½Π° 8Π–Π•1^Π•Π•1 Π‘. сСгСу (Π·1Π°Π΅.

2.2.3. БупрСссия ртс! А Π² ΡˆΡ‚Π°ΠΌΠΌΠ΅ Π‘ΠžΠ‘ 116 опрСдСляСтся ΠΌΡƒΡ‚Π°Ρ†ΠΈΠ΅ΠΉ Π² Π³Π΅Π½Π΅ VEE1.

2.2.4. НаправлСнноС Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π³Π΅Π½Π° VEE1 Π½Π΅ ΡΡƒΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΠ΅Ρ‚ ΠΌΡƒΡ‚Π°Ρ†ΠΈΡŽΡ€Ρ‚Ρ1А ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊ 8Π‘8 Π² ΡˆΡ‚Π°ΠΌΠΌΠ΅ с ΠΈΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΌ Π³Π΅Π½ΠΎΠΌ РМБ1.

2.2.5. ГСнСтичСский Π΄Π΅Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π½Ρ‚, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠΉ ΡΡƒΠΏΡ€Π΅ΡΡΠΈΡŽ мутацииртс1А, сцСплСн с Π°Π»Π»Π΅Π»ΡŒΡŽ veel-l.

2.2.6. АллСли veel-l Π½Π΅ Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎ для супрСссии ртс1А.

2.3. ЭкспрСссия Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π°, содСрТащСго Π«-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ участок Π³Π΅Π½Π° 1 Ρƒ.Π΅.Π•1, Π² ΡˆΡ‚Π°ΠΌΠΌΠ΅ с ΠΌΡƒΡ‚Π°Ρ†ΠΈΠ΅ΠΉ ртс1А Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ измСнСния ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ.

3. ΠŸΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΡ взаимодСйствий ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Π΅Π½Π°ΠΌΠΈ, Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½Π½Ρ‹Ρ… Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΡŽ гомСостаза ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ.

3.1. Π‘ΠΎΠ²ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ Π³Π΅/7−27 ΠΈΡ€Ρ‚Π³1А ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π³ΠΈΠ±Π΅Π»ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡƒ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°.

3.2. Π‘ΠΎΠ²ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π΄Π΅Π»Π΅Ρ†ΠΈΠΉ Π² Π³Π΅Π½Π°Ρ… РМШ ΠΈ Π£Π Π’Π± ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΊΠ°Π»ΡŒΡ†ΠΈΠΉ-зависимому синтСтичСскому ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΡŽ роста.

3.3. ΠŸΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΡ совмСщСния мутацийртс1А ΠΈ Π³Π΅//-27.

3.3.1. ВлияниС ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ ртс1 Π” ΠΈ Π³Π΅ΠŸ-27 Π½Π° ΡΠ΅ΠΊΡ€Π΅Ρ†ΠΈΡŽ иРА ΠΈ ΠΈΠ Π-О

3.3.1.1. ВлияниС Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ Π³Π΅Π½Π° РМБ1 Π½Π° ΡΠ΅ΠΊΡ€Π΅Ρ†ΠΈΡŽ ΡƒΡ€ΠΎΠΊΠΈΠ½Π°Π·Ρ‹.

3.3.1.2. ВлияниС ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ гСИ-27 Π½Π° ΡΠ΅ΠΊΡ€Π΅Ρ†ΠΈΡŽ ΠΈ ΠΏΡ€ΠΎΡ†Π΅ΡΡΠΈΠ½Π³ иРА-Π‘}

3.3.1.3. ВлияниС совмСщСния ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉpmclA ΠΈ ret 1−27 Π½Π° ΡΠ΅ΠΊΡ€Π΅Ρ†ΠΈΡŽ uPA-Q

3.3.2. ΠœΡƒΡ‚Π°Ρ†ΠΈΡ retl-27 Π½Π΅ Π²Π»ΠΈΡΠ΅Ρ‚ Π½Π° ΠΏΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ Π³Π΅Π½Π° РМБ1 Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… ΠΈΠ·Π±Ρ‹Ρ‚ΠΊΠ° ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ Π² ΡΡ€Π΅Π΄Π΅.

3.3.3. ДСлСцияpmclA Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ влияния Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌΡƒΡŽ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠ΅ΠΉ retlΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊ Π­Π“Π’А.

3.4. ΠŸΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ совмСщСния Π΄Π΅Π»Π΅Ρ†ΠΈΠΈ cchl, А Ρ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠ΅ΠΉ retl-27 ΠΈ Π΄Π΅Π»Π΅Ρ†ΠΈΠ΅ΠΉpmrl А.

3.4.1. ΠŸΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ совмСщСния Π΄Π΅Π»Π΅Ρ†ΠΈΠΉ cchlА ΠΈpmrl А.

3.4.2. ΠŸΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ совмСщСния Π΄Π΅Π»Π΅Ρ†ΠΈΠΈ cchl, А Ρ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠ΅ΠΉ retl-27.

4. ВлияниС Мп2+ Π½Π° ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΌΡƒΡ‚Π°Π½Ρ‚ΠΎΠ² с Π½Π°Ρ€ΡƒΡˆΠ΅Π½Π½Ρ‹ΠΌ гомСостазом Π‘Π°2+.

4.1. Π”ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² ΡΡ€Π΅Π΄Ρƒ МпБЬ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ влияСт Π½Π° Ρ€ΠΎΡΡ‚pmrlА условиях Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ.

4.2. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π³Π΅Π½Π° РМБ1 Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊ Π²Ρ‹ΡΠΎΠΊΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Π² ΡΡ€Π΅Π΄Π΅.

2+ 2+

4.3. Π”ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² ΡΡ€Π΅Π΄Ρƒ Мп, ΠΈΠ»ΠΈ Π‘Π° Π½Π΅ Π²ΠΎΡΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°Π΅Ρ‚ рост Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΌΡƒΡ‚Π°Π½Ρ‚Π°pmclА pmrl А.

4.4. ΠŸΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ совмСщСния ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ cchl, А ΠΈ pmrl, А ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… концСнтрациях ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Π² ΡΡ€Π΅Π΄Π΅.

4.5. ВлияниС Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ Π³Π΅Π½Π° YPT6 Π½Π° ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΈ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ эффСкт Мп

4.6. ВлияниС ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Π½Π° Π²Ρ‹ΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ ΡˆΡ‚Π°ΠΌΠΌΠ° retl-27 Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ Π² ΡΡ€Π΅Π΄Π΅.

4.7. ΠœΡƒΡ‚Π°Ρ†ΠΈΡ retl-27 супрСссируСт ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ pmclA ΠΊ ΠœΠΏ2+.

ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ².

1. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π³Π΅Π½Π° РМБ1 ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠ°ΡƒΠ·Π΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° Π² Ρ„Π°Π·Π΅ G2.

2. ВлияниС ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ retl-27 Π½Π° ΠΏΡ€ΠΎΡ†Π΅ΡΡΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° uPA-Q302 сходно с ΠΏΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ, Π½Π°Ρ€ΡƒΡˆΠ°ΡŽΡ‰ΠΈΡ… Π²Π°ΠΊΡƒΠΎΠ»ΡΡ€Π½ΡƒΡŽ сортировку.

3. ΠœΡƒΡ‚Π°Ρ†ΠΈΠΈ, Π²Π»ΠΈΡΡŽΡ‰ΠΈΠ΅ Π½Π° Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ О. polymorpha ΠΊ ΠœΠΏ

4. Роль вСзикулярного транспорта Π² ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠΈ гомСостаза ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΠΈ ΠΈΡΡ‚ΠΎΡ‡Π½ΠΈΠΊΠΈ этого ΠΈΠΎΠ½Π° для сСкрСторного ΠΏΡƒΡ‚ΠΈ.

Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

ГСнСтичСский ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ гомСостаза ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Ρ€ΠΎΠ΄Π° Ogataea (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π’ ΠΆΠΈΠ²ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ происходит ΠΎΠ³Ρ€ΠΎΠΌΠ½ΠΎΠ΅ количСство Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΡΠ±Π°Π»Π°Π½ΡΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… процСссов. И Π²ΡΠ΅ эти Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌ количСством Π±Π΅Π»ΠΊΠΎΠ². НапримСр, Π² Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ синтСзируСтся всСго ΠΎΠΊΠΎΠ»ΠΎ 6000 Π±Π΅Π»ΠΊΠΎΠ². Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ поддСрТания большого количСства слоТных процСссов ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌ количСством ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ², ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡƒ, ΠΎΠ±ΡŠΡΡΠ½ΡΠ΅Ρ‚ΡΡ ΠΈΡ… ΠΏΠΎΠ»ΠΈΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, для идСальной согласованности всСх ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… процСссов трСбуСтся ΠΈΡ… Ρ‚Ссная взаимосвязь ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅. Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, исслСдоватСли ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‚ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· ΠΏΡ€ΠΎΡ†Π΅ΡΡΠΎΠ² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ услоТнСниС ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΠΎΠΉ систСмы ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΠΈ Π΅Π΅ Π°Π½Π°Π»ΠΈΠ·Π°.

Данная Ρ€Π°Π±ΠΎΡ‚Π° Π±Ρ‹Π»Π° посвящСна ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ проявлСний Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ гомСостаза ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ. ΠšΠ°Π»ΡŒΡ†ΠΈΠΉ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ участиС ΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… систСм, являясь Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹ΠΌ мСссСндТСром ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ сигнала, ΠΈ Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ сСкрСторных ΠΎΡ€Π³Π°Π½Π΅Π»Π». ΠŸΡ€ΠΈ этом Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ функционирования сСкрСторного ΠΏΡƒΡ‚ΠΈ само ΠΏΠΎ ΡΠ΅Π±Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹. Π’ Π½Π°ΡˆΠ΅ΠΌ исслСдовании ΠΌΡ‹ ΠΏΡ€Π΅Π΄ΠΏΡ€ΠΈΠ½ΡΠ»ΠΈ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΡƒ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ Π² ΡΠ΅ΠΊΡ€Π΅Ρ†ΠΈΠΈ ΠΈ Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ сигналов, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ эндоплазматичСского Ρ€Π΅Ρ‚ΠΈΠΊΡƒΠ»ΡƒΠΌΠ° ΠΊΠ°ΠΊ сСкрСторной ΠΎΡ€Π³Π°Π½Π΅Π»Π»Ρ‹ ΠΈ ΠΊΠ°ΠΊ ΠΎΡ€Π³Π°Π½Π΅Π»Π»Ρ‹, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π² ΠΊΠ°Π»ΡŒΡ†ΠΈΠΉ-зависимом сигналлингС.

НСкоторыС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΡΠ²Π»ΡΡŽΡ‚ΡΡ тСсно связанными с Π³ΠΎΠΌΠ΅ΠΎΡΡ‚Π°Π·ΠΎΠΌ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π°. Π’ ΡΡ‚ΠΎΠΉ связи Ρ‡Π°ΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ посвящСна ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ пСрСсСчСний Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ этих ΠΈΠΎΠ½ΠΎΠ².

Π’ ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ модСльного ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Π² Ρ€Π°Π±ΠΎΡ‚Π΅ использовали Π΄Ρ€ΠΎΠΆΠΆΠΈ Π΄Π²ΡƒΡ… близкородствСнных Π²ΠΈΠ΄ΠΎΠ²: Ogataea Ρ€ΠΎ1ΡƒΡ‚ΠΎΠ³Ρ€1Π³Π° ΠΈ О. Ρ€Π°Π³Π°Ρ€ΠΎ1ΡƒΡ‚ΠΎΠ³Ρ€Π˜Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄ΠΎ 2011 Π³. Π½Π° основании Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΠΈ Π³Π΅Π½ΠΎΠΌΠΎΠ², сходств Π² ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ, особСнностях роста ΠΈ ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²Ρ€ΠΎΠ²Π°Π½ΠΈΡ ΠΎΡ‚Π½ΠΎΡΠΈΠ»ΠΈΡΡŒ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ — НатСпи1Π° Ρ€ΠΎ1ΡƒΡ‚ΠΎΠ³Ρ€ΠΊΠ°. Для простоты излоТСния, Π² Ρ‚Π΅Ρ… случаях, ΠΊΠΎΠ³Π΄Π° Ρ€Π΅Ρ‡ΡŒ ΠΈΠ΄Π΅Ρ‚ ΠΎΠ± ΠΎΠ±Ρ‰ΠΈΡ… для этих Π²ΠΈΠ΄ΠΎΠ² свойствах ΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ях, ΠΎΠ±Π° Π²ΠΈΠ΄Π° ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½Π΅Π½Ρ‹ ΠΏΠΎΠ΄ Ρ€ΠΎΠ΄ΠΎΠ²Ρ‹ΠΌ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ΠΌ Ogataea.

ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹:

ΠšΠ°Π»ΡŒΡ†ΠΈΠΉ Π² ΡΠ΅ΠΊΡ€Π΅Ρ‚ΠΎΡ€Π½ΠΎΠΌ ΠΏΡƒΡ‚ΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ: ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ баланса Π² ΠΎΡ€Π³Π°Π½Π΅Π»Π»Π°Ρ… ΠΈ ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ сСкрСции Π±Π΅Π»ΠΊΠΎΠ².

Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ, ΡΡƒΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ О. Ρ€ΠΎ1ΡƒΡ‚ΠΎΠ³Ρ€ΠͺΠ° ΠΈ О. Ρ€Π°Π³Π°Ρ€ΠΎ1ΡƒΡ‚ΠΎΠ³Ρ€ΠΊΠ° Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊ 808, ΠΎΠ±ΡƒΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡƒΡŽ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ вакуолярной ΠΊΠ°Π»ΡŒΡ†ΠΈΠ΅Π²ΠΎΠΉ АВЀазы Π Ρ‚Π΅ 1Ρ€. Анализ этих ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π³ΠΈΠΏΠ΅Ρ€Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊ 808 ΠΌΡƒΡ‚Π°Π½Ρ‚Π° ртс1&обусловлСна ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ.

2+.

Π‘Π° Π² Ρ†ΠΈΡ‚ΠΎΠ·ΠΎΠ»Π΅ ΠΈ ΡΠ²ΡΠ·Π°Π½Π° с ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° ΠΎΡ‚ Ρ„Π°Π·Ρ‹ Π²2 ΠΊ М.

2. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ТизнСспособности Ρƒ О. Ρ€ΠΎ1ΡƒΡ‚ΠΎΠ³Ρ€ΠΊΠ° ΠΏΡ€ΠΈ ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Π³Π΅Π½Π° РМШ связано с ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π‘Π°2+ ΠΈ ΠœΠΏ2+ Π² ΡΠ΅ΠΊΡ€Π΅Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½Π΅Π»Π»Π°Ρ…. Π­Ρ‚ΠΎΡ‚ эффСкт усиливаСтся Π½Π° Ρ„ΠΎΠ½Π΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ вСзикулярного транспорта, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠ΅ΠΉ Π£Ρ€1Π±Ρ€ ΠΈ Π΄Π΅Π»Π΅Ρ†ΠΈΠ΅ΠΉ Π‘-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Π°-БОР.

3. ДСлСция Π‘-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Π°-БОР ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΡΠΈΠ»Π΅Π½ΠΈΡŽ протСолитичСского процСссинга модСльного Π±Π΅Π»ΠΊΠ° иРА-Π‘)302, Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ Π°-БОР Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π²Π΅Π·ΠΈΠΊΡƒΠ», ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‰ΠΈΡ… транспорт ΠΌΠ΅ΠΆΠ΄Ρƒ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠΌ Π“ΠΎΠ»ΡŒΠ΄ΠΆΠΈ ΠΈ Π²Π°ΠΊΡƒΠΎΠ»ΡŒΡŽ.

4. Π˜ΠΎΠ½Π½Ρ‹ΠΉ ΠΊΠ°Π½Π°Π» БсЫр/М1с11Ρ€ участвуСт Π² Ρ‚ранспортС Мп2+ Π² ΠΊΠ»Π΅Ρ‚ΠΊΡƒ, Π° Π±Π΅Π»ΠΊΠΈ Π£Ρ€1Π±Ρ€ ΠΈ Π°-БОР ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ транспорта Мп2+ Ρƒ О. Ρ€ΠΎ1ΡƒΡ‚ΠΎΠ³Ρ€ΠΊΠ°.

5. На ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… Π²Ρ‹Π΄Π²ΠΈΠ½ΡƒΡ‚Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π°, ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‰Π°Ρ, Ρ‡Ρ‚ΠΎ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π‘Π°2+ Π² Π­Π  ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒΡΡ ΠΈΠ· ΡΠ½Π΄ΠΎΡΠΎΠΌ ΠΏΡ€ΠΈ участии вСзикулярного транспорта.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. И.А., КоТин Π‘. А., КоТина Π’. Н., Π€Π΅Π΄ΠΎΡ€ΠΎΠ²Π° И. Π’. Π‘Π±ΠΎΡ€Π½ΠΈΠΊ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ ΠΏΠΎ Π³Π΅Π½Π΅Ρ‚ΠΈΠΊΠ΅ Π΄Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ-сахаромицСтов. // Π›Π΅Π½ΠΈΠ½Π³Ρ€Π°Π΄. Наука. 1984.
  2. М.Π‘. Π°-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π° комплСкса БОР1 Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Hansenula polymorpha: Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎ-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ организация ΠΈ Ρ€ΠΎΠ»ΡŒ Π² Π³ΠΎΠΌΠ΅ΠΎΡΡ‚Π°Π·Π΅ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ// АвторСфСрат диссСртации Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ стСпСни ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π° биологичСских Π½Π°ΡƒΠΊ, ΠœΠΈΠ½Π·Π΄Ρ€Π°Π² Π Π€ РКНПК ИЭК Москва. 2004.
  3. Agaphonov М.О., Beburov. M.Y., Ter-Avanesyan M.D., Smirnov V.N. A disruption-replacement approach for the targeted integration of foreign genes in Hansenula polymorpha. II Yeast. 1995. V. 11.№ 3:P. 1241−1247.
  4. Agostinho P., Oliveira C.R. Involvement of calcineurin in the neurotoxic effects induced by amyloid-beta and prion peptides. // European Journal of Neuroscience. 2003. V. 17 № 6. P. 11 891 196.
  5. Andrews N. C. Iron homeostasis: Insights from genetics and animal models. // Nature Reviews Genetics. 2000. V. 1. P. 208−217.
  6. Antebi A. and Fink G.R. The yeast Ca (2+)-ATPase homologue, Pmrl, is required for normal Golgi function and localizes in a novel Golgi-like distribution. // Molecular Biology of the Cell. 1992. V. 3№ 6.P. 633−654.
  7. Aragon T., van Anken E., Pincus D., Serafimova I.M., Korennykh A.V., Rubio C.A., and Walter P. mRNA targeting to ER stress signaling sites. //Nature. 2009. V. 457. № 7230. P. 736 740.
  8. Aramburu J., Rao A., Klee C.B. Calcineurin: From structure to function. // Curr. Top. Cell. Regul. 2000. V. 36. P. 237−295.
  9. Aridor M., Traub L.M. Cargo selection in vesicular transport: The making and breaking of a CoA. // Traffic. 2002. V. 3. № 8. P. 537−546.
  10. Asai A., Qiu J., Narita Y., Chi S., Saito N., Shinoura N., Hamada H., Kuchino Y., Kirino T. High level calcineurin activity predisposes neuronal cells to apoptosis. // The Journal of Biological Chemistry. 1999. V. 274. № 48. P. 34 450−34 458.
  11. Astrup T., Mullertz S. The fibrin plate method for estimating fibrinolytic activity. // Arch Biochem Biophys. 1952. V. 40. № 2. P. 346−351.
  12. Axelsen K.B., Palmgren M.G. Evolution of substrate specificities in the P-type ATPase superfamily. //Journal of Molecular Evolution. 1998. V. 46. № 1. P. 84−101.
  13. Axelsen K.B., Palmgren M.G. Inventory of the superfamily of P-type ion pumps in Arabidopsis. II Plant Physiology. 2001. V. 126. № 2. P. 696−706.
  14. Baksh S., Burns K., Andrin C., Michalak M. Interaction of calreticulin with protein disulfide isomerase. // The Journal ofBiological Chemistry. 1995. V. 270 № 52. P. 31 344.
  15. Balch W.E., McCaffery. J.M., Plutner H., Farquhar M.G. Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. // Cell. 1994. V. 76. № 5. P. 841−852.
  16. Ballou C. E. Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. // Methods Enzymol. 1990. V. 185. P. 440−470.
  17. Bankaitis V.A., Johnson L.M., Emr S.D. Isolation of yeast mutants defective in protein targeting to the vacuole. // Proc. Natl. Acad. Sci. USA. 1986. V. 83. № 23. P. 9075−9079.
  18. Bays N.W., Gardner R.G., Seelig L.P., Joazeiro C.A., Hampton R.Y. Hrdlp/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. // Nature Cell Biology. 2001. V. 3. № 1. P. 24−29.
  19. Beck R., Sun Z., Adolf F" Rutz C., Bassler J, Wild K., Sinning I., Hurt E., BrUgger B., Bethune J., and Wieland F. Membrane curvature induced by Arfl-GTP is essential for vesicle formation. // Proc. Nat. Acad. Sci. U.S.A. 2008. V. 105. № 33. P. 11 731.
  20. Belde P.J., Vossen J.H., Borst-Pauwels G.W., Theuvenet A.P. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae. II FEBS Letters. 1993. V. 323. № 1−2. P. 113−118.
  21. Bertolotti A., Zhang Y., Hendershot L.M., Harding H.P., Ron D. Dynamic interaction of Bip and ER stress transducers in the unfolded-protein response. // Nature Cell Biology. 2000. V. 2. № 6. P. 326−332.
  22. Bogdanova A.I., Agaphonov M.O., Ter-Avanesyan M.D. Plasmid reorganization during integrative transformation in Hansenulapolymorpha. II Yeast. 1995. V. 11. № 4. P. 343−353.
  23. Bogdanova A.I., Kustikova O.S., Agaphonov M.O., Ter-Avanesyan M.D. Sequences of Saccharomyces cerevisiae 1 microns DNA improving plasmid partitioning in Hansenula polymorpha. II Yeast. 1998. V. 14. № 1. P. 1−9.
  24. Bonifacino J.S., Wiessman A.M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. // Annual Review of Cell and Developmental Biology. 1998. V. 14. P. 19−57.
  25. Bonilla M., Nastase K.K., Cunningham K.W. Essential role of calcineurin in response to endoplasmic reticulum stress. //The EMBO Journal. 2002. V. 21 № 10. P. 2343−2353.
  26. Booher R.N., Deshaies R.J., Kirschner M.W. Properties of Saccharomyces cerevisiae Weel and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. // The EMBO Journal. 1993. V. 12 № 9. P. 3417−3426.
  27. Brewis I.A. Ferguson M.A., Mehlert A., Turner A.J., Hooper N.M. Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. // The Journal of Biological Chemistry. 1995. V. 270. P. 22 946−22 956.
  28. Brodsky J.L., McCraccken A.A. ER protein quality control and proteasome-mediated protein degradation. // Seminars in Cell & Developmental Biology. 1999. V. 10. № 5. P. 507−513.
  29. Brown D.A. and London E. Functions of lipid rafts in biological membranes. // Annual Review of Cell and Developmental Biology. 1998. V. 14. P. 111−136.
  30. Bryant N.J., Stevens Π’.Н. Vacuole biogenesis in Saccharomyces cerevisiae: Protein transport pathways to the yeast vacuole. // Microbiology and Molecular Biology Reviews. 1998. V. 62. № 1. P. 230−247.
  31. Burk S.E., Lytton J., MacLennan D.H., Shull G.E. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. // The Journal of Biological Chemistry. 1989. V. 264. № 31. P. 18 561−18 568.
  32. Button D., Eidsath A. Aequorin targeted to the endoplasmic reticulum reveals heterogeneity in luminal Ca++ concentration and reports agonist- or IP3-induced release of Ca++. // Molecular Biology of the Cell. 1996. V. 7. № 3. P. 419−434.
  33. Caldwell S.R., Hill K.J. and Cooper A.A. Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. // The Journal of Biological Chemistry. 2001. V. 276. P. 23 296−23 303.
  34. Carafoli E., Brini M. Calcium pumps: Structural basis for and mechanism of calcium transmembrane transport. // Current Opinion in Chemical Biology. 2000. V. 4. № 2. P. 152−161.
  35. Carvalho P., Stanley A.M., and Rapoport T.A. Retro-translocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrdlp. //Cell. 2010. V. 143. № 4. P. 579−591.
  36. Casadaban M.J., Martinez-Arias A., Shapira S.K., Chou J. Beta-galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. // Methods Enzymol. 1983. V. 100. P. 293−308.
  37. Ceccarelli B., Hurlbut W. P., Mauro A. Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation. // The Journal of Cell Biology. 1972. V. 54. β„– l.P. 30−38.
  38. Cellier M., Prive G., Belouchi A., Kwan T., Rodrigues V., Chia W., and Gros P. Nramp defines a family of membrane proteins. // Proc. Nat. Acad. Sci. USA. 1995. V. 92. № 22. P. 10 089−10 093.
  39. Chen X.-Z., Peng J.-B., Cohen A., Nelson H., Nelson N. and Hediger M.A. Yeast SMF1 mediates H±coupled iron uptake with concomitant uncoupled cation currents. // The Journal of Biological Chemistry. 1999. V. 274. № 49. P. 35 089−35 094.
  40. Christianson J.C., Shaler T.A., Tyler R.E., and Kopito R.R. OS-9 and GRP94 deliver mutant a 1-antitrypsin to the Hrdl-SELIL ubiquitin ligase complex for ERAD. // Nature Cell Biology. 2009. V. 10. № 3. P. 272−282.
  41. Clerc S., Hirsch C., Oggier D.M., Deprez P., Jakob C., Sommer T., and Aebi M. Html protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. //The Journal of Cell Biology. 2009. V. 184. β„– LP. 159−172.
  42. Clotet J., Escote X., Adrover M.A., Yaakov G., Gari E., Aldea M., de Nadal E., and Posas F. Phosphorylation of Hsll by Hogl leads to a G2 arrest essential for cell survival at high osmolarity. // The EMBO Journal. 2006. V. 25. № 11. P. 2338−2346.
  43. Clotet J., Posas F. Control of cell cycle in response to osmostress: Lessons from yeast. // Methods Enzymol. 2007. V. 428. P. 63−76.
  44. Cohen A., Nelson H. and Nelson N. The family of SMF metal ion transporters in yeast cells. //The Journal of Biological Chemistry. 2000. V. 275. № 43. P. 33 388−33 394.
  45. Courville P., Chaloupka R., Cellier M.F.M. Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. // Biochemistry and Cell Biology. 2006. V. 84. № 6. P. 960−978.
  46. Cowles C.R., Snyder W.B., Burd C.G., Emr S.D. Novel Golgi to vacuole delivery pathway in yeast: Identification of a sorting determinant and required transport component. // The EMBO Journal. 1997. V. 16. № 10. P. 2769−2782.
  47. Crabtree G.R. Calcium, calcineurin, and the control of transcription. // The Journal of Biological Chemistry. 2001. V. 276. № 4. P. 2313−2316.
  48. Cunningham K.W. and Fink G.R. Ca2+ transport in Saccharomyces cerevisiae. II The Journal of Experimental Biology. 1994a. V. 196. P. 157−166.
  49. Cunningham K.W. and Fink G.R. Calcineurin-dependent growth control in Saccharomyces2+ cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca ATPases. // The Journalof Cell Biology. 1994b. V. 124. № 3. P. 351−363.2+
  50. Cunningham K.W. and Fink G.R. Calcineurin inhibits VCX1-dependent H /Ca exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. II Molecular Biology of the Cell. 1996. V. 16. № 5. P. 2226−2237.
  51. Cyert M.S., Kunisawa R., Kaim D., Thorner J. Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc Natl Acad Sci USA. 1991. V. 88. № 16. P. 7376−7380.
  52. Dedhar S. Novel functions for calreticulin: Interaction with integrins and modulation of gene expression?//Trends Biochem Sci. 1994. V. 19. № 7. 2669−2671.
  53. Devasahayam G., Burke D.J., and Sturgill T.W. Golgi manganese transport is required for rapamycin signaling in Saccharomyces cerevisiae. II Genetics. 2007. V. 177. № 1. P. 231−238.
  54. Devasahayam G., Ritz D., Helliwell S.B., Burke D.J., and Sturgill T.W. Pmrl, a Golgi Ca2+/Mn2±ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast. // Proc. Nat. Acad. Sci. USA. 2006. V. 103. № 47. P. 17 840−17 845.
  55. Dill K.A., Chan H.S. From levinthal to pathways to funnels. // Nat Struct Biol. 1997. V. 4. № 1. P. 10−19.
  56. Duden R., Kajkawa L., Wuestehube L., Schekman R. Epsilon-COP is a structural component of coatomer that functions to stabilize alpha-COP. // The EMBO Journal. 1998. V. 17. № 4. P.985.995.
  57. Dunn T., Gable K., Beeler T. Regulation of cellular Ca2+ by yeast vacuoles. // The Journal of Biological Chemistry. 1994. V. 269. № 10. P. 7273−7278.
  58. Eguez L., Chung Y.-S., Kuchibhatla A., Paidhungat M. and Garrett S. Yeast Mn2+ transporter, Smflp, is regulated by ubiquitin-dependent vacuolar protein sorting. // Genetics. 2004. V. 167. № 1. P. 107−117.
  59. Eide D.J., Bridgham J.T., Zhao Z., Mattoon J.R. The vacuolar H (+)-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. // Mol Gen Genet. 1993. V. 241. № 3−4. P. 447−456.
  60. Farquhar R., Honey N., Murant S.J., Bossier P., Schultz L., Montgomery D., Ellis R.W., Freedman R.B., Tuite M.F. Protein disulfide isomerase is essential for viability in Saccharomyces cerevisiae. II Gene. 1991. V. 108. № 1. P. 81 -89.
  61. Ferguson M.A., Homans S.W., DwekR.A., Rademacher T.W. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. // Science. 1988. V. 239 № 4841. Pt. 1. P. 753−759.
  62. Fischer M., Schnell N., Chattaway J., Davies P., Dixon G., Sanders D. The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. // FEBS Letters. 1997. V. 419. № 2−3. P. 259−262.
  63. Forbes J.R. and Gros P. Divalent-metal transport by Nramp proteins at the interface of host-pathogen interactions. // Trends in Microbiology. 2001. V. 9. № 8. P. 397−403
  64. Friedlander R., Jarosch E., Urban J., Volkwein C., Sommer T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. // Nature Cell Biology. 2000. V. 2. № 7. P. 379−384.
  65. Gabriely G., Kama R., Gerst J.E. Involvement of specific COPI subunits in protein sorting from the late endosome to the vacuole in yeast. // Molecular and Cellular Biology. 2007. V. 27. № 2. P. 526−540.
  66. Gaynor E.C. and Emr S.D. COPI-independent anterograde transport: Cargo-selective ER to Golgi protein transport in yeast COPI mutants. // The Journal of Cell Biology. 1997. V. 136. JV"4 789−802.
  67. Gentzsch M. and Tanner W. Protein-O-glycosylation in yeast: Protein-specific mannosyltransferases. //Glycobiology. 1997. V. 7. № 4. P. 481−486.
  68. Gething M.J. and Sambrook J. Protein folding in the cell. // Nature. 1992. V. 355. № 6355. P. 33−45.
  69. Graham L.A., Hill K.J., Stevens T.H. Assembly of the yeast vacuolar H±ATPase occurs in the endoplasmic reticulum and requires a Vmal2p/Vma22p assembly complex. // The Journal of Cell Biology. 1998. V. 142. № 1. P. 39−49.
  70. Griffiths G. Gut thoughts on the Ggolgi complex. // Traffic. 2000. V. 1. № 9. P. 738−745.
  71. Groenendyk J., Lynch J., Michalak M. Calreticulin, Ca2+, and calcineurin signaling from the endoplasmic reticulum. //Molecular Cells. 2004. V. 17. № 3. P. 383−389.
  72. H., Mackenzie B., Berger U.V., Gunshin Y., Romero M.F., Boron W.F., Nussberger S., Gollan J.L. & Hediger M.A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. // Nature. 1997. V. 388. P. 482−488.
  73. Gunteski-Hamblin A.M., Clarke D.M., Shull G.E. Molecular cloning and tissue distribution of alternatively spliced mRNAs encoding possible mammalian homologues of the yeast secretory pathway calcium pump. // Biochemistry. 1992. V. 31. № 33. P. 7600−7608.
  74. Haas I.G. and Wable M. Immunoglobulin heavy chain binding protein. // Nature. 1983. V. 306. № 5941. P. 387−389.
  75. Haynes C.M., Titus E.A., Cooper A.A. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. //Molecular Cell. 2004. V. 15. № 5. P. 767−776.
  76. Hebert D. N., Foellmer B., Helenius A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. II The EMBO Journal. 1996. V. 15. JV"12. 2961−2968.
  77. Herbert D. Phipps P.J., and Strange R.E. Chemical analysis of microbial cells. // Methods microbial. 1971. V. 5. P. 244−249.
  78. Hershko A., Ciechanover A. The ubiquitin system. // Annual Review of Biochemistry. 1998. V. 67. P. 425−479.
  79. Hicke L. A new ticket for entry into budding vesicles-ubiquitin. // Cell. 2001. V. 106. № 5. P. 527−530.
  80. Hille-Rehfeld A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes.//Biochim Biophys Acta. 1995. V. 1241. № 2. P. 177−194.
  81. Hiller M.M., Finger A., Schweiger M., Wolf D.H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. // Science. 1996. V. 273. № 5282. P. 1725−1728.
  82. Hirsch C., Blom D., and Ploegh. A role for N-glycanase in the cytosolic turnover of glycoproteins. //The EMBO Journal. 2003. V. 22. № 5. P. 1036−1046.
  83. Holkeri H., Makarow M. Different degradation pathways for heterologous glycoproteins in yeast. // FEBS Letters. 1998. V. 429. № 2. P. 162−166.
  84. Hollander I.J. Plasminogen activators and their potential in therapy. // Crit. Rev. Biotechnol. 1987. V. 6.№ 3.P. 253−271.
  85. Homans S.W., Ferguson M.A.J., Dwek R.A., Rademacher T.W., Anand R. and Williams A.F. Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. //Nature. 1988. V. 333. P. 269−272.
  86. Hong E., Davidson A.R., Kaiser C.A. A pathway for targeting soluble misfolded proteins to the yeast vacuole. // The Journal of Cell Biology. 1996. V. 135. № 3. P. 623−633.
  87. Hosokawa N., Wada I., Hasegawa K., Yorihuzi T., Tremblay L.O., Herscovics A., Nagata K. A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. // EMBO Reports. 2001. V. 2. № 5. P. 415−422.
  88. Huibregtse J.M., Scheffner M., Beaudenon S., Howley P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. // Proc. Nat. Acad. Sci. USA. 1995. V. 92. № 7. P. 2563−2567.
  89. Iida H., Nakamura H., Ono T., Okumura M.S., Anraku Y. MIDI, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. // Molecular and Cellular Biology. 1994. V 14. № 12. P. 8259−8271.
  90. Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids. // Gene. 1990. V. 96. № 1. P. 23−28.
  91. Iodice L., Sarnataro S., Bonatti S. The carboxyl-terminal valine is required for transport of glycoprotein CD8a from the endoplasmic reticulum to the intermediate compartment. // The Journal ofBiological Chemistry. 2001. V. 276. № 31. P. 28 920−28 926.
  92. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. //Journal of Bacteriology. 1983. V. 153. № 1. P. 163−168.
  93. Jaiswal J.K., Rivera V.M., Simon S.M. Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. // Cell. 2009. V. 137. № 7. P. 1308−1319.
  94. Jakob C.A., Bodmer D., Spirig U., Battig P., Marcil A., Dignard D., Bergeron J.J., Thomas D.Y., Aebi M. Htmlp, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. // EMBO Reports. 2001. V. 2. № 5. P. 423−430.
  95. Jakob C.A. Burda P., te Heesen S., Aebi M., Roth J. Genetic tailoring of N-linked oligosaccharides: The role of glucose residues in glycoprotein processing of Saccharomyces cerevisiae in vivo. II Glycobiology. 1998. V. 8. № 2. P. 155−164.
  96. Jensen L.T., Carroll M.C., Hall M.D., Harvey C.J., Beese S.E., and Culotta V.C. Down-regulation of a manganese transporter in the face of metal toxicity. // Molecular Biology of the Cell. 2009. V. 20. № 12. P. 2810−2819.
  97. Jiang B., Sheraton J., Ram A.F., Dijkgraaf G.J., Klis F.M., Bussey H. CWH41 encodes a novel endoplasmic reticulum membrane N-glycoprotein involved in beta 1,6-glucan assembly. // Journal of Bacteriology. 1996. V. 178. № 4. P. 1162−1171.
  98. Johnson L.M., Bankaitis V.A., Emr S.D. Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. // Cell. 1987. V. 48. № 5. P. 875−885.
  99. Jones E.W. Vacuolar proteases and proteolytic artifacts in Saccharomyces cerevisiae. Methods Enzymol. 2002. V. 351. P. 127−150.
  100. Jones J.S. and Prakash L. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. // Yeast. 1990. V. 6. № 5. P. 363−366.
  101. Kang H.A., Kim J.Y., Ko S.M., Park C.S., Ryu D.D., Sohn J.H., Choi E.S., Rhee S.K. Cloning and characterization of the Hansenula polymorpha homologue of the Saccharomyces cerevisiae PMR1 gene. //Yeast. 1998. V. 14. № 13. P. 1233−1240.
  102. Kawaguchi S., Hsu C.-L., Ng D.T.W. Interplay of substrate retention and export signals in endoplasmic reticulum quality control. //PLoS ONE. 2010. V. 5. № 11. P. 1−14.
  103. Kawasaki H., Kurosu Y., Kasai H., Isobe T. and Okuyama T. Limited digestion of calmodulin with trypsin in the presence or absence of various metal ions. // The Journal of Biochemistry. 1986. V. 99. № 5. P. 1409−1416.
  104. Keller C.H., LaPorte D.C., Toscano W.A.Jr., Storm D.R., Westcott K.R. Ca2+ regulation of cyclic nucleotide metabolism. // Annals of the New York Academy of Sciences. 1980. V. 356. P. 205−219.
  105. Kim M.W., Agaphonov M.O., Kim J.Y., Rhee S.K., Kang H.A. Sequencing and functional analysis of the Hansenula polymorpha genomic fragment containing the YPT1 and PMI40 genes. //Yeast. 2002. V. 19. № 10. 863−871.
  106. Kimata Y., Oikawa D., Shimizu Y., Ishiwata-Kimata Y., Kohno K. A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Irel. // The Journal of Cell Biology. 2004. V. 167. № 3. P. 445−456.
  107. Kirchhausen T. Clathrin. // Annual Review of Biochemistry. 2000. V. 69. P. 699−727.
  108. Klionsky D.J., Erm S.D. A new class of lysosomal/vacuolar protein sorting signals. // The Journal of Biological Chemistry. 1990. V. 265. № 10. P. 5349−5352.
  109. Knop M., Finger A., Braun T., Hellmuth K., Wolf D.H. Deri, a novel protein specifically required for endoplasmic reticulum degradation in yeast. // The EMBO Journal. 1996. V. 15. № 4. P. 753−763.
  110. Knop M., Hauser N., Wolf D.H. N-glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. // Yeast. 1996. V. 12. № 12. P. 12 291 238.
  111. Korennykh A.V., Egea P.F., Korostelev A.A., Finer-Moore J., Zhang C., Shokat K.M., Stroud R.M., and Walter P. The unfolded protein response signals through high-order assembly of Irel. //Nature. 2009. V. 457. № 7230. P. 687−693.
  112. Kreis T.E., Lowe M., and Pepperkok R. COPs regulating membrane traffic. // Annual Review of Cell and Developmental Biology. 1995. V. 11. P. 677−706.
  113. Kuehn M.J., Herrmann J.M., Schekman R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. //Nature. 1998. V. 391. № 6663. P. 187−190.
  114. Kurtzman C.P. A new methanol assimilating yeast, Ogataea parapolymorpha, the ascosporic state of Candida parapolymorpha. II Antonie Van Leeuwenhoek. 2011. V. 100. № 3. P. 455−462.
  115. Kusakawa G., Saito T., Onuki R., Ishiguro K., Kishimoto T., Hisanaga S. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. // The Journal of Biological Chemistry. 2000. V. 275. № 22. P. 17 166−17 172.
  116. Kushnirov V.V. Rapid and reliable protein extraction from yeast. // Yeast. 2000. V. 16. № 9. P. 857−860.
  117. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. //Nature. 1970. V. 227. № 5259. P. 680−685.
  118. Lai M.M., Burnett P.E., Wolosker H., Blackshaw S., Snyder S.H. Cain, a novel physiologic protein inhibitor of calcineurin. // The Journal of Biological Chemistry. 1998. V. 273. № 29. P. 18 325−18 331.
  119. Lapinskas P.J., Cunningham K.W., Liu X.F., Fink G.R., and Culotta V.C. Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase. // Molecular and Cellular Biology. 1995. V. 15. № 3. 1382−1388.
  120. Lee M.C.S., Orci L., Hamamoto S., Futai E., Ravazzola M. and Schekman R. Sarlp N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. // Cell. 2005. V. 122. № 4. P. 605−617.
  121. Li L., Chen O.S., Ward D.M. and Kaplan J. CCC1 is a transporter that mediates vacuolar iron storage in yeast. //The Journal ofBiological Chemistry. 2001. V. 26. № 31. P. 29 515−29 519.
  122. Lijnen H. R. and Collen D. Strategies for the improvement of thrombolytic agents. // Thromb Haemost. 1991. V. 66. № 1. 88−110.
  123. Lilley B.N. and Ploegh H.L. A membrane protein required for dislocation of misfolded proteins from the ER. // Nature. 2004. V. 42. P. 834−840.
  124. Lilley B.N. and Ploegh H.L. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. // Proc. Nat. Acad. Sci. USA. 2005. V. 102. № 40. P. 14 296−14 301.
  125. Lin S.J. and Culotta V.C. Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles. // Molecular and Cellular Biology. 1996. V. 16. № 11. P. 6303−6312.
  126. Liu X.F., Supek F., Nelson N. and Culotta V.C. Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. // The Journal ofBiological Chemistry. 1997. V. 272. № 18. P. 11 763−11 769.
  127. Liu X.F. and Culotta V.C. Mutational analysis of Saccharomyces cerevisiae Smflp, a member of the Nramp family of metal transporters. // Journal of Molecular Biology. 1999a. V. 289. № 4. P. 885−891
  128. Liu X.F. and Culotta V.C. Post-translation control of Nramp metal transport in yeast. Role of metal ions and the BSD2 gene. // The Journal ofBiological Chemistry. 1999b. V. 274 № 8. P. 4863−4868.
  129. Locke E.G., Bonilla M., Liang L., Takita Y., and Cunningham K.W. A homolog of voltage-gated cachannels stimulated by depletion of secretory Ca in yeast. // Molecular and Cellular Biology. 2000. V. 20. № 18. P. 6686−6694.
  130. Loukin S. and Kung C. Manganese effectively supports yeast cell-cycle progression in place of calcium. // The Journal of Cell Biology. 1995. V. 131. № 4. P. 1025−1037.
  131. Love H.D., Lin C.-C., Short C.S., and Ostermann J. Isolation of functional Golgi-derived vesicles with a possible role in retrograde transport. // The Journal of Cell Biology. 1998. V. 140. № 3. P. 541−551.
  132. Luk E.E. and Culotta V.C. Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. The Journal of Biological Chemistry. 2001. V. 276. № 50. P. 47 556−47 562.
  133. Luk E., Yang M., Jensen L. T., Bourbonnais Y. and Culotta V. C. Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae. II The Journal of Biological Chemistry. 2005. V. 280. № 24. P. 22 715−22 720.
  134. Lundmark R., Doherty G.J., Vallis Y., Peter B. J., and McMahon H.T. Arf family GTP loading is activated by, and generates, positive membrane curvature. // Biochemical Journal. V. 414. Pt. 2. P. 189−194.
  135. Luo Z. and Gallwitz D. Biochemical and genetic evidence for the involvement of yeast Ypt6-GTPase in protein retrieval to different Golgi compartments. The Journal of Biological Chemistry. V. 278. № 2. P. 791−799.
  136. Ma X.-J., Lu Q., and Grunstein M. A search for proteins that interact genetically with histone H3 and H4 amino termini uncovers novel regulators of the Swel kinase in Saccharomyces cerevisiae. Genes & Development. 1996. V. 10. № 11. P. 1327−1340.
  137. Marchi V., Sorin A., Wei Y., Rao R. Induction of vacuolar Ca2±ATPase and H+/Ca2+ exchange activity in yeast mutants lacking Pmrl, the Golgi Ca2±ATPase. // FEBS Letters. 1999. V. 454. № 3. P. 181−183.
  138. Marcusson E.G., Horazdovsky B.F., Cereghino J.L., Gharakhanian E., Emr S.D. The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. // Cell. 1994. V. 77. № 4. P. 579−586.
  139. Marsh B.J., Volkmann N., Mcintosh J.R., and Howell K.E. Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. // Proc. Nat. Acad. Sci. USA. 2004. V. 101. № 15. P. 5565−5570.
  140. Matheos D.P., Kingsbury T.J., Ahsan U.S., and Cunningham K.W. Tcnlp/Crzlp, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes & Development. 1997. V. 11. № 24. P. 3445−3458.
  141. McCracken A.A., Brodsky J.L. Assembly of ER-associated protein degradation in vitro: Dependence on cytosol, calnexin, and ATP. // The Journal of Cell Biology. 1996. V. 132. № 3. P. 291−298.
  142. Medicherla B., Kostova Z., Schaefer A., and Wolf D.H. A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. // The EMBO Journal. 2004. V. 5. № 7. P. 692−697.
  143. Meldolesi J. and Pozzan T. The endoplasmic reticulum Ca2+ store: A view from the lumen. //Trends in Biochemical Sciences. 1998. V. 23. № 1. P. 10−14.
  144. Meyer C., Zizioli D., Lausmann S., Eskelinen E.L., Hamann J., Safitig P., von Figura K., Schu P. mul A-adaptin-deficient mice: Lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. The EMBO Journal. 19. № 10. P. 2193−2203.
  145. Micaroni M., Perinetti G., Di Giandomenico D., Bianchi, K., Spaar, A., Mironov, A. A. Synchronous intra-Golgi transport induces the release of Ca2+ from the Golgi apparatus. // Experimental Cell Research. 2010. V. 316. № 13. P. 2071−2086.
  146. Mironov A.A., Weidman P., and Luini A. Variations on the intracellular transport theme: Maturing cisternae and trafficking tubules. // The Journal of Cell Biology. 1997. V. 138. № 3. P. 481−484.
  147. Mironov A.Jr., Luinia A., and Mironov A. A synthetic model of intra-Golgi traffic. // The FASEB Journal. 1998. V. 12. P. 249−252.
  148. Mironov A.A., Beznoussenko G. V, Polishchuk R.S., Trucco A. Intra-Golgi transport: A way to a new paradigm? // Biochimica et Biophysica Acta. 2005. V. 1744. № 3. P. 340−350.
  149. Mironov A.A., Beznoussenko G.V., Polishchuk R.S., Trucco A. The Kiss-and-Run Model of Intra-Golgi Transport // Internationa Journal of Molecular Sciences. 2012. V. 13. № 6. P. 6800−6819.
  150. Miyawaki A., Llopis J., Heim R., McCaffery J.M., Adams J.A., Ikura M., Tsien R.Y. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. // Nature. 1997. V. 388. № 6645. P. 882−887.
  151. Mizunuma M., Hirata D., Miyahara K., Tsuchiya E. and Miyakawa T. Role of calcineurin and Mpkl in regulating the onset of mitosis in budding yeast. //Nature. 1998. V. 392. № 6673. P. 303−306.
  152. Mizunuma M., Hirata D., Miyaoka R., and Miyakawa T. Gsk-3 kinase Mckl and calcineurin coordinately mediate Hsll down-regulation by Ca2+ in budding yeast. // The EMBO Journal. 2001. V. 20. № 5. P. 1074 1085.
  153. Mizunuma M., Miyamura K., Hirata D., Yokoyama H., and Miyakawa T. Involvement of S-adenosylmethionine in G1 cell-cycle regulation in Saccharomyces cerevisiae. Proc. Nat. Acad. Sci. USA. 2004. V. 101. № 16. P. 6086−6091.
  154. Mizunuma M., Hirata D., and Miyakawa T. Implication of Pkclp protein kinase C in sustaining Cln2p level and polarized bud growth in response to calcium signaling in Saccharomyces cerevisiae. II Journal of Cell Science. 2005. V. 118. № 18. P. 4219−4229.
  155. Mori K. Signalling pathways in the unfolded protein response: Development from yeast to mammals. // The Journal of Biochemistry. 2009. V. 46. № 6. P. 743−750.
  156. Munro S. and Pelham H.R. An Hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. // Cell. 1986. V. 46. № 2.291−300.
  157. Nelson N. Metal ion transporters and homeostasis. // The EMBO Journal. 1999. V. 18. № 16. P. 4361 -4371.
  158. Neufeld T.P. Tor regulation: Sorting out the answers. // Cell Metabolism. 2007. V. 5№ 1. P. 3−5.
  159. Ng D.T., Brown J.D., Walter P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. // The Journal of Cell Biology. 1996. V. 134. № 2. P. 269−278.
  160. Nie Z., Hirsch D.S., and Randazzo P.A. Arf and its many interactors. // Current Opinion in Cell Biology. 2003. V. 15. № 4. P. 396−404.
  161. Nikko E., Sullivan J.A., Pelham H.R. Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smfl. // EMBO Reports. 2008. V. 9. № 12. P. 12 161 221.
  162. Nufer O., Guldbrandsen S., Degen M., Kappeler F., Paccaud J.P., Tani K., Hauri H.P. Role of cytoplasmic C-terminal amino acids of membrane proteins in ER export. // Journal of Cell Science. 2002. V. 115. Pt. 3. P. 619−628.
  163. O’Rourke S.M. and Herskowitz I. The Hogl MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes & Development. 1998. V. 12. № 18. P. 2874−2886.
  164. Oliver J.D. Roderick H.L., Llewellyn D.H., High S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. // Molecular Biology of the Cell. 1999. V. 10. № 8. P. 2573−2582.
  165. Orci L., Glick B.S., Rothman J.E. A new type of coated vesicular carrier that appears not to contain clathrin: Its possible role in protein transport within the Golgi stack. // Cell. 1986. V. 46. № 2. P. 171−184.
  166. Orci L., Stamnes M., Ravazzola M., Amherdt M., Perrelet A., Sollner T.H., Rothman J.E. Bidirectional transport by distinct populations of COPI-coated vesicles. // Cell. 1997. V. 90. № 2. P. 335−349.
  167. Paidhungat M., and Garrett S. A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdcl (ts) growth defect. // Molecular and Cellular Biology. V. 17. № 11. P. 6339−6347.
  168. Palade G. Intracellular aspects of the process of protein synthesis. // Science. V. 189. № 4200. P. 347−358.
  169. Palmer C.P., Zhou X.L., Lin J., Loukin S.H., Kung C., Saimi Y. A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca (2+)-permeable channel in the yeast vacuolar membrane. // Proc. Nat. Acad. Sei. USA. 2001. V. 98. № 14. P. 7801−7805.
  170. Parodi A.J. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. //Biochemical Journal. 2000. V. 348. № 1. P. 1−13.
  171. Pelham H.R. Insights from yeast endosomes. //Current Opinion in Cell Biology. 2002. V. 14. № 4. P. 454−462.
  172. Pilon M., Schekman R. and Romisch K. Secolp mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. // The EMBO Journal. 1997. V. 16. № 15. P. 4540 -4548.
  173. Pincus D., Chevalier M.W., Aragon T., van Anken E., Vidal S.E., El-Samad H., and Walter P. BiP binding to the ER-stress sensor Irel tunes the homeostatic behavior of the unfolded protein response. // PLoS Biology. 2010. V. 8. № 7. el000415.
  174. Pinton P., Pozzan T., Rizzuto R. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. //The EMBO Journal. 1998. V. 17№ 18. P. 5298−5308.
  175. Piper R.C., Bryant N.J., Stevens T.H. The membrane protein alkaline phosphatase is delivered to the vacuole by a route that is distinct from the VPS-dependent pathway. // The Journal of Cell Biology. 1997. V. 138. № 3. P. 531−545.
  176. Plemper R. K., Bohmler S., Bordallo J., Sommer T. and Wolf D.H. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. // Nature. 1997. V. 388. P. 891−895.
  177. Portnoy M.E., Jensen L.T., and Culotta V.C. The distinct methods by which manganese and iron regulate the Nramp transporters in yeast. // Biochemical Journal. 2002. V. 362. № 1. P. 119 124.
  178. Portnoy M.E., Liu X.F., and Culotta V.C. Saccharomyces cerevisiae expresses three functionally distinct homologues of the Nramp family of metal transporters. // Molecular and Cellular Biology. 2000. V. 20. № 21. P. 7893−7902.
  179. Pozniakovsky A.I., Knorre D.A., Markova O.V., Hyman A.A., Skulachev V.P., Severin F.F. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. // The Journal of Cell Biology. V. 168. № 2. P. 257−269.
  180. Pozos T.C., Sekler I., Cyert M.S. The product of HUM1, a novel yeast gene, is required for vacuolar Ca2+/H+ exchange and is related to mammalian Na+/Ca2+ exchangers. // Molecular Biology of the Cell. 1996. V. 16. № 7. P. 3730−3741.
  181. Ramsay L.M. and Gadd G.M. Mutants of Sacchciromyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. // FEMS Microbiol Lett 1997. V. 152. № 2. P. 293−298.
  182. Ray M.K., Yang J., Sundaram S., Stanley P. A novel glycosylation phenotype expressed by Lec23, a Chinese hamster ovary mutant deficient in alpha-glucosidase I. // The Journal of Biological Chemistry. 1991. V. 266. № 34. P. 22 818−22 825.
  183. Reddi A.R., Jensen L.T., and Culotta V.C. Manganese homeostasis in Saccharomyces cerevisiae. II Chemical Reviews. 2009a. V. 109. № 101. P. 4722−4732.
  184. Reddi A.R. Jensen L.T., Naranuntarat A., Rosenfeld L., Leung E., Shah R., and Culotta V.C. The overlapping roles of manganese and Cu/Zn Sod in oxidative stress protection. // Free Radical Biology and Medicine. 2009b. V. 46. № 2. P. 154−162.
  185. Reitman M.L. Trowbridge I.S., Kornfeld S. A lectin-resistant mouse lymphoma cell line is deficient in glucosidase II, a glycoprotein-processing enzyme. // The Journal of Biological Chemistry. V. 257. № 17. P. 10 357−10 363.
  186. Rexach M.F., Latterich. M., Schekman R.W. Characteristics of endoplasmic reticulum-derived transport vesicles. // The Journal of Cell Biology. V. 126. № 5. P. 1133−1148.
  187. Roberts R.L., Barbieri M.A., Pryse K.M., Chua M., Morisaki J.H., Stahl P.D. Endosome fusion in living cells overexpressing GFP-rab5. // The Journal of Cell Science. 1999. V. 112. № 21. P. 3667−3675.
  188. Rohde J.R., Bastidas R., Puria R., and Cardenas M.E. Nutritional control via Tor signaling in Saccharomyces cerevisiae. II Current Opinion in Microbiology. 2008. V. 11. № 2. P. 153−160.
  189. Romanos M.A., Scorer C.A., Clare J.J. Foreign gene expression in yeast: A review. // Yeast. 1992. V. 8. № 6. P. 423−488.
  190. Romero P.A., Dijkgraaf G.J., Shahinian S., Herscovics A., Bussey H. The yeast CWH41 gene encodes glucosidase I. // Glycobiology. 1997. V. 7. № 7. P. 997−1004.
  191. Ron D. and Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. //Nature Reviews Molecular Cell Biology. 2007. V. 8. № 7. P. 519−529.
  192. Rose M.D., Misra. L.M., Vogel J.P. Kar2, a karyogamy gene, is the yeast homolog of the mammalian BiPIGRP78 gene. // Cell. 1989. V. 57. № 7. P. 1211−1221.
  193. Rothman J.H. and Stevens T.H. Protein sorting in yeast: Mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. // Cell. 1986. V. 47. № 6. P. 1041−1051.
  194. Rothman J.H., Howald I., Stevens T.H. Characterization of genes required for protein sorting and vacuolar function in the yeast Saccharomyces cerevisiae. // The EMBO Journal. 1989. V. 8. № 7. P. 2057−2065.
  195. Rothman J.E. and Wieland F.T. Protein sorting by transport vesicles. // Science. 1996. V. 272. № 5259. P. 227−234.
  196. Rudolph H.K., Antebi A., Fink G.R., Buckley C.M., Dorman T.E., LeVitre J., Davidow L.S., Mao J. and Moir D.T. The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ATPase family. //Cell. 1989. V. 58. № 1. P. 133−145.
  197. Rutkowski D.T. and Hegde R.S. Regulation of basal cellular physiology by the homeostatic unfolded protein response. // The Journal of Cell Biology. 2010. V. 189. № 5. P. 783−794.
  198. Scarborough G. A. Structure and function of the P-type atpases. // Current Opinion in Cell Biology. 1999. V. 11 № 4. P. 517−522.
  199. Schekman R., Orci L. Coat proteins and vesicle budding. // Science. 1996. V. 271. № 5255. P. 1526−1533.
  200. Scott D.C. and Schekman R. Role of Sec61p in the ER-associated degradation of shortlived transmembrane proteins. // The Journal of Cell Biology. V. 181. № 7. P. 1095−1105.
  201. Seeger M. and Payne G.S. A role for clathrin in the sorting of vacuolar proteins in the Golgi complex of yeast.// The EMBO Journal. 1992. V. 11. № 8. P. 2811−2818.
  202. Simons K. and Toomre D. Lipid rafts and signal transduction. // Nature Reviews Molecular Cell Biology. 2000. V. 1. № 1. P. 31−39.
  203. Singh A., Kaur N. and Kosman D.J. The metalloreductase Fre6p in Fe-efflux from the yeast vacuole. //The Journal of Biological Chemistry. 2007. V. 282. № 39. P. 28 619−28 626.
  204. Sipos G., Puoti A., Conzelmann A. Glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae: Absence of ceramides from complete precursor glycolipids. // The EMBO Journal. V. 13. № 12. P. 2789−2796.
  205. Slepnev V.I. and De Camilli P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. // Nature Reviews Neuroscience. 2000. V. 1. P. 161−172.
  206. Sohn J.H., Choi E.S., Kang H.A., Rhee J.S., Agaphonov M.O., Ter-Avanesyan M.D., Rhee S.K. A dominant selection system designed for copy-number-controlled gene integration in
  207. Hansenula polymorpha DL-1. // Applied Microbiology and Biotechnology. 1999. V. 51. № 6 P 800−807.
  208. Spang A., Matsuoka K., Hamamoto S., Schekman R., and Orci L. Coatomer, Arflp, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. //Proc. Nat. Acad. Sci. USA. 1998. V. 95. № 19. P. 11 199−11 204.
  209. Spang A. ARF1 regulatory factors and COPI vesicle formation. // Current Opinion in Cell Biology. 2002. V. 14. № 4. P. 423−427.
  210. Spear E.D. and Ng D.T.W. Stress tolerance of misfolded carboxypeptidase Y requires maintenance of protein trafficking and degradative pathways. // Molecular Biology of the Cell. 2003. V. 14. № 7. P. 2756−2767.
  211. Stathopoulos A.M. and Cyert M.S. Calcineurin acts through the CRZ1 /TCN1 -encoded transcription factor to regulate gene expression in yeast. // Genes & Development. 1997. V. 11. № 24. P. 3432−3444.
  212. Stimpson H.E.M., Lewis M.J. and Pelham H.R.B. Transferrin receptor-like proteins control the degradation of a yeast metal transporter. // The EMBO Journal. 2006. V. 25. № 4. P. 662 -672.
  213. Strahl-Bolsinger S., Gentzsch M., Tanner W. Protein O-mannosylation. // Biochimica et Biophysica Acta. V. 1426. № 2. P. 297−307.
  214. Strayle J., Pozzan Π’., Rudolph H.K. Steady-state free Ca (2+) in the yeast endoplasmic reticulum reaches only 10 microM and is mainly controlled by the secretory pathway pump Pmrl. The EMBO Journal. 1999. V. 18. β„–.17. P. 4733−4743.
  215. Strom M., Vollmer P., Tan T. J, Gallwitz D. A yeast gtpase-activating protein that interacts specifically with a member ofthe Ypt/Rab family. //Nature. 1993. V. 361. № 6414. P. 736−739.
  216. Sullivan J.A., Lewis M.J., Nikko E., and Pelham H.R.B. Multiple interactions drive adaptor-mediated recruitment of the ubiquitin ligase Rsp5 to membrane proteins in vivo and in vitro. II Molecular Biology ofthe Cell. 2007. V. 18. № 7. 2429−2440.
  217. Suzuki Π’., Park. H., Hollingsworth N.M., Sternglanz R., and Lennarz W.J. PNG1, a yeast gene encoding a highly conserved peptide: N-glycanase. // The Journal of Cell Biology. 2000. V. 149. № 5. P. 1039−1052.
  218. Swanson R., Locher M., Hochstrasser M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and matalpha2 repressor .
  219. Tachibana C. and Stevens Π’.Н. The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. // Molecular and Cellular Biology. 1992. V. 12. № 10. P. 4601−4611.
  220. Tachikawa H., Miura Π’., Katakura Y., Mizunaga T. Molecular structure of a yeast gene, PDI1, encoding protein disulfide isomerase that is essential for cell growth. // The Journal of Biochemistry. 1991. V. 110. № 2. P. 306−313.
  221. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. // Proc. Nat. Acad. Sci. USA. 1979. V. 76. № 9. P. 4350−4354.
  222. Trimble R.B. and Atkinson P.H. Structural heterogeneity in the Man8−13GlcNAc oligosaccharides from log-phase saccharomyces yeast: A one- and two-dimensional 1H NMR spectroscopic study. // Glycobiology. 1992. V. 2. № 1. 57−75.
  223. Urbanowski J.L. and Piper R.C. The iron transporter Fthlp forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. // The Journal of Biological Chemistry. 1999. V. 274. № 53. P. 38 061−38 070.
  224. Vairo M.L.R. and Borzani W. Precise Adsorption Method for Measuring the Percentage of Dead Bacterial Cells. //Applied Microbiology. 1962. V. 10. № 6. P. 500−503.
  225. Vails L.A., Winther J.R., Stevens T.H. Yeast carboxypeptidase Y vacuolar targeting signal is defined by four propeptide amino acids. // The Journal of Cell Biology. 1990. V. 111. № 2. P. 361−368.
  226. Vashist S., Kim W., Belden W.J., Spear E.D., Barlowe C., and Ng D.T.W. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. // The Journal of Cell Biology. V. 155. № 3. P. 355−368.
  227. Veale R.A., Giuseppin M.L., van Eijk H.M., Sudbery P.E., Verrips C.T. Development of a strain of Hansenula polymorpha for the efficient expression of guar alpha-galactosidase. // Yeast. 1992. V. 8. № 5. P. 361−372.
  228. Vidal S.M., Malo D., Vogan K., Skamene E. and Gros P. Natural resistance to infection with intracellular parasites: Isolation of a candidate for Beg. // Cell. 1993. V. 73. № 3. P. 469 485.
  229. Walter P., Lingappa V.R. Mechanism of protein translocation across the endoplasmic reticulum membrane. // Annual Review of Cell Biology. 1986. V. 2. P. 499−516.
  230. Wang C., Eufemi M., Turano C., Giartosio A. Influence of the carbohydrate moiety on the stability of glycoproteins. // Biochemistry. 1996. V. 35. № 23. P. 7299−7307.
  231. Wei Y. M. V., Wang R., and Rao R. (1999). An n-terminal ef hand-like motif modulates ion transport by pmrl, the yeast golgi ca2+/mn2±atpase. Biochemistry 38(44): 14 534−14 541.
  232. Werner E.D., Brodsky J.L., McCracken A.A. Proteasome-dependent endoplasmic reticulum-associated protein degradation: An unconventional route to a familiar fate. // Proc. Nat. Acad. Sei. USA. V. 93. № 24. P. 13 797−13 801.
  233. Wiertz E., Tortorella D., Bogyo M., Yu J., Mothes W., Jones T.R., Rapoport T.A. & Ploegh H.L. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. //Nature. 1996. V. 384. P. 432 438.
  234. Williams R.J.P. Free manganese (II) and iron (II) cations can act as intracellular cell controls. //FEBS Letters. 1982. V. 140. № 1. P. 3−10.
  235. Wilson S. P. and Kirshner N. Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells. // The Journal of Biological Chemistry. 1983. V. 258. № 8. P. 4994−5000.
  236. YaDeau J.T., Klein C., Blobel G. Yeast signal peptidase contains a glycoprotein and the Seel 1 gene product. Proc. Nat. Acad. Sei. USA. 1991. V. 88. № 2. P. 517−521.
  237. Yamamoto K., Fujii R., Toyofuku Y., Saito T., Koseki H., Hsu V.W., and Aoe T. The KDEL receptor mediates a retrieval mechanism that contributes to quality control at the endoplasmic reticulum. //The EMBO Journal. 2001. V. 20. β„–.12. P. 3082−3091.
  238. Yang M., Jensen L.T., Gardner A.J., and Culotta V.C. Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family. // Biochemical Journal. 2005. V. 386. P. 47987.
  239. Yokoyama H., Mizunuma M., Okamoto M., Yamamoto J., Hirata D., and Miyakawa T. Involvement of calcineurin-dependent degradation of Yaplp in Ca2±induced G2 cell-cycle regulation in Saccharomyces cerevisiae. II EMBO Reports. V. 7. № 5. P. 519−524.
  240. Zhao C., Jung U.S., Garrett-Engele P., Roe T., Cyert M.S., and Levin D.E. Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. // Molecular and Cellular Biology. 1998. V. 18. № 2. P. 1013−1022.
  241. Ziegler F.D., Gemmil T.R., Trimble R.B. Glycoprotein synthesis in yeast. Early events in N-linked oligosaccharide processing in Schizosaccharomyces pombe. II The Journal of Biological Chemistry. 1994. V. 269. № 17. P. 12 527−12 535.1. Благодарности
  242. Π“Π»ΡƒΠ±ΠΎΠΊΠΎ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚Π΅Π»ΡŒΠ½Π° Π·Π°Π²Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌΡƒ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠ΅ΠΉ молСкулярной Π³Π΅Π½Π΅Ρ‚ΠΈΠΊΠΈ М.Π”. Π’Π΅Ρ€-АванСсяну Π·Π° ΠΏΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²Π»Π΅Π½Π½ΡƒΡŽ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ выполнСния Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΈ ΡΠΎΠ²Π΅Ρ‚Ρ‹.
  243. ΠžΡ‚Π΄Π΅Π»ΡŒΠ½Π°Ρ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ всСм прСподаватСлям ΠšΠ°Ρ„Π΅Π΄Ρ€Ρ‹ Π±ΠΈΠΎΡ…ΠΈΠΌΠΈΠΈ БиологичСского Ρ„Π°ΠΊΡƒΠ»ΡŒΡ‚Π΅Ρ‚Π° ΠœΠ“Π£ ΠΈΠΌ. Πœ. Π’. Ломоносова Π·Π° Π±Π΅ΡΡ†Π΅Π½Π½Ρ‹Π΅ знания ΠΈ ΠΎΠΏΡ‹Ρ‚. Π’ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠ½Π΅ довСлось ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ Ρƒ Π·Π°Π²Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΊΠ°Ρ„Π΅Π΄Ρ€ΠΎΠΉ Н. Π’. ГусСва, являСтся ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠΌ ΠΌΠΎΠ΅ΠΉ большой гордости.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ