Π”ΠΈΠΏΠ»ΠΎΠΌ, курсовая, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°
ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚

Новый ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΡŒ Ρƒ Rhodococcus ΠΎpacus ICP, растущСго Π½Π° 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π΅: энзиматичСскиС ΠΈ гСнСтичСскиС аспСкты

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ 19F-^MP ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° функция ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΠΈ R. opacus 1 Π‘Π . Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ 5-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Π° осущСствляСт Π΄Π΅Π³Π°Π»ΠΎΠ³Π΅ΠΈΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π°Π»ΠΎΠΌΡƒΠΊΠΎΠ½Π°Ρ‚ΠΎΠ² с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π³/Π½Π±-Π΄ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½Π°. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΈ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π³Π΅Π½Ρ‹, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ€ΠΏΡŽ-ΠΏΡƒΡ‚ΠΈ R. opacus 1Π‘Π . Показано, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок сокращСний
  • ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
  • Π“Π»Π°Π²Π° 1. ЭнзиматичСскиС ΠΈ Π³Π΅Π½Π΅Ρ‚ичСскиС аспСкты прСвращСния Ρ„Π΅Π½ΠΎΠ»ΠΎΠ² ΠΈ Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»ΠΎΠ² бактСриями. Π’
    • 1. 1. Π€Π΅Π½ΠΎΠ»Ρ‹ ΠΈ Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Ρ‹ — ΠΏΡ€ΠΈΠΎΡ€ΠΈΡ‚Π΅Ρ‚Π½Ρ‹Π΅ ΠΏΠΎΠ»Π»ΡŽΡ‚Π°Π½Ρ‚Ρ‹ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды
    • 1. 2. Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Ρ€ΠΎΠ΄Π° Rhoclococcus — эффСктивныС дСструкторы ΠΏΠΎΠ»Π»ΡŽΡ‚Π°Π½Ρ‚ΠΎΠ²
    • 1. 3. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ ΠΏΡƒΡ‚ΠΈ прСвращСния Ρ„Π΅Π½ΠΎΠ»ΠΎΠ² ΠΈ Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»ΠΎΠ² ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ
      • 1. 3. 1. ΠœΠ΅Ρ‚Π°-ΠΏΡƒΡ‚ΡŒ расщСплСния ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»Π°
      • 1. 3. 2. ΠšΠ»Π°ΡΡΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ opwo-nym расщСплСния ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΠΎΠ²
    • 1. 4. Π“Π΅Π½Π΅Ρ‚ΠΈΠΊΠ° Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»Π° ΠΈ Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΠΎΠ²
      • 1. 4. 1. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° Π³Π΅Π½Π½Ρ‹Ρ… кластСров ΠΊΠ°Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»Π° ΠΈ 4-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»Π° Ρƒ Rhodococcus opacus 1Π‘Π 
      • 1. 4. 2. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΎΠΏΠ΅Ρ€ΠΎΠ½Π°ΠΌΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ
      • 1. 4. 3. РСгуляция ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠ² Π±Π΅Π»ΠΊΠ°ΠΌΠΈ — Π°ΠΊΡ‚ΠΈΠ²Π°Ρ‚ΠΎΡ€Π°ΠΌΠΈ
  • Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ
  • Π“Π»Π°Π²Π° 2. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования
    • 2. 1. Π Π΅Π°ΠΊΡ‚ΠΈΠ²Ρ‹
    • 2. 2. Π¨Ρ‚Π°ΠΌΠΌΡ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅
    • 2. 3. ΠšΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ²
    • 2. 4. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈΡ… ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ
      • 2. 4. 1. АналитичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
      • 2. 4. 2. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ бСсклСточных экстрактов ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠ°
      • 2. 4. 3. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²
      • 2. 4. 4. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²
        • 2. 4. 4. 1. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» 1,2-диоксигСназы.5 !
        • 2. 4. 4. 2. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° 2-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½Π°Ρ‚ Ρ†ΠΈΠΊΠ»ΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹
        • 2. 4. 4. 3. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° 5-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹
        • 2. 4. 4. 4. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° Π΄ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½ Π³ΠΈΠ΄Ρ€ΠΎΠ»Π°Π·Ρ‹
        • 2. 4. 4. 5. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° Ρ„Π΅Π½ΠΎΠ» гидроксилазы
      • 2. 4. 5. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских свойств Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²
        • 2. 4. 5. 1. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎΠ³ΠΎ вСса Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²
        • 2. 4. 5. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ рН- ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌΠΎΠ² Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²
        • 2. 4. 5. 3. ВлияниС ЭДВА Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΄ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½ Π³ΠΈΠ΄Ρ€ΠΎΠ»Π°Π·Ρ‹
      • 2. 4. 6. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ кинСтичСских характСристик Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²
    • 2. 5. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ² 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΠΈ
      • 2. 5. 1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅, Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ² 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» 1,2-диоксигСназы
      • 2. 5. 2. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ хромосомной ΠΈ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½Ρ‹Ρ… Π”ΠΠš, ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ Π’-Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π”ΠΠš
      • 2. 5. 3. Амплификация Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» 1,2-диоксигСназного Π³Π΅Π½Π°
      • 2. 5. 4. ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli DH5a ΠΈ ΠΈΡ… Ρ‚рансформация
      • 2. 5. 5. Π‘Π»ΠΎΡ‚Π³ΠΈΠ½Π³ΠΈ, Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
      • 2. 5. 6. БиквСнс ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π”ΠΠš ΠΈ Π΅Π³ΠΎ Π°Π½Π°Π»ΠΈΠ·
  • Π“Π»Π°Π²Π° 3. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹
    • 3. 1. Адаптация ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ роста R. opacus 1Π‘Π  Π½Π° 2- ΠΈ 3-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π°Ρ… ΠΈ 3-Ρ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΠ°Ρ‚Π΅
    • 3. 2. ΠŸΡƒΡ‚ΠΈ разлоТСния 2- ΠΈ 3-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»ΠΎΠ² ΠΈ 3-Ρ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΠ°Ρ‚Π° R. opacus 1Π‘Π 
    • 3. 3. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ qpwo-ΠΏΡƒΡ‚ΠΈ разлоТСния 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π° It opacus 1Π‘Π 
      • 3. 3. 1. Π—-Π₯Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» 1,2-диоксигСназа
        • 3. 3. 1. 1. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°
        • 3. 3. 1. 2. Π’Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΠΈ Ρ€Π-ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌΡ‹.,
        • 3. 3. 1. 3. ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ константы Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°
      • 3. 3. 2. 2-Π₯Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½Π°Ρ‚ Ρ†ΠΈΠΊΠ»ΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Π°
        • 3. 3. 2. 1. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°
        • 3. 3. 2. 2. Π’Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΠΈ Ρ€Π-ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌΡ‹
        • 3. 3. 2. 3. ΠŸΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ 2-Ρ…Π»ΠΎΡ€-1/ис,?/мс-ΠΌΡƒΠΊΠΎΠ½Π°Ρ‚Π° Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½Π°Ρ‚ Ρ†ΠΈΠΊΠ»ΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·ΠΎΠΉ
        • 3. 3. 2. 4. ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ константы Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°
      • 3. 3. 3. 5-Π₯Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Π°
        • 3. 3. 3. 1. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°
        • 3. 3. 3. 2. ΠŸΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ 5-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π° 5-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·ΠΎΠΉ
      • 3. 3. 4. Π”ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½ Π³ΠΈΠ΄Ρ€ΠΎΠ»Π°Π·Π°
        • 3. 3. 4. 1. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°
        • 3. 3. 4. 2. Π’Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΠΈ Ρ€Π-ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌΡ‹
        • 3. 3. 4. 3. ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ константы Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°
        • 3. 3. 4. 4. ВлияниС ЭДВА Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΄ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½ Π³ΠΈΠ΄Ρ€ΠΎΠ»Π°Π·Ρ‹
    • 3. 4. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° 19F-iIMP ΠΏΡ€ΠΈ исслСдовании Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ ΡΡƒΠ±ΡΡ‚Ρ€Π°Ρ‚Π½ΠΎΠΉ спСцифичности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²
      • 3. 4. 1. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° Ρ„Π΅Π½ΠΎΠ» гидроксилазы ΠΈΠ· Trichosporon cutaneum
      • 3. 4. 2. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ„Ρ‚ΠΎΡ€Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΠΎΠ²
      • 3. 4. 3. Бубстратная ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» 1,2-диоксигСназы
      • 3. 4. 4. Бубстратная ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ 2-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½Π°Ρ‚ Ρ†ΠΈΠΊΠ»ΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹
      • 3. 4. 5. ΠŸΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ 5-Ρ„Ρ‚ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π° 5-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·ΠΎΠΉ
    • 3. 5. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ² 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΠΈ
      • 3. 5. 1. ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€Π°ΠΉΠΌΠ΅Ρ€ΠΎΠΈ для Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° Π³Π΅Π½Π° 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» 1,2-диоксигСназы
      • 3. 5. 2. Амплификация ΠΈ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» 1,2-диоксигСназного Π³Π΅Π½Π°
      • 3. 5. 3. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠ»ΠΎΠ½Π°Π• coli DH5a с ΠΏΠ»Π°Π·ΠΌΠΈΠ΄ΠΎΠΉ, нСсущСй Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ хромосомной Π”ΠΠš К opacus 1Π‘Π , ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» 1,2-диоксигСназного Π³Π΅Π½Π°
      • 3. 5. 4. ΠšΠ°Ρ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ вставки pROPl
  • ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ²
  • Π’Ρ‹Π²ΠΎΠ΄Ρ‹. II

Новый ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΡŒ Ρƒ Rhodococcus ΠΎpacus ICP, растущСго Π½Π° 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π΅: энзиматичСскиС ΠΈ гСнСтичСскиС аспСкты (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹. Π’Ρ€ΡƒΠ΄Π½ΠΎΡ€Π°Π·Π»Π°Π³Π°Π΅ΠΌΡ‹Π΅ ΠΈ Ρ‚оксичныС хлораромагичСскиС соСдинСния Π² Π±ΠΎΠ»ΡŒΡˆΠΈΡ… количСствах ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‚ Π² ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΡƒΡŽ срСду Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ хозяйствСнной Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Одними ΠΈΠ· Ρ‚Π°ΠΊΠΈΡ… соСдинСний ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Ρ‹, ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΡ€ΠΈ производствС пСстицидов ΠΈ Π΄Π»Ρ консСрвации дрСвСсины. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΡƒΡ‚ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ этих токсичных ксСнобиотиков Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡˆΠ½ΠΈΠΉ дСнь Π΄Π°Π»Π΅ΠΊΠ° ΠΎΡ‚ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Π‘Ρ€Π΅Π΄ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², примСняСмых для разлоТСния Ρ…Π»ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… соСдинСний, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивным являСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ Π±ΠΈΠΎΡ€Π΅ΠΌΠ΅Π΄ΠΈΠ°Ρ†ΠΈΠΈ с ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ΠΌ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² — дСструкторов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ ΠΏΠΎΠ»Π½ΠΎΠ΅ Π΄Π΅Ρ…Π»ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ хлорароматичСских ΠΏΠΎΠ»Π»ΡŽΡ‚Π°Π½Ρ‚ΠΎΠ² с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ бСзопасных для ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды соСдинСний. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΡƒΡ‚Π΅ΠΉ Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»ΠΎΠ² Π² Π½Π°ΡΡ‚оящСС врСмя вСсьма Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎ.

БостояниС вопроса. ИсслСдования ΠΏΡƒΡ‚Π΅ΠΉ Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ хлорароматичСских соСдинСний вСдутся интСнсивно Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… лабораториях. Π’Ρ‹Π΄Π΅Π»Π΅Π½ ряд Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² — дСструкторов, ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΡƒΡ‚ΠΈ разлоТСния ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ксСнобиотиков, ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈ Π³Π΅Π½Ρ‹ Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ (Erb et al., 1998; Eulberg et al., 1998). Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΡƒΡ‚ΠΈ Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΠΌΠΎΠ½ΠΎΡ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»ΠΎΠ² ΠΈ ΠΌΠΎΠ½ΠΎΡ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΠ°Ρ‚ΠΎΠ² псСвдомонадами ΠΈ Ρ€ΠΎΠ΄ΠΎΠΊΠΊΠΎΠΊΠ°ΠΌΠΈ (Hickey and Focht, 1990; Smith, 1990; Warhurst and Fewson, 1994; Zaitsev et al., 1995). Показано, Ρ‡Ρ‚ΠΎ Ρ„Π΅Π½ΠΎΠ» ΠΈ 2-Ρ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΠ°Ρ‚, Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ, ΠΎΠΊΠΈΡΠ»ΡΡŽΡ‚ΡΡ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Π΄ΠΎ ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π΄Π°Π»Π΅Π΅ утилизируСтся ΠΏΠΎ ΠΌΠ΅Ρ‚Π°ΠΈΠ»ΠΈ ΠΎΡ€Ρ‚Π°-ΠΏΡƒΡ‚ΠΈ. Π₯Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»Ρ‹, ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ окислСния 3-Ρ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΠ°Ρ‚Π°, 3-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π°, 4-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π°, Π° Π² Ρ€ΡΠ΄Π΅ случаСв 2-Ρ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΠ°Ρ‚Π°, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Ρ€Π°Π·Π»Π°Π³Π°ΡŽΡ‚ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌΡƒ o/w/o-ΠΏΡƒΡ‚ΠΈ. Π—-Π₯Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΠ°Ρ‚ ΠΌΠΎΠΆΠ΅Ρ‚ Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Π»Π°Π³Π°Ρ‚ΡŒΡΡ ΠΏΠΎ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ°Ρ‚ΠΈΠΎΠΌΡƒ ΠΏΡƒΡ‚ΠΈ ΠΊΠ°ΠΊ ΠΈ 4-Ρ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΠ°Ρ‚. Однако, Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π°, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ устойчивого ΠΈΠ· Π²ΡΠ΅Ρ… ΠΌΠΎΠ½ΠΎΡ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»ΠΎΠ² соСдинСния, Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Ρ‹. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ» ΠΌΠΎΠΆΠ΅Ρ‚ ΡƒΡ‚ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π“Ρ€Π°ΠΌ-ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ бактСриями ΠΏΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ с 2-Ρ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΠ°Ρ‚ΠΎΠΌ Π»ΠΈΠ±ΠΎ Ρ‡Π΅Ρ€Π΅Π· ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» ΠΏΠΎ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΌΡƒ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΠΈ, Π»ΠΈΠ±ΠΎ Ρ‡Π΅Ρ€Π΅Π· 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» ΠΏΠΎ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌΡƒ. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ этих соСдинСний Π“Ρ€Π°ΠΌ-ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ бактСриями Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎ Π½Π΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΎΡΡŒ.

ЦСль ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ исслСдования

ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹, Π±Ρ‹Π»ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ энзиматичСских ΠΈ Π³Π΅Π½Π΅Ρ‚ичСских аспСктов 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»Ρ‹ΡŽΠΉ Π²Π΅Ρ‚Π²ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΠΈ Ρƒ Rhodococcus opacus 1Π‘Π , ΡƒΡ‚ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ ΠΎ 4-Ρ…Π»ΠΎΡ€ ΠΈ 2,4-Π΄ΠΈΡ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ».

Для достиТСния этой Ρ†Π΅Π»ΠΈ Π±Ρ‹Π»ΠΈ поставлСны ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ:

1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² R. opacus 1Π‘Π , растущих Π½Π° 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π΅, 3-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π΅ ΠΈ 3-Ρ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΠ°Ρ‚Π΅.

2. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΡƒΡ‚ΠΈ Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π° ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ функционирования 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ разлоТСния этого соСдинСния.

3. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅, очистка, характСристика ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ.

4. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ² 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ Ρƒ R. opacus 1Π‘Π , Π²Ρ‹Ρ€Π°Ρ‰Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π΅.

5. ИсслСдованиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ.

Научная Π½ΠΎΠ²ΠΈΠ·Π½Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ Rhodococcus opacus 1 CP, растущиС Π½Π° ΡΡ€Π΅Π΄Π°Ρ… с 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»ΠΎΠΌ, 3-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»ΠΎΠΌ ΠΈ Π—-Ρ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΠ°Ρ‚ΠΎΠΌ. Π’Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΠΈ разлоТСния 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π° R. opacus 1Π‘Π : Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» 1,2-диоксигСназа, Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½Π°Ρ‚ Ρ†ΠΈΠΊΠ»ΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Π°, Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Π° ΠΈ Π΄ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½ Π³ΠΈΠ΄Ρ€ΠΎΠ»Π°Π·Π°. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ Ρƒ Π“Ρ€Π°ΠΌ-ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡˆΡ‚Π°ΠΌΠΌΠ° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ участиС Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠ¬Π½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Π°, Π°Π½Π°Π»ΠΎΠ³ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° классичСского ΠΎΡ€ΠΏΡŽ-ΠΏΡƒΡ‚ΠΈ, Π½Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Π² 4-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ этого ΠΆΠ΅ ΡˆΡ‚Π°ΠΌΠΌΠ° ΠΈ Π² 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ Π“Ρ€Π°ΠΌ-ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ². УстановлСно, Ρ‡Ρ‚ΠΎ Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» 1,2-диоксигСназа Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΠΈ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΉ субстратной ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ Ρ€Π°Π·Π»Π°Π³Π°Π΅Ρ‚ 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ». Π”ΠΎΠΊΠ°Π·Π°Π½Π° узкая субстратная ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½Π°Ρ‚ Ρ†ΠΈΠΊΠ»ΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹, субстратами ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ 2-Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Π΅ ΠΌΡƒΠΊΠΎΠ½Π°Ρ‚Ρ‹. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ€Π΅Π°ΠΊΡ†ΠΈΡŽ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ 5-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΠ³ΠΎΠ½Π°, Π½ΠΎ Π½Π΅ ΠΎΡΡƒΡ‰Π΅ΡΡ‚вляСт Π΅Π³ΠΎ дСхлорирования. Π₯Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Π° Π΄Π΅Π³Π°Π»ΠΎΠ³Π΅Π½ΠΈΡ€ΡƒΠ΅Ρ‚ 5-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ////ΠΎΠ΄ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½Π°. Π”ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½ Π³ΠΈΠ΄Ρ€ΠΎΠ»Π°Π·Π° 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΠΈ спСцифична ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Ρ†ΠΈΡ-Π΄ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½Ρƒ, mpauc-j\mΠ»Π°ΠΊΡ‚ΠΎ11 Π½Π΅ ΡΠ²Π»ΡΠ΅Ρ‚ся субстратом этого Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ установлСно располоТСниС Π³Π΅Π½ΠΎΠ² 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΠΏΠ΅Ρ€ΠΎΠ½Π° Π“Ρ€Π°ΠΌ-ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡˆΡ‚Π°ΠΌΠΌΠ°, содСрТащСго Π³Π΅Π½Ρ‹ Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» 1,2-диоксигСназы, Π΄ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½ Π³ΠΈΠ΄Ρ€ΠΎΠ»Π°Π·Ρ‹, Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½Π°Ρ‚ Ρ†ΠΈΠΊΠ»ΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹, Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ ΠΈ Ρ€Π΅Π³ΡƒΠ»ΡΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π° полная нуклСотидная ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ этих Π³Π΅Π½ΠΎΠ² (Π³Π΅Π½Π° рСгуляторного Π±Π΅Π»ΠΊΠ° частично).

ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹. R. opacus ICP, ΡƒΡ‚ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»., ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ для разлоТСния этого соСдинСния ΠΊΠ°ΠΊ Π² Π±ΠΈΠΎΡ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°Ρ…, Ρ‚Π°ΠΊ ΠΈ Π² 7 СстСствСнной срСдС. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ R. opacus 1Π‘Π  ΠΊ 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Ρƒ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ рост ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² этого Ρ€ΠΎΠ΄Π° Π½Π° ΡΡ€Π΅Π΄Π°Ρ… с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ксСнобиотиками. Π”Π°Π½Π½Ρ‹Π΅ ΠΎΠ± ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠ°Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚Π½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠ² Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ для конструирования эффСктивных ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² — дСструкторов ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π³Π΅Π½Π½ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ.

ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ Rhodococcus opacus 1Π‘Π , дСструктора 4-Ρ…Π»ΠΎΡ€ ΠΈ 2,4-Π΄ΠΈΡ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π°, способныС расти Π½Π° 3-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π΅, 3-Ρ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΠ°Ρ‚Π΅ ΠΈ 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π΅.

2. .На основании хроматографичСских ΠΈ ΠΌΠ°ΡΡ-спСктромСтричСскнх Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ.

2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ» разлагаСтся R. opacus 1Π‘Π  Ρ‡Π΅Ρ€Π΅Π· 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ», 2-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½Π°Ρ‚, 5-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ ΠΈ ?/?/с-Π΄ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½.

3. ΠžΡ‡ΠΈΡ‰Π΅Π½Ρ‹ ΠΈ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ прСвращСния 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»Π° opacus 1 CP:

3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ» 1,2-диоксигСназа, 2-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½Π°Ρ‚ Ρ†ΠΈΠΊΠ»ΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Π°, 5-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Π° ΠΈ Π΄ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½ Π³ΠΈΠ΄Ρ€ΠΎΠ»Π°Π·Π°.

4. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ 19F-^MP ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° функция ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΠΈ R. opacus 1 Π‘Π . Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ 5-Ρ…Π»ΠΎΡ€ΠΌΡƒΠΊΠΎΠ½ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Π° осущСствляСт Π΄Π΅Π³Π°Π»ΠΎΠ³Π΅ΠΈΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π°Π»ΠΎΠΌΡƒΠΊΠΎΠ½Π°Ρ‚ΠΎΠ² с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π³/Π½Π±-Π΄ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½Π°.

5. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΈ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π³Π΅Π½Ρ‹, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ 3-Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ‚Π²ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ€ΠΏΡŽ-ΠΏΡƒΡ‚ΠΈ R. opacus 1Π‘Π . Показано, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Π΅Π΄ΠΈΠ½Ρ‹ΠΉ ΠΎΠΏΠ΅Ρ€ΠΎΠ½, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΡΡ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³ΠΈΡ… извСстных ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΈ Ρ…Π»ΠΎΡ€ΠΊΠ°Ρ‚Π΅Ρ…ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠ².

6. На ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π°Π½Π°Π»ΠΈΠ·Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² энзнматичСских, ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π³Π΅ΠΏΠ΅Π³ΠΈΡ‡Π΅ΡΠΊΠΏΡ… исслСдований ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΎΡ€ΠΏΡŽ-ΠΏΡƒΡ‚ΡŒ разлоТСния 2-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π° R. opacus 1 Π‘Π .

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Π‘.Н., ΠœΠ°Π»ΡŒΡ†Π΅Π²Π° О. Π’., Π¨Π΅Π²Ρ‡Π΅Π½ΠΊΠΎ Π’. И., Π“ΠΎΠ»ΠΎΠ²Π»Π΅Π²Π° Π›. А. 1989. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»ΠΎΠ² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΎΠΉ Rhodococcus erythropolis. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ, Ρ‚. 58, Π΅Π΅. 802−806.
  2. О.Π•., Π‘Π°Ρ€Ρ‹ΡˆΠ½ΠΈΠΊΠΎΠ²Π° Π›. М., Баскунов Π‘. П., Π“ΠΎΠ»ΠΎΠ²Π»Π΅Π² Π• Π›., Π“ΠΎΠ»ΠΎΠ²Π»Π΅Π²Π° Π›. А. 1997. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ΅Π½Ρ‚Π°Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»Π° Π² ΠΏΠΎΡ‡Π²Π΅ ΠΈΠ½Ρ‚Ρ€Π°Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΡˆΡ‚Π°ΠΌΠΌΠΎΠΌ Streptomyces rochei 303 ΠΈ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΠΎΡ‡Π²Π΅Π½Π½ΠΎΠΉ ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΠΎΡ€ΠΎΠΉ. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ, Ρ‚. 66, сС. 661−666.
  3. О.Π’., Боляникова И. П., Π“ΠΎΠ»ΠΎΠ²Π»Π΅Π²Π° Π›. А. 1991. ΠŸΠΈΡ€ΠΎΠΊΠ°Ρ‚Π΅Ρ…Π°Π·Ρ‹ ΡˆΡ‚Π°ΠΌΠΌΠ° Rhodococcus erythropolis дСструктора Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΎΠ»ΠΎΠ²: очистка ΠΈ ΡΠ²ΠΎΠΉΡΡ‚Π²Π°. Биохимия, Ρ‚. 56, сс. 2188−2*197.
  4. И.П., ΠœΠ°Π»ΡŒΡ†Π΅Π²Π° О. Π’., Π“ΠΎΠ»ΠΎΠ²Π»Π΅Π²Π° Π›. А. 1995. ΠœΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΎΡ€Ρ‚ΠΎ-ΠΏΡƒΡ‚ΡŒ Ρƒ ΡˆΡ‚Π°ΠΌΠΌΠ° Pseudomonas putida 87. очистка ΠΈ ΡΠ²ΠΎΠΉΡΡ‚Π²Π° Π΄ΠΈΠ΅Π½Π»Π°ΠΊΡ‚ΠΎΠ½ Π³ΠΈΠ΄Ρ€ΠΎΠ»Π°Π·Ρ‹. 1>похимия, Ρ‚. 60, сс. 1251−1260.
  5. Π’.М., Π›ΠΈΠ½ΡŒΠΊΠΎ Π•. Π’., Π“ΠΎΠ»ΠΎΠ²Π»Π΅Π²Π° Π›. А. 1999. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° ΠΈ ΡΠ²ΠΎΠΉΡΡ‚Π²Π° ΠΌΠ°Π»Π΅ΠΈΠ»Π°Ρ†Π΅Ρ‚Π°Ρ‚ Ρ€Π΅Π΄ΡƒΠΊΡ‚Π°Π·Ρ‹ ΠΈΠ· ΡˆΡ‚Π°ΠΌΠΌΠ° Nocardioses simplex Π—Π•, ΡƒΡ‚ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ фСноксиалкановыС Π³Π΅Ρ€Π±ΠΈΡ†ΠΈΠ΄Ρ‹ 2,4-Π” ΠΈ 2,4,5-Π’. Биохимия, Ρ‚.64, сс. 751−757.
  6. Alting-Mees М.А., Sorge J.A., Short J. M. 1992. pBluescriptll. multifunctional cloning and mapping vectors. Methods Enzymol., v. 216, pp. 483−410.
  7. K., Uemori Π’., Shinke R., Nishira H. 1985. Further characterization of bacterial production of anthranilic acid from aniline. Agric. Biol. Chem., v. 49, pp. 1151−1158.
  8. Apajalahti J.H.A., Salkinoja-Salonen M.S. 1986. Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Appl. Microbiol. Biotechnol., v. 25, pp. 62−67.
  9. J.I., Focht D.D. 1995. A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P I 66. Appl. Environ. Microbiol., v. 61, pp. 443−447.
  10. J.A., Eltis L.D., Prucha M., Timmis K.N. 1994. Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus gloheriiliis P6: identification of a new family of extradiol dioxygenases. J. Biol. Chem., v. 269, pp. 7807−7815
  11. Avigad G, Englard S" Olsen B.R., Wolfenstein-Todel C., Wiggins R. 1974. Molecular properties of c/.v.c/v-muconate cycloisomerase from Pseudomonas putida. J. Mol. Biol., v. 89, pp. 651−662.
  12. Banerni S.K., Wei M., Bajpai R.K. 1993 Pentachlorophenol interactions with soil. Water
  13. Air Soil Pollut., v. 69, pp. 149 -163.
  14. Battels I., Knackmuss H.-J., Reineke W. 1984. Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl. Environ. Microbiol., v. 47, pp: 500−505.
  15. Beadle C.A., Smith A.R.W. 1982. The purification and properties of 2,4-dichlorophenol hydroxylase from a strain of Acinetobacter species. Eur. J. Biochem., v. 123, pp. 323−332.
  16. Bethesda Research Laboratories. 1986. BRL pUC host: К coli DH5a competent cells. Bethesda Res. Lab. Focus, 8, 2, p. 9.
  17. A.J., Ollis D.L. 1995. A theoretical study of substrate-induced activation of dienelactone hydrolase. Protein Engineering, v. 8, pp. 135−142.
  18. Blasco R., Wittich R.-M., Mallavarapu M., Timmis K. N., Pieper D.H. 1995. From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J. Biol. Chem., v. 270, pp. 29 229−29 235.
  19. Boersma M.G., Solyanikova I., van Berkel W.J.H., Vervoort J., Golovleva L., Rietjens I.M.C.M. 2000. i9 °F NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. J. Ind. Microbiol. Biotechnol., v. 24, pp. 1−13.
  20. Boldt Y.R., Sadowsky M.J., Ellis L.B.M., Que L., JR., Wackett L P. 1995. A manganese-dependent dioxygenase from Arthrobacter globiformis CM-2 belongs to the major extradiol dioxygenase family. J. Bacteriol., v. 177, pp. 1225−1232.
  21. Bollag J.-M. 1992 Decontaminating soil with enzymes. Environ. Sci. Technol., v. 26, pp. 1876−1881.
  22. MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anai. Biochem., v. 72, pp. 248−254.
  23. Broderick J.B., O’Halloran T.V. 1991. Overproduction, purification and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry, v. 30, pp. 7349−7358.
  24. N., Cain R. 1990. Hydroaromatic metabolism in Rhodococcus rhodochrous: purification and characterization of its NAD-dependent quinate dehydrogenase. Arch. Microbiol., v. 154,$). 179−186.
  25. N.C., Cain R.B. 1988. Π”-methylmuconolactone, a key intermediate in the dissimilation of methylaromatic compounds by a modified 3-oxoadipate pathway evolved in nocardioform actinomycetes. FEMS Microbiol. Lett., v. 50, pp. 233−239.
  26. R.B. 1981. Regulation of aromatic and hydroaromatic catabolic pathways in nocardioform actinomycetes, Schaal/pulverer (eds): Actinomycetes, Zbl. Bart. Suppl. 11. Gustav Fischer Verlag. Stuttgart. New York.
  27. Catelani D., Fiecchi A., GalliE. 1971. (+)-y-carboxymethyl-y-methyl-Aa-butenolide: a 1,2-ring-fission product of 4-methylcatechol by Pseudomonas desmolyticum. Biochem. J., v. 121, pp. 89−92.
  28. Cha C.-J. 2001. Biological production of optically active muconolactones by Rhodococcus rhodochrous. Appl. Microbiol. Biotechnol., v. 56, pp. 453−457.i
  29. Cha C-J., Cain R.B., Bruce N.C. 1998. The modified /?-ketoadipate pathway in Rhodococcus rhodochrous N75: enzymology of 3-methylmuconolactone metabolism. J. Bacteriol., v. 180, pp. 6668−6673.
  30. Chari R.V.J., Whitman C.P., Kozarich J.W. 1987b. Absolute stereochemical course of muconolactone Π”-vsomerase and of 4-carboxymuconolactone decarboxylase: a! H NMR «ricochet» analysis. J. Am. Chem. Soc., v. 109, pp. 5520−5521.
  31. D.K., Kellogg S.T., Hamada S., Chakrabarty A.M. 1981. Plasmid specifying total degradation of 3-chlorobenzoate by a modified or/ho pathway. J. Bacteriol., v. 146, pp. 639−646.
  32. E., Austin C., Ashley G.W., Ollis D. 1993. Substrate-induced activation of dienelactone hydrolase: an enzyme with a naturally occurring Cys-His-Asp triad. Protein Engineering, v. 6, pp. 575−583.
  33. S.A., Parsek M.R., Chakrabarty A.M. 1998. Transcriptional repression mediated by a LysR-type regulator CatR bound at multiple binding sites. J. Bacteriol., v. 180, pp. 2367−2372.
  34. S.A., Parsek MR., Hershberger C.D., Murakami K., Ishihama A., Chakrabarty A.M. 1997. Activation of the catBCA promoter: probing the interaction of CatR and RNA polymerase through in vitro transcription. J. Bacteriol., v. 179, pp. 2221−2227.
  35. W.M., Parsek M.R., Chakrabarty A.M. 1994. Purification of the LysR family regulator, ClcR, and its interaction with the Pseudomonas putida clcABC chlorocatechol operon promoter. J. Bacteriol., v. 176, pp. 5530−5533.
  36. Cole J R., Cascarelli A.L., Mohn W.W., Tiedje J.M. 1994. Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Appl. Environ. Microbiol, v. 60, pp. 3536−3542.
  37. A. M., Hutter R. 1986. Ring dechlorination of deethylsimazine by hydrolases from a Rhodococcus corallinus. FEMS Microbiol. Lett., v. 34, pp. 335−338.
  38. S.D., 2000. Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. TIBS, v. 25, pp. 261−265.
  39. Detmer K., Massey 'V. 1984. Effect of monovalent anions on the mechanism of phenol ' hydroxylase. J. Biol.- Chem., v. 259, pp. 11 265−11 272.
  40. W., Kopperschlager G., Hofmann E. 1972. An improved procedure for protein staining in polyacrylamide gels with a new type of Coomassie Brilliant Blue. Analyt. Biochem., v. 48, pp. 617−620.
  41. M. 1953. The determination of enzyme inhibitor constants. Biochem. J., v. 55, pp. 170−171.
  42. Dorn E., Knackmuss H.-J. 1978a. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate grown pseudomonad. Biochem. J., v. 174, pp. 73−84.
  43. Dorn E., Knackmuss H.-J. 1978b. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem. J., v. 174, pp. 85−94.
  44. L.D., Bolin J.T. 1996. Evolutionary relationships among extradiol dioxygenases. J. Bacteriol., v. 178, pp. 5930−5937.
  45. Erb R.W., Timmis K.N., Rieper D.H. 1998. Characterization of a gene cluster from Ralstonia eutropha JMPI34 encoding metabolism of 4-methylmuconolactone. Gene, v. 206, pp. 53−62.
  46. D., Golovleva L.A., Schlomann M. 1997. Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. J. Bacteriol., v. 179, pp. 370−381.
  47. A. 1985. Enzyme structure and mechanism, 2nd ed., W.H. Freeman and Co., New York.
  48. S., Lingens F. 1994. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol. Rev., v.58, pp. 641−685.
  49. W.R. 1992. The biology and genetics of the genus Rhodococcus. Ann. Rev. Microbiol., v. 46, pp. 193−218.
  50. Π’., Chakrabarty A.M. 1987. Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Proc. Natl. Acad. Sci. USA, v. 84, pp. 4460−4464.
  51. Frantz Π’., Ngai K.-E., Chatteijee D.K., Ornston L.N., Chakrabarty A.M. 1987. Nucleotide sequence and expression of clcD, a plasmid-borne dienelactone hydrolase gene from Pseudomonas sp. strain Π’13. J. Bacteriol., v. 169, pp. 704−709.
  52. M., Golovleva L.A., Saeki Y., Nozaki M., Hayaishi O. 1975. Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a pseudomonad. J. Biol. Chem., v. 250, pp. 4848−4855.
  53. Π’., Inoue Π’., Kojima H., Konishi Π’., Tanaka Π’., Yoshida S. 1990. Extended-Hvickel study on oxygen insertion into the aromatic ring by model complexes for catechol dioxygenases. J. Mol. Catal., v. 59, pp. 367−371.
  54. A.B., Neujahr H.Y. 1980. Maleylacetate reductase from Trichosporon cutaneum. Biochem J., v. 185, pp. 783−786.
  55. J.A., Gassman P.G. 1992. Understanding enzyme-catalyzed proton abstraction from carbon acids: details of stepwise mechanisms for /^-elimination reactions. J. Am. Chem. Soc., v. 114, pp. 5928−5934.
  56. Ghosal d., You I.-S., Chatteijee D.K., Chakrabarty A.M. 1985. Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. Proc. Natl. Acad. Sci. USA, v. 82, pp. 1638−1642.
  57. D.T. 1987. Microbial metabolism of aromatic hydrocarbons and the carbon cycle, pp. 33−58. In Hagedorn S.R., Hanson R.S., Kunz D.A. (ed.), Microbial metabolism and the carbon cycle. Harwopd academic publishers, Chur, Switzerland.
  58. S.N., Golovleva L.A. 1992. Effect of cosubstrates on the dechlorination of selected chlorophenolic compounds by Rhodococcns erythropolis 1CP. J. Basic Microbiol., v.32, pp. 177−184.
  59. C., Gillen C. J., Bolton E. 1988. Biodegradation of substituted benzenes. J. Appl. Bacterid., v. 65, pp. 1−5.
  60. G.W. 1994. The natural production of chlorinated compounds. Environ. Sci.
  61. Technol., v. 28, pp. 310A-319A.
  62. M.M. 1990. Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds. J. Basic Microbiol., v. 30, pp. 115−141.
  63. M.M. 1992. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol. Rev., v. 103, pp. 28−72.
  64. Haggblom M.M., Janke D" Middeldorp P.M.J., Salkinoja-Salonen M.S. 1989a. O-methylation of chlorinated phenols in the genus Rhodococcns. Arch. Microbiol., v. 152, pp. 6−9. ,
  65. Haggblom M.M., Janke D., Salkinoja-Salonen M.S. 1989b. Transformation of chlorinated phenolic compounds in the genus Rhodococcus. Microbiol. Ecol., v. 18, pp. 147−159.
  66. Haggblom M.M., Nohynek L.J., Salkinoja-Salonen M.S. 1988. Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl. Environ. Microbiol., v. 54, pp. 3043−3052.
  67. Haigler B E., Johnson G.R., Suen W.-C., Spain J.C. 1999. Biochemical and genetic evidence for meta-ΠΏΡ‰ cleavage of 2,4,5-trihydroxytoluene in Burkholderia sp. strain DNT. J. Bacteriol., v. 181, pp. 965−972.
  68. Hammer A., Hildenbrand Π’., Hoier H, Ngai K.-L., Schlomann M., Stezowski J.J. 1993. Crystallization and preliminary, X-ray data of chloromuconate cycloisomerase from Alcaligenes eutrophus JMP134 (pJP4). J. Mol. Biol., v. 232, pp. 305−307.
  69. Han S., Eltis L.D., Timmis K.N., Muchmore S.W., Bolin J.T. 1995. Ciystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science, v. 270, pp. 976−980.
  70. S., Rekik M. 1989. Bacterial aromatic ring-cleavage enzymes are classified in two different gene families. J. Biol. Chem., v. 264, pp. 15 328−15 333.
  71. O. 1969. Nature and mechanism of oxygenases. Science, v. 164, pp. 389−396.
  72. Heiss G., Stolz A., Kuhm A.E., Mtiller K., Klein J., Altenbuchner J., Knackmuss K.-J. 1995. Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6. J. Bacteriol., v. 177, pp. 5865−5871.
  73. G., Muller C., Altenbuchner J., Stolz A. 1997. Analysis of a new dimeric extradiol dioxygenase from a naphthalenesulfonate-degrading sphingomonad. Microbiology, v. 143, pp. 1691−1699.
  74. Held M., Suske W., Schmid A., Engesser K.-H., Kohler H.-P.E., Witholt B" Wubbolts M.G. 1998. Preparative scale production of 3-substituted catechols using a novel monooxygenase from Pseudomonas azelaica HBP1. J. Mol. Cat. B: enzymatic, v. 5, pp. 87−93.
  75. S., Kahn P.C., Guha B.L., Mallows D.G., Goldmann A. 1995. The refined X-ray structure of muconate lactonizing enzyme from Pseudomonas putida PRS2000 at 1.85 A resolution. J. Mol. Biol., v. 254, pp. 918−941.
  76. J., Straube G. 1990. Kinetic studies of phenol degradation by Rhodococcus sp. PI. II. Continuous cultivation. Antonie van Leeuwenhoek J. Microbiol. Ser., v. 57, pp. 33−36.
  77. W.J., Focht D.D. 1990. Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl. Environ. Microbiol., v. 56, pp. 3842−3850.
  78. J., Hopp J., Dott W. 1997. Degradation of 4-chlorocatechol via the meta cleavage pathway by Comamonas testosteroni JH5. Appl. Environ. Microbiol., v. 63, pp. 4567−4572.
  79. J.E., Brown T.M., Appel A.J., Hughes E.J., Ornston L.N. 1995. Discontinuities in the evolution of Pseudomonas putida cat genes. J. Bacteriol., v. 177, pp. 401−412.
  80. Janke D., Ihn W. 1989. Cometabolic turnover of aniline phenol and some of their monochlorinated derivatives by the Rhodococcus mutant strain AM 144. Arch. Microbiol., v. 152, pp. 347−352.
  81. Π’., Daubaras D.L., Chakrabarty A.M., Kinzelt D., Reineke W. 1995. Evidence that operons tcb, tfd, and clc encode maleylacetate reductase, the fourth enzyme of the modified ortho pathway. J. Bacteriol., v. 177, pp. 3885−3889.
  82. Π’., Seibert V., Schlomann M., Reineke W. 1997. Cloning, characterization, and sequence analysis of the clcE gene encoding the maleylacetate reductase of Pseudomonas sp. strain B13. J. Bacteriol., v. 179, pp. 3801−3803.
  83. S., Reineke W. 1993. Degradation of chloroaromatics: purification and characterization of maleylacetate reductase from Pseudomonas sp. strain Π’13. J. Bacteriol., v.175, pp. 6075−6081.
  84. S., Reineke W. 1995. Maleylacetate reductase of Pseudomonas sp. strain B13: specificity of substrate conversion and halide elimination. J. Bacteriol., v. 177, pp. 320−325.
  85. Katti S.K., Katz B.A., WyckofFH.W. 1989. Crystal structure of muconolactone isomerase at 3−3 A resolution. J. Mol. Biol., v. 205, pp. 557−571.
  86. U., Kaschabek SR., Schlomann M. 2001. Mechanism of chloride elimination from 3-chloro- and 2,4-dichloro-c7.v, 6vs-muconate: new insight obtained from analysis of muconate cycloisomerase variant CatB-K169A. J. Bacteriol., v. 183, pp. 4551−4561.
  87. Kilbane J, J. 1989. Desulfurization of coal: the microbial solution. Trends Biotechnol., v. 7, pp. 97−100.
  88. Kitunen V., Valo R., Salkinoja-Salonen M. 1987. Contamination of soil around wood-preserving facilities by polychlorinated aromatic compounds. Environ. Sci. Technol., v. 21, pp. 96−101.
  89. К1Π΅Π±ΠΊΠ° G.M., Gibson D.T. 1981. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl, Environ. Microbiol., v. 41, pp. 11 591 165.
  90. M., Ziegler H., Straube G. 1985. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. J. Basic Microbiol., v. 25, pp. 103−110.
  91. Kuhm A.E., Schlfimann M., Knackmuss H.-J., Pieper D.H. 1990. Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134. Biochem. J., v. 266, pp. 877−883.
  92. Kukor J.J., Olsen R.H., Siak J.-S. 1989. Recruitment of a chromosomally encoded maleylacetate reductase for degradation of 2,4-dichlorophenoxyacetic acid by plasmid pJP4. J. Bacteriol., v. 171, pp. 3385−3390.
  93. M.M., Jorgensen K.S. 1996. Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated soil. Appl. Environ. Microbiol., v. 62, pp. 1507−1513.
  94. U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, v. 227, pp. 680−685.
  95. Larkin M.J., Mot R.D., Kulakov L.A., Nagy I. 1998. Applied aspects of Rhodococcus genetics. Antonie vanLeeuwenhoek, v. 74, pp. 133−153.
  96. Latorre J., Reinecke W., Knackmuss H.-J. 1984. Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Arch. Microbiol., v. 140, pp. 159−165.
  97. C.C. 1967, Melilotate hydroxylase. Purification of the enzyme and the nature of the prosthetic group. J. Biol. Chem., v. 242, pp. 747−753.
  98. Liu T.L., Chapman PJ. 1984. Purification and properties of a plasmid-encoded 2,4-dichlorophenol hydroxylase. FEBS Lett., v. 173, pp. 314−318.
  99. Mars A.E., Kasberg Π’., Kaschabek S.R., van Agteren M.H., Janssen D.B., Reineke W. 1997. Microbial degradation of chloroaromatics: use of the /we/a-cleavage pathway for mineralization of chlorobenzene. J.' Bacteriol., v. 179, pp. 4530−4537.
  100. C.D., Nagasawa Π’., Kobayashi M., Yamada H. 1988. Nitrilase-catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous Jl. Appl. Environ. Microbiol., v. 54, pp. 1030−1032.
  101. Mazur P., Pieken W.A., Budihas S.R., Williams S.E., Wong S" Kozarich J.W. 1994. C/.s.c/s-muconate lactonizing enzyme from Trichosporon cutaneum. evidence for a novel class of cycloisomerases in eucaryotes. Biochemistry, v. 33, pp. 1961−1970.
  102. O.V., Solyanikova I.P., Golovleva L.A. 1994a. Chlorocatechol 1,2-dioxygenase from Rhodococcus opacus ICP. Kinetic and immunochemical comparison with analogous enzymes fron Gram-negative strains. Eur. J. Biochem., v. 226, pp. 1053−1061.
  103. Maltseva O.V., Solyanikova I.P., Golovleva L.A., Schlomann M., Knackmuss H.-J. 1994b. Dienlactone hydrolase from Rhodococcus opactis ICP: purification and properties. Arch. Microbiol., v. 162, pp. 368−374.
  104. MarchukD., Drumm M., Saulino A., Collins F.S. 1991. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res., v. 19, p. 1154.
  105. V. 1994. Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem., v. 269, pp. 22 459−22 462.
  106. McGorkle G.M., Yeh W.-K., Fletcher P., Ornston L.N. 1980. Repetitions in the NH2-terminal amino acid sequence of /2-ketoadipate enol-lactone hydrolase from Pseudomonas putida. J. Biol. Chem., v. 255, pp. 6335−6341.
  107. McFall S.M., Chugani S.A., Chakrabarty A.M. 1998. Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Gene, v. 223, pp. 257−267.
  108. McFall S.M., Parsek M.R., Chakrabarty A.M. 1997. 2-Chloromuconate and ClcR-mediated activation of the ck ABD operon: in vitro transcriptional and DNase I footprint analyses. J. Bacteriol., v. 179, pp. 3655−3663.
  109. W.W., Tiedje J.M. 1992. Microbial reductive dehalogenation. Microbiol. Rev., v. 56, pp. 482−507.i1
  110. C., Petruschka L., Cuypers H., Burchhardt G., Herrmann H. 1996. Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by theinhibition of the activator protein PhlR. J. Bacterid., v. 178, pp. 2030−2036.
  111. Miiller D., Schl6mannM., Reineke W. 1996b. Maleylacetate reductases in chloroaromatic-degrading bacteria u^tng the modified ortho pathway: comparison of catalytic properties. J. Bacterid., v. 178, pp. 298−300.
  112. N., Skoog F., Doyle M. E., Hanson R.S. 1980. Relationship between cytokinin production, presence of plasmids and fasciation caused by strains of Corynebacterium fascicms. Proc. Natl. Acad. Sci. USA, v. 77, pp. 619−623.
  113. Π’., Mathew C.D., Mauger J., Yamada H. 1988. Nitrile hydratase-catalyzed production of nicotinamide from 3-cyanopyridine in Rhodococcus rhodochrous Jl. Appl. Environ. Microbiol., v. 54, pp. 1766−1769.
  114. C., Hori K., Kagamiyama H., Nakazawa Π’., Nozaki M. 1983. Purification, subunit structure, and partial amino acid sequence of metapyrocatechase. J. Biol. Chem., v. 258, pp. 2916−2922.
  115. C., Horiike K., Kuramitsu S., Kagamiyama H., Nozaki M. 1990. Three isozymes of catechol 1,2-dioxygenase (pyrocatechase), aa, aP, PP, from Pseudomonas arvilla C-l. J. Biol. Chem., v. 265, pp. 660−665.
  116. C., Kagamiyama H., Saeki Y., Nozaki M. 1987. Nonidentical subunits of pyrocatechase from Pseudomonas arvilla C-l. Arch. Biochem. Biophys., v. 195, pp. 12−22.
  117. C., Nakazawa Π’., Nozaki M. 1988. Purification and properties of catechol 1,2-dioxygenase (pyrocatechase) from Pseudomonas putida mt-2 in comparison with that from Pseudomonas arvilla: C-1. Arch. Biochem. Biophys., v. 267, pp. 701−713.
  118. H.Y., Varga J.M. 1970. Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum. Eur. J. Biochem., v. 13, pp. 37−44.
  119. Ngai K-L., Ornston L.N. 1988. Abundant expression of Pseudomonas genes for chlorocatechol metabolism. J. Bacterid., v. 170, pp. 2412−2413.
  120. Ngai K.-L., Schl6mann M., Knackmuss H.-J., Ornston L.N. 1987. Dienelactone hydrolase from Pseudomonas sp. strain B13. J. Bacteriol., v. 169, pp. 699−703.
  121. I., Powlowski J., Shingler V. 1990. Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacterid., v. 172, pp. 6826−6833.
  122. A., Kasak L., Kivisaar M. 1991. Sequence of the gene (pheA) encoding phenol monooxygenase from Pseudomonas sp. EST 1001: expression in Escherichia coli and Pseudomonas putida. Gene, v. 102, pp. 13−18.
  123. A., Tamm А., Нбгак R" Kivisaar M. 1993. In-vivo-generated fusion promoters in Pseudomonas putida. Gene, v. 127, pp. 23−29.
  124. OgawaN., McFall S.M., Klem T.J., Miyashita K., Chakrabarty A.M. 1999. Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. J. Bacteriol., v. 181, pp. 6697−6705.
  125. N., Miyashita K. 1995. Recombination of a 3-chlorobenzoate catabolic plasmid from Alcaligenes eutrophus NH9 mediated by direct repeat elements. Appl. Environ. Microbiol., v. 61, ppj 3788−3795.
  126. D.H., Lipscomb J.D., Weber P.C. 1988. Structure and assembly of protocatechuate 3,4-dioxygenase. Nature, v. 336, pp. 403−405.
  127. Ohlendorf D. FL, Ofville A.M., Lipscomb J.D. 1994. Structure of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa at 2.15 A resolution. J. Mol. Biol., v. 244, pp. 586−608.
  128. Olsen R.H., Kukor J J., Kaphammer B. 1994. A novel toluene-3-monooxygenase pathway cloned from Pseudomonaspickettii PKO1. J. Bacteriol., v. 176, pp. 3749−3756.
  129. L.N. 1966a. The conversion of catechol and protocatechuate to y9-ketoadipate by Pseudomonas putida. П. Enzymes of the protocatechuate pathway. J. Biol. Chem., v. 241, pp. 3787−3794.
  130. L.N. 1966b. The conversion of catechol and protocatechuate to /0-ketoadipate by Pseudomonas putida. III. Enzymes of the catechol pathway. J. Biol. Chem., v. 241, pp.3795−3799.
  131. L.N. 1966c. The conversion of catechol and protocatechuate to /?-ketoadipate by Pseudomonas putida. VI. Regulation. J. Biol. Chem., v. 241, pp. 3800−3810.
  132. C.J., Ratcliffe R.C., Ramsay G.C. 1987. Rhodococcus equi infection in a cat.
  133. Aust. Vet. J., v. 64, p. 121. i
  134. M.R., Shinabarger D.L., Rothmel R.K., Chakrabarty A.M. 1992. Roles of CatR and c/s, c/'s-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida. J. Bacteriol., v. 174, pp. 7798−7806.
  135. R.N., Meagher R.B., Ornston L.N. 1974. Relationships among enzymes of the P~ ketoadipate pathway: IV. Muconolactone isomerase from Acinetohacter calcoaceticus and Pseudomonas putida. J. Biol. Chem., v. 249, pp. 7410−7419.
  136. D., Ollis D. 1990. Refined structure of dienelactone hydrolase at 1−8 A. J. Mol. Biol., v. 214, pp. 497−525.
  137. E.J., Gordon M.P., Caceres O., Lurquin P.F. 1990. Organization and sequence analysis of the 2,4-dichlorophenol hydrolase and dichlorocatechol oxidative operons of plasmid pJP4. J. Bacteriol., v. 172, pp. 2351−2359.
  138. Pieper D.H., Engesser K.-H., Don R.H., Timmis K.N., Knackmuss H.-J. 1985. Modified ortho-cleavage pathway in Alcaligenes eutrophus JMP134 for the degradation of 4-methylcatechol. FEMS Microbiol. Lett., v. 29, pp. 63−67.
  139. Pieper D.H., Reineke W., Engesser K.-H., Knackmuss H.-J 1988. Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134. Arch. Microbiol., v. 150, pp. 95−102.
  140. J.B., Dagley S. 1985. /Mcetoadipate pathway in Trichosporon cutaneum modified for methyl-substituted metabolites. J. Bacteriol., v. 163, pp. 1126−1135.
  141. J.B., Shingler V. 1990. In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacteriol., v. 172, pp. 6834−6840.
  142. J.F. 1991. Rhodococcus equi: an animal and human pathogen. Clin. Microbiol. Rev., v. 4, pp. 20−34.
  143. M., Peterseim A., Timmis K.N., Pieper D.H. 1996a. Muconolactone isomerase of the 3-oxoadipate pathway catalyzes dechlorination of. 5-chloro-substituted muconolactones. Eur. J. Biochem., v. 237, pp. 350−356.
  144. M., Wray V., Pieper D.H. 1996b. Metabolism of 5-chlorosubstituted muconolactones. Eur. J. Biochem., v. 237, pp. 357−366.
  145. M., Peterseim A., Pieper D.H. 1997. Evidence for an isomeric muconolactone isomerase involved in the metabolism of 4-methylmuconolactone by Alcaligenes eutrophus JMP 134. Arch. Microbiol., v. 168, pp. 33−38.
  146. Qian H., Edlund Xjj- Powlowski J.B., Shingler V., Sethson. 1997. Solution structure of phenol hydroxylase protein component P2 determined by NMR spectroscopy. Biochemistry, v. 36, pp. 495−504.
  147. H.G., Engelhardt G., Wallnofer P.R. 1980. Degradation of aromatic compounds in the actinomycete-genus Rhodococcus. FEMS Microbiol. Lett., v. 7, pp. 1−6.
  148. Reineke W., Knackmuss H.-J. 1980. Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. Π’13 derivatives. J. Biol. Chem., v. 142, pp. 467−473.
  149. U., Heiss G., Fischer P., Stolz A. 1998. Distal cleavage of 3-chlorocatechol by an extradiol dioxygenase to 3-chloro-2-hydroxymuconic semialdehyde. J. Bacteriol., v. 180, pp. 2849−2853.
  150. Romero-Arroyo C.E., Schell M.A., Gaines G.L.I., Neidle E L. 1995. catM encodes a LysR-type transcriptional activator regulating catechol degradation in Acinetobacter calcoaceticus. J. Bacteriol., v. 177, pp. 5891−5898.
  151. P.J., Armfield S.J., Bull A.T., Hardman D.J. 1990. Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2. J. Gen. Microbiol., v. 136, pp. 115−120.
  152. J., Fritsch E.F., Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N Y.
  153. M.A. 1993. Molecular biology of the LysR family of transcriptional regulators. Ann. Rev. Microbiol., v. 47, pp. 597−626.
  154. Schtomann M., Ngai K.-L., Ornston L.N., Knackmuss H.-J. 1993. Dienelactone hydrolase from Pseudomonas cepacia. J. Bacteriol., v. 175, pp. 2994−3001.
  155. Schlomann М., Schmidt Π•., Knackmuss H.-J. 1990a. Different types of dienelactonehydrolase in 4-fluorobenzoate-utilizing bacteria. J. Bacteriol., v. 172, pp. 5112−5118.u
  156. E. 1987. Response of a chlorophenols degrading mixed culture to changing loads of phenol, chlorophenol and cresols. Appl. Microbiol. Biotechnol., v. 27, pp. 94−99.
  157. Schmidt E., Knackmuss H.-J. 1984. Production of cis, cis-muconate from benzoate and 2-fluoro-c/Xm-muconate from 3-fluorobenzoate by 3-chlorobenzoate degrading bacteria. Appl. Microbiol. Biotechnol., v. 20, pp. 351−355.
  158. Schmidt E., Knackmuss H.-J. 1980. Chemical structure and biodegradability of halogenated aromatic compound: conversion of chlorinated muconic acids into maleoylacetic acid. Biochem. J., v. 192, pp. 339−347.
  159. Π’., Janke D., Krebs D., Fritsche W. 1983. Cometabolic degradation of 2- and 3-chloroaniline because of glucose metabolism by Rhodococcus sp. An 117. Curr. Microbiol, v. 9, pp. 81−86.
  160. V., Kourbatova E.M., Golovleva L.A., Schlomann M. 1998. Characterization of the maleylacetate reductase MacA of Rhodococcus opacus ICP and evidence for the presence of an isofunctional enzyme. J. Bacteriol, v. 180, pp. 3503−3508.
  161. Seibert V., Stadler-Fritzsche K., Schlftmann M. 1993. Purification and characterization of maleylacetate reductase from Alcaligenes eutrophus JMP134 (pJP4). J. Bacteriol, v. 175, pp. 6745−6754.
  162. Y., Neujahr H.Y. 1987. Phenol hydroxylase from yeast. A model for phenol binding and an improved purification procedure. Eur. J. Biochem., v. 170, pp. 343−349.
  163. W.R., Stanier R.Y. 1954. The mechanism of formation of /?-ketoadipic acid by bacteria. J. Biol. Chem., v. 210, pp. 821−836.
  164. M.R. 1990, The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation, v. 1, pp. 191−206.
  165. G. 1990. Phenol hydroxylase from Rhodococcus sp. PI. J. Basic Microbiol., v. 27, pp. 229−232.
  166. Straube G., Hensel J4 Niedan C., Straube E. 1990. Kinetic studies of phenol degradation by Rhodococcus sp. PI. I. Batch cultivation. Antonie van Leeuwenhoek J. Microbiol. Ser., v. 57, pp. 29−32.
  167. S., Massey V. 1973a. The purification and properties of the flavoprotein melilotate hydroxylase. J. Biol. Chem., v. 248, pp. 2944−2952.
  168. S., Massey V. 1973b. The mechanism of action of the flavoprotein melilotate hydroxylase. J. Biol. Chem., v. 248, pp. 2953−2962.
  169. K., Senda Π’., Aoshima H., Masai E., Fukuda M., Mitsui Y. 1999. Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. Structure, v. 7, pp. 953−965.
  170. Suske W.A., van Berkel W.J.H., Kohler H.-P. E. 1999. Catalytic mechanism of 2-hydroxybiphenyl 3-rnonooxygenase, a flavoprotein from Pseudomonas azelaica HBP1. J. Biol. Chem., v. 274, pp. 33 355−33 365.i
  171. M., Mailhiot K., Ahmad D., Masse R. 1989. Isolation and preliminary characterization of a 2-chlorobenzoate degrading Pseudomonas. Can. J. Microbiol., v. 35, pp. 439−443.
  172. M.W., Ohlendorf D.H. 2000. The 1.8 A crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker. Structure, v. 8, pp. 429−440.
  173. M.D., Schlomann M. 1995. Conversion of 2-chloro-c'", c/.y-muconate and its metabolites 2-chlord- and 5-chloromuconoIactone by chloromuconate cycloisomerases of pJP4 and pAC27. J iBacteriol., v. 177, pp. 2938−2941.
  174. Vollmer M.D., Fischer P., Knackmuss H.-J., Schlomann M. 1994. Inability of muconate cycloisomerases to cause dehalogenation during conversion of 2-chloro-67.v, 67. v-muconate. J. Bacteriol., v. 176 pp. 4366−4375.
  175. M.G., Chapshan K. 1990. Isolation and partial characterization of an extradiol non-haem iron dioxygenase which preferentially cleaves 3-methylcatechol. Biochem. J., v. 266, pp. 605−609.
  176. L., Helmann J.D., Winans S.C. 1992. The A. tumefaciens transcriptional activator Occll causes a bend at a target promoter, which is partially relaxed by a plant tumor metabolite. Cell, v. 69, pp. 659−667.
  177. A.M., Fewson C.A. 1994. Biotransformations catalyzed by the genus Rhodococcus. Critical Reviews in Biotechnology, v. 14, pp. 29−73.
  178. White-Stevens R.H., Kamin H. 1972a. Studies of a flavoprotein, salicylate hydroxylase. I. Preparation, properties, and the uncoupling of oxygen reduction from hydroxylation. J. Biol. Chem., v. 247, pp. 2358−2370.
  179. White-Stevens R.H., Kamin H. 1972b. Studies of a flavoprotein, salicylate hydroxylase. II. Enzyme mechanism. J. Biol. Chem., v. 247, pp. 2371−2381.
  180. J.W., Lipscomb J.D., Kent T.A., Munck E. 1984. Brevibactehum fuscum protocatechuate 3,4-dioxygenase: purification, crystallization, and characterization. J. Biol. Chem., v. 259, pp. 4466−4475.
  181. M., Eberspacher J., Vogler Π’., Lingens F. 1994. Metabolism of 4-chlorophenol by Azotobacter sp. strain GP1: structure of the meta cleavage product of 4-chIorocatechol. FEMS Microbiol., Lett., v. 116, pp. 73−78.
  182. P.A., Murray K. 1974. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida {arvilla) mt-2: evidence for the existence of a TOL plasmid. J. Bacteriol., v. 120, pp. 416−423.
  183. J., Eltis L.D., Dwyer D.F., Rohde M. 1995. Tetrameric structure and cellular location of catechol 2,3-dioxygenase. Arch. Microbiol., v. 163, pp. 65−69.
  184. Yeh W.-K., Fletcher P., Ornston L.N. 1980. Homologies in the NH2-terminal amino acid sequence of y-carboxymuconolactone decarboxylases and muconolactone isomerases. J. Biol. Chem., v. 255, pp. 6347−6354.
  185. Yeh W.-K., Ornston L.N. 1984. /^-Chloromercuribenzoate specifically modifies thiols associated with the active sites of/i-ketoadipate enol-lactone hydrolase and succinyl Co A. /?-ketoadipate CoA transferase. Arch Microbiol, v. 138, pp. 102−105.
  186. Zaitsev G.M., Uotila J.S., Tsitko I.V., Lobanok A.G., Salkinoja-Salonen M.S. 1995. Utilization of halogenated benzenes, phenols, and benzoates by Rhodococcus opacus GM-14. Appl. Environ. JViicrobiol., v. 61, pp. 4191−4201.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ