ΠΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½Π°Ρ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ² ΡΠΈΠΏΠ° ΠΠ‘Π-41
ΠΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠΌ Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΡΡΡΡ! ΠΌΠ΅Π·ΠΎΠΏΠΎΡΠΈ^ ΡΡΡΠ΅ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ (ΠΠΠ). ΠΡΠΊΡΡΡΡΠ΅ Π² 1992 Π³ΠΎΠ΄Ρ ΠΎΠ½ΠΈ ΡΡΠ°Π·Ρ ΠΏΡΠΈΠ²Π»Π΅ΠΊΠ»ΠΈ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΉ Π²ΠΎ Π²ΡΠ΅ΠΌ ΠΌΠΈΡΠ΅. ΠΠΠ ΠΏΡΡΠΌΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΏΠΎΠ΄ΠΏΠ°Π΄Π°ΡΡ Π² ΡΡΠ΅ΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠΎΠ² Π°ΠΊΡΠΈΠ²Π½ΠΎ ΡΠ°Π·Π²ΠΈΠ²Π°ΡΡΠ΅ΠΉΡΡ Π½Π°Π½ΠΎΠ½Π°ΡΠΊΠΈ. Π―Π²Π»ΡΡΡΡ Π½Π° ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΌ ΡΡΠΎΠ²Π½Π΅ Π°ΠΌΠΎΡΡΠ½ΡΠΌΠΈ, ΠΠΠ ΠΎΠ±Π»Π°Π΄Π°ΡΡ ΡΡΡΠΎΠ³ΠΎΠΉ, ΠΊΡΠΈΡΡΠ°Π»Π»ΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΏΠΎΡΡΠ΄ΠΎΡΠ΅Π½Π½ΠΎΡΡΡΡ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡΡ Π² Π½Π°Π½ΠΎΠΌΠ΅ΡΡΠΎΠ²ΠΎΠΌ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
- Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΡΠ΄Π΅ΡΠΆΠΊΠ°
- ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ°
- ΠΡΡΠ³ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ
- ΠΠΎΠΌΠΎΡΡ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈ
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΠΠΠΠ 1. ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠΉ ΠΎΠ±Π·ΠΎΡ. 8 ® 1.1. ΠΡΠ°ΡΠΊΠΈΠ΅ ΠΈΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΠ± ΠΎΡΠΊΡΡΡΠΈΠΈ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ²
- 1. 2. ΠΠΎΡΠΈΡΡΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ
- 1. 3. ΠΠ΅ΡΠΎΠ΄Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΠΠ. 11 1.3 .1. Π Π΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠ°Ρ Π΄ΠΈΡΡΠ°ΠΊΡΠΈΡ
- 1. 3. 2. ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½Π°Ρ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡ
- 1. 3. 3. Π―ΠΠ — ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡ
- 1. 3. 4. ΠΠ΄ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ
- 1. 4. Π‘ΠΈΠ½ΡΠ΅Π· ΠΠΠ
- 1. 4. 1. Π‘ΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΠΎ-Π°ΠΊΡΠΈΠ²Π½ΡΡ Π²Π΅ΡΠ΅ΡΡΠ² Π² ΡΠ°ΡΡΠ²ΠΎΡΠ΅
- 1. 4. 2. Π‘ΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ° Π² ΡΠ°ΡΡΠ²ΠΎΡΠ΅
- 1. 4. 3. ΠΠΈΠ΄ΠΊΠΎΠΊΡΠΈΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠ΅ΠΌΠΏΠ»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΡΠΏΡΠ°ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ ΡΠ°ΠΌΠΎΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡ
- 1. 4. 4. Π‘ΠΎΡΡΠ°Π² ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΏΡΠΈ ΡΠΈΠ½ΡΠ΅Π·Π΅ ΠΠΠ
- 1. 5. ΠΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½Π°Ρ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΌΠ΅Π·ΠΎΠΏΠΎΡΠΈΡΡΡΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ². 33 ΠΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ° Π·Π°Π΄Π°Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ
- ΠΠΠΠΠ 2. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°ΡΡΡ
- 2. 1. Π Π΅Π°ΠΊΡΠΈΠ²Ρ
- 2. 2. Π‘ΠΈΠ½ΡΠ΅Π· ΠΠ‘Π-41. 47 ® 2.2.1. ΠΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ΅ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΠ‘Π-41 ΠΈΠ· ΡΠΏΠΈΡΡΠΎΠ²ΠΎ-Π°ΠΌΠΌΠΈΠ°ΡΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ
- 2. 2. 2. ΠΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ΅ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΠ‘Π-41 ΠΈΠ· Π²ΠΎΠ΄Π½ΠΎ-ΡΠ΅Π»ΠΎΡΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ
- 2. 2. 3. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ (ΠΠ’Π)
- 2. 2. 4. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΠ’Π Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠΈΠΊΡΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ
- 2. 2. 5. ΠΡΠΎΠΊΠ°Π»ΠΈΠ²Π°Π½ΠΈΠ΅. 51 # 2.3. ΠΡΠ΅Π½ΠΊΠ° ΠΠ’ ΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ
- 2. 3. 1. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ΅ΡΡΠ° Π½Π° Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΡΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ
- 2. 3. 2. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ΅ΡΡΠ° Π½Π° ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΡΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ
- 2. 4. ΠΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ΅ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΠ‘Π-50 ΠΈΠ· ΡΠΏΠΈΡΡΠΎΠ²ΠΎ-Π°ΠΌΠΌΠΈΠ°ΡΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ
- 2. 5. ΠΠ΅ΡΠΎΠ΄Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ²
- 2. 5. 1. Π Π€Π
- 2. 5. 2. ΠΠ΄ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ
- 3. 1. ΠΠ½Π°Π»ΠΈΠ· ΡΠΎΠ»ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΡΡ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΠ‘Π-41. 59 3.1.1. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ² ΠΏΠΎ Π·Π°ΠΌΠ΅Π½Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΡΡΠ΅Π΄Ρ ΠΈ ΠΈΡ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ
- 3. 2. ΠΠΎΠΈΡΠΊ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΠ΅Π°Π³Π΅Π½ΡΠΎΠ² ΡΠΈΠ½ΡΠ΅Π·Π° ΠΠ‘Π-41 ΡΠΎ ΡΠΏΠΈΡΡΠΎΠ²ΠΎ-Π°ΠΌΠΌΠΈΠ°ΡΠ½ΠΎΠΉ ΡΡΠ΅Π΄ΠΎΠΉ
- 3. 2. 1. ΠΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΡΠΎΡΡΠ°Π²Π° ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΏΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Ρ ΠΠΠ
- 3. 2. 2. ΠΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΡΠΎΡΡΠ°Π²Π° ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΏΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Ρ ΡΠΏΠΈΡΡΠ°
- 3. 2. 3. ΠΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΡΠΎΡΡΠ°Π²Π° ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΏΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Ρ Π°ΠΌΠΌΠΈΠ°ΠΊΠ°
- 3. 2. 4. ΠΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΡΠΎΡΡΠ°Π²Π° ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΏΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Ρ Π²ΠΎΠ΄Ρ
- 3. 3. ΠΠΎΠ΄Π±ΠΎΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΡΡΠ°Π΄ΠΈΠΈ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ ΠΠ‘Π
- 3. 4. ΠΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ (ΠΠ’Π)
- 3. 5. ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΠΠ‘Π
- 3. 6. ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π½Π°Π³ΡΠ΅Π²Π° Π‘ΠΠ§ ΠΏΠΎΠ»Π΅ΠΌ ΠΏΡΠΈ ΡΠΈΠ½ΡΠ΅Π·Π΅ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ²
- 3. 7. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΎΡΠΆΠΈΠ³Π° ΠΠ‘Π-41 Π½Π° Π΅Π³ΠΎ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ
- 3. 8. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΠ½ΠΊΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΠ‘Π-41 Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠ°Π΄ΠΈΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ
- 3. 9. ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΡΡΡΠΊΡΡΡΡ ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΠ‘Π
ΠΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½Π°Ρ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ² ΡΠΈΠΏΠ° ΠΠ‘Π-41 (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΡΠ΅ΠΌΡ
ΠΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠΌ Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΡΡΡΡ! ΠΌΠ΅Π·ΠΎΠΏΠΎΡΠΈ^ ΡΡΡΠ΅ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ (ΠΠΠ). ΠΡΠΊΡΡΡΡΠ΅ Π² 1992 Π³ΠΎΠ΄Ρ ΠΎΠ½ΠΈ ΡΡΠ°Π·Ρ ΠΏΡΠΈΠ²Π»Π΅ΠΊΠ»ΠΈ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΉ Π²ΠΎ Π²ΡΠ΅ΠΌ ΠΌΠΈΡΠ΅. ΠΠΠ ΠΏΡΡΠΌΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΏΠΎΠ΄ΠΏΠ°Π΄Π°ΡΡ Π² ΡΡΠ΅ΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠΎΠ² Π°ΠΊΡΠΈΠ²Π½ΠΎ ΡΠ°Π·Π²ΠΈΠ²Π°ΡΡΠ΅ΠΉΡΡ Π½Π°Π½ΠΎΠ½Π°ΡΠΊΠΈ. Π―Π²Π»ΡΡΡΡ Π½Π° ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΌ ΡΡΠΎΠ²Π½Π΅ Π°ΠΌΠΎΡΡΠ½ΡΠΌΠΈ, ΠΠΠ ΠΎΠ±Π»Π°Π΄Π°ΡΡ ΡΡΡΠΎΠ³ΠΎΠΉ, ΠΊΡΠΈΡΡΠ°Π»Π»ΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΏΠΎΡΡΠ΄ΠΎΡΠ΅Π½Π½ΠΎΡΡΡΡ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡΡ Π² Π½Π°Π½ΠΎΠΌΠ΅ΡΡΠΎΠ²ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ²ΠΠ°ΡΠ°ΠΌΠ΅ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΠΈ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠΈΠΏΠ° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π»Π΅ΠΆΠΈΡ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΠΎΡ 3 Π΄ΠΎ 25 Π½ΠΌ. Π Π°Π·Π²ΠΈΠ²Π°Π΅ΠΌΠ°Ρ ΡΠ΄Π΅Π»ΡΠ½Π°Ρ Π²Π½ΡΡΡΠ΅Π½Π½ΡΡ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΡ Π΄ΠΎΡΠΎ ΠΎ ΡΠΈΠ³Π°Π΅Ρ 1000 ΠΌ /Π³ ΠΈ Π²ΡΡΠ΅, Π° ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΠΎΠ±ΡΠ΅ΠΌ Π΄ΠΎ 0.9 ΡΠΌ /Π³. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΌΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΠ»ΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΠΠ, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ Π½ΠΎΡΠΈΡΠ΅Π»ΠΈ Π΄Π»Ρ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ², ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ, ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ Π±ΠΈΠΎΡ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΡΡ, Π½Π°Π½ΠΎΡΠ΅Π°ΠΊΡΠΎΡΡ, ΡΠ΅ΠΌΠΏΠ»Π°ΡΡ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° Π²ΡΠΎΡΠΈΡΠ½ΡΡ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ², ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡΡ, ΠΈΠΎΠ½Π½ΡΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ, ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Π΄Π»Ρ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΎΠΏΡΠΈΠΊΠΈ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅.
Π‘ΠΏΠΎΡΠΎΠ± ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΡΡΡΠΊΡΡΡΡ ΠΠΠ ΠΎΡΠ½ΠΎΠ²Π°Π½ Π½Π° ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄Π°Π²Π½ΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ ΠΆΠΈΠ΄ΠΊΠΎΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ , Π²ΡΡΡΠ΅ΡΠ°Π΅ΠΌΡΡ ΠΊΠ°ΠΊ Π² ΠΆΠΈΠ²ΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Π΅, ΡΠ°ΠΊ ΠΈ Π²ΡΠ·ΡΠ²Π°Π΅ΠΌΡΡ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΠΈΠ΄ΡΠΎΡΠΈΠ»ΡΠ½Π°Ρ ΡΠ°ΡΡΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ» ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΠΎΠ°ΠΊ-ΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π° ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ΅ΡΡΡ Ρ Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠΎΠ»ΠΈΠ°Π½ΠΈΠΎΠ½Π°ΠΌΠΈ ΠΈΠ· ΡΠ°ΡΡΠ²ΠΎΡΠ°. ΠΠΎΡΠ»Π΅ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ, Π²ΡΡΡΡΠ°ΠΈΠ²Π°Π½ΠΈΡ ΠΆΠΈΠ΄ΠΊΠΎΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ^ ΠΎΠ±ΡΠ°Π·ΡΠ΅ΡΡΡ ΠΎΡΠ³Π°Π½ΠΎΠΎΠΊΡΠΈΠ΄Π½ΡΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΈ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ Π½Π° Π²ΠΎΠ·Π΄ΡΡ Π΅ ΠΏΡΠ΅Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Ρ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΏΠΎΡΠΈΡΡΠΎΡΡΡΡ ΠΈ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΡΡ.
Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΡΡ ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΠΎ Π°ΠΊΡΠΈΠ²Π½ΡΡ Π²Π΅ΡΠ΅ΡΡΠ² (ΠΠΠ) ΠΊ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠ³Π°Π½ΠΎΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ² ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ, ΠΊΠ°ΠΊ Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΡΡ Π·Π° ΠΈΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅, ΡΠ°ΠΊ ΠΈ ΡΠ²ΠΎΠΉΡΡΠ² ΠΏΡΠΎΠ΄ΡΠΊΡΠ° Π½Π° Π²ΡΠ΅Ρ ΡΡΠ°ΠΏΠ°Ρ Π΅Π³ΠΎ ΡΠ²ΠΎΠ»ΡΡΠΈΠΈ. ΠΠ΅ΡΠΌΠΎΡΡΡΠ½Π° Π²ΡΠ΅ΠΌΡ, ΠΏΡΠΎΡΠ΅Π΄ΡΠ΅Π΅ Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΎΡΠΊΡΡΡΠΈΡ ΠΠΠ, ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π²ΠΎΠΏΡΠΎΡΡ ΠΎΡΡΠ°ΡΡΡΡ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΠΌΠΈ, ΡΡΠΎ ΡΠΎΠ·Π΄Π°Π΅Ρ ΠΏΡΠ΅ΠΏΡΡΡΡΠ²ΠΈΡ Π½Π° ΠΏΡΡΠΈ ΡΠΈΡΠΎΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΠΠ. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· Π³Π»Π°Π²Π½ΡΡ ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΠΈΡ ΠΌΠ°ΡΡΡΠ°Π±Π½ΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈΡ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π΅Π²ΡΡΠΎΠΊΠ°Ρ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ Π² ΠΆΠ΅ΡΡΠΊΠΈΡ , Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈ Π°Π³ΡΠ΅ΡΡΠΈΠ²Π½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΈ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½Π°Ρ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ — ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ ΠΊ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²ΠΎΠ΄Ρ ΠΏΡΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ ΠΈ (ΠΈΠ»ΠΈ) Π΄Π°Π²Π»Π΅Π½ΠΈΡΡ . ΠΠΎΠΏΡΠΎΡ Π½ΠΎΡΠΈΡ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠΌ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΡΡΠ΅Π½ΠΊΠΈ ΠΏΠΎΡ ΡΠΎΠ»ΡΠΈΠ½ΠΎΠΉ 0.8 Π½ΠΌ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅ Π² Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ ΡΠ°Π±ΠΎΡΡ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅ Π½Π° ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠ°, Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½Ρ. ΠΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠΈ ΠΎΠΏΡΠΎΠ±ΠΎΠ²Π°Π½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΎΡΠ΅Π΄ΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΈ Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΠΎΠΊΠ° Π½Π΅ Π½Π°ΡΠ»Π° ΡΠ²ΠΎΠ΅Π³ΠΎ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ Π½Π΅ ΠΏΠΎΠ»ΡΡΠΈΠ»Π° Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΡ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π½Π°ΡΡΠΎΡΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΠΎΡΡΠ΅Π±Π½ΠΎΡΡΡ Π² ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ Π²ΠΎΠΏΡΠΎΡΠΎΠ² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ², ΠΈΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠΎΠ΅Π½ΠΈΡ, ΡΠ³Π»ΡΠ±Π»ΡΡΡΠΈΡ Π·Π½Π°Π½ΠΈΡ Π² ΡΡΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈ ΠΎΡΠΊΡΡΠ²Π°ΡΡΠΈΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠ² ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΡΡΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ ΠΈ ΡΡΡΡΠΎΠΉΡΡΠ²Π°Ρ .
Π ΡΠ²ΡΠ·ΠΈ Ρ Π²ΡΡΠ΅ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π½ΡΠΌ ΡΠ΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ»ΠΎΡΡ Π²ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΡΠΈΠ½ Π½ΠΈΠ·ΠΊΠΎΠΉ Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΠΈΠΏΠ° ΠΠ‘Π-41 ΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΡΠΈΠ½ΡΠ΅Π·Π°, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΊ ΡΠ΅ΡΠΌΠΎ-Π³ΠΈΠ΄ΡΠΎΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°ΠΌ. ΠΠ»Ρ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ΅Π»ΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π±ΡΠ»ΠΎ ΡΠ΅ΡΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ:
— ΠΈΠ·ΡΡΠΈΡΡ ΡΠΎΠ»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΏΡΠΈ ΡΠΈΠ½ΡΠ΅Π·Π΅ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ², Π²ΡΡΠ²ΠΈΡΡ ΠΏΡΠΈΡΠΈΠ½Ρ Π½ΠΈΠ·ΠΊΠΎΠΉ Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ;
— ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΡΠΎΠ½ΠΊΠΈΠ΅ Π΄Π΅ΡΠ°Π»ΠΈ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² Π½Π° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΡΠ°ΠΏΠ°Ρ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΠΈΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΡΠΈΠ½ΡΠ΅Π·Π°;
— ΠΎΡΡΡΠ΅ΡΡΠ²ΠΈΡΡ ΠΏΠΎΠΈΡΠΊ Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΈ ΡΠ΅ΠΆΠΈΠΌΠΎΠ² ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡ, Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠ°ΠΏΠ°Ρ ΡΠΈΠ½ΡΠ΅Π·Π°, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΠΈΠΉ ΠΊ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°ΠΌ Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΠΎΠΉΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡΡ ΠΈ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ ΡΠΏΠΎΡΡΠ΄ΠΎΡΠ΅Π½Π½ΠΎΡΡΡΡ,.
Π‘ΡΡΡΠΊΡΡΡΠ° Π΄ΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΠΈ. ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π²Π²Π΅Π΄Π΅Π½ΠΈΡ, ΡΡΠ΅Ρ Π³Π»Π°Π²Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΈ ΡΠΏΠΈΡΠΊΠ° Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ. Π Π°Π±ΠΎΡΠ° ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π° Π½Π° 157 ΡΡΡΠ°Π½ΠΈΡΠ°Ρ , Π²ΠΊΠ»ΡΡΠ°Π΅Ρ Π² ΡΠ΅Π±Ρ 65 ΡΠΈΡΡΠ½ΠΊΠΎΠ², 11 ΡΠ°Π±Π»ΠΈΡ ΠΈ Π±ΠΈΠ±Π»ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΏΠΈΡΠΎΠΊ ΠΈΠ· 201 Π½Π°ΠΈΠΌΠ΅Π½ΠΎΠ²Π°Π½ΠΈΡ.
ΠΡΠ²ΠΎΠ΄Ρ.
1. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ Π°Π½Π°Π»ΠΈΠ·Π° Π΄ΠΈΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΡ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π°Π½Π½ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² ΡΠΈΠ½ΡΠ΅Π·Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΡΠΎΠ»Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ, ΡΡΠΎ Π΄Π°Π»ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΎΡΠ½Π΅Π΅ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΠΈΠ΅ΡΠ°ΡΡ ΠΈΡ Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΏΡΠΈ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ² ΡΠΈΠΏΠ° ΠΠ‘Π-41:
— Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΡΡΡΠΊΡΡΡΠΈΡΡΡΡΠ΅Π³ΠΎ Π°Π³Π΅Π½ΡΠ°, ΡΠ΅ΡΠΈΠ»ΡΡΠΈΠΌΠ΅ΡΠΈΠ»Π°ΠΌΠΌΠΎΠ½ΠΈΠΉ Π±ΡΠΎΠΌΠΈΠ΄Π°, Ρ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΡΠΌΠΈ ΠΏΠΎΠ»ΠΈΠ°Π½ΠΈΠΎΠ½Π°ΠΌΠΈ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΏΠΎ ΡΡΠΏΡΠ°ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΌΡ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΡ Π² ΡΠ·ΠΊΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΡΠ Π² ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Π±Π»ΠΈΠ·ΠΊΠΎΠΌ ΠΊ ΡΡΠ΅Ρ ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ;
— ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΡ ΡΡΠΏΡΠ°ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ Π°Π³ΡΠ΅Π³Π°ΡΠΎΠ² Π² ΡΠ²Π΅ΡΠ΄ΡΡ ΡΠ°Π·Ρ, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΡΡ ΠΎΡΠ³Π°Π½ΠΎΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΡΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ, ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅ΡΡΡ ΡΠΊΠΎΡΠΎΡΡΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΡ ΠΏΠΎ ΡΠ°Π·ΠΌΠ΅ΡΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΡΡ ΠΏΠΎΠ»ΠΈΠ°Π½ΠΈΠΎΠ½ΠΎΠ² Π² ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Π΅.
— Π² ΠΊΠΎΠ½Π΄Π΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π²ΡΡΡΡΠ°ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΆΠΈΠ΄ΠΊΠΎΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ Π² Π²ΠΈΠ΄Π΅ Π΄Π²ΡΡ ΠΌΠ΅ΡΠ½ΠΎΠΉ Π³Π΅ΠΊΡΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠΎΡ, ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°ΡΡΠ΅ΠΉΡΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠ΅ΠΉ Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ.
— ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠ΅ΠΏΡΡΡΡΠ²ΡΠ΅Ρ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΡΠΉ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΡΡΠ΄ Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΠΈ ΠΎΡΠΌΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ Π²Π½ΡΡΡΠΈ ΠΏΠΎΡ, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΠΈΠ΅ ΠΊ ΠΈΡ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΡ.
2. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠΏΠΈΡΡΠΎΠ²ΠΎ-Π°ΠΌΠΌΠΈΠ°ΡΠ½Π°Ρ ΡΡΠ΅Π΄Π° Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½Π° Π΄Π»Ρ Π½Π΅ΠΉΡΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ° ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ Π±ΡΡΡΡΡΠΉ ΡΠΈΠ½ΡΠ΅Π· ΡΠ΅ΡΠΌΠΎΠ³ΠΈΠ΄ΡΠΎΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². ΠΠΎΠ΄Π½ΠΎ-ΡΠ΅Π»ΠΎΡΠ½ΡΠ΅ ΡΡΠ΅Π΄Ρ Π½Π΅ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΡΡ Π½Π΅ΠΉΡΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ, Π·Π°Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΡ, ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡ ΠΎΡΠΌΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²Π»Π΅Π½ΠΈΡ Π² ΠΏΠΎΡΠ°Ρ ΠΈ, ΠΊΠ°ΠΊ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΠΌ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°ΠΌ.
3. Π Π΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΡΠΎΠ½ΠΊΠΈΠ΅ ΡΡΡΡΠΊΡΡΡΠ½ΡΠ΅ Π΄Π΅ΡΠ°Π»ΠΈ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΏΠΎΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² ΡΠΈΠ½ΡΠ΅Π·Π°, ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΠΈΠ΅ ΡΡΠ°Π΄ΠΈΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΈ ΡΠΎΠ»Ρ ΡΡΠ΅Π΄Ρ Π² ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π²Π·Π°ΠΈΠΌΠ½ΡΡ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ Π½Π΅ΠΉΡΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΎΠ»ΡΠΈΠ½Π° ΡΡΠ΅Π½ΠΊΠΈ ΠΏΠΎΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² ΡΠ·ΠΊΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ, Π° ΡΠΎΡΠΌΠ° ΠΏΠΎΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΎΡ Π³Π΅ΠΊΡΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ Π΄ΠΎ ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ°.
4. ΠΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΠΎΠ΄Π±ΠΎΡ ΡΠΎΡΡΠ°Π²Π° ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΌΠΎΠ»ΡΠ½ΠΎΠΌΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ: 1 Π’ΠΠΠ: 0.20 Π‘Π’ΠΠΠ³: 21.7 Π«ΠΠ·: 52 Π‘2Π5ΠΠ: 475 ΠΠ³Π, ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠ΅ ΡΠ΅ΠΆΠΈΠΌΡ ΡΠΈΠ½ΡΠ΅Π·Π°. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Ρ Π²ΡΡΠΎΠΊΠΎΠΉ Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡΡ.
5. ΠΠΎΡΡΡΠΎΠ΅Π½Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ ΡΠ°ΡΡΠΈΡ, ΠΌΠ΅Π·ΠΎ-ΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ³Π°Π½ΠΎΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ° ΠΈ ΡΡΡΡΠΊΡΡΡΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°. ΠΠΎΠ΄Π΅Π»Ρ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π°Π΄ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΡΠΌ ΠΈ Π΄ΠΈΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΡΠΌ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌ ΡΠ΅Π°Π»ΡΠ½ΡΡ Π²Π΅ΡΠ΅ΡΡΠ², ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ»ΠΎΠΉ ΠΏΡΠΈ ΡΠ΅Π»Π΅Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π΅Π³ΠΎ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈ Π΄ΡΡΠ³ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ².
ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅
.
Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Π½ΠΈΠ·ΠΊΠΎΠΉ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ² Π² Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈ Π°Π³ΡΠ΅ΡΡΠΈΠ²Π½ΡΡ , Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π² Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡΡ .
Π Ρ ΠΎΠ΄Π΅ ΡΠ°Π±ΠΎΡΡ Π½Π° Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΡΠΎΠ²Π½Π΅ Π΄Π΅ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π±ΡΠ»ΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ ΠΏΡΠΈΡΠΈΠ½Ρ, ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°ΡΡΠΈΠ΅ ΡΠ°ΠΊΡΡ Π²Π°ΠΆΠ½ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ² ΡΠΈΠΏΠ° ΠΠ‘Π-41 ΠΊΠ°ΠΊ Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½Π°Ρ (ΠΠ’) ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ. ΠΠ»Ρ Π²ΡΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠ³ΠΎ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΠ΅Π°Π³Π΅Π½ΡΠΎΠ² ΡΠΏΠΈΡΡΠΎΠ²ΠΎ-Π°ΠΌΠΌΠΈΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Π° Π±ΡΠ»ΠΈ ΡΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ΄ΠΎΠ±ΡΠ°Π½Ρ ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΈ Π°ΠΏΠΏΠ°ΡΠ°ΡΡΡΠ½ΠΎΠ΅ ΠΎΡΠΎΡΠΌΠ»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅Ρ ΡΡΠ°Π΄ΠΈΠΉ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠΌΠΎΠ³ΠΈΠ΄ΡΠΎ-ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ². ΠΠ°ΠΆΠ½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠΉ ΡΡ Π΅ΠΌΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅Π±ΠΎΠ»ΡΡΠ°Ρ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΠΈΠ½ΡΠ΅Π·Π° — Π΄ΠΎ 6-ΡΠΈ ΡΠ°ΡΠΎΠ² (ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ΅ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΈ Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½Π°Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ°) Π²ΠΌΠ΅ΡΡΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΡΡΡΠΎΠΊ, ΠΊΠ°ΠΊ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ Π² Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅. Π’Π°ΠΊΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΎ Π½Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π°ΠΌΠΌΠΈΠ°ΠΊΠ°, Π²ΡΡΡΡΠΏΠ°ΡΡΠ΅Π³ΠΎ Π² ΡΠΎΠ»ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π°Π³Π΅Π½ΡΠ° ΠΏΡΠΈ ΡΠ½ΡΡΠΈΠΈ ΠΈΠ·Π±ΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΡΡΠ΄Π° ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΠΎΠΉ ΡΡΠ΅Π½ΠΊΠΈ, ΠΏΡΠΈ ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΡΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅Π² ΠΏΠΎΠ΄Π±ΠΎΡΠ° ΡΠΎΡΡΠ°Π²Π° ΡΠΌΠ΅ΡΠΈ ΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠ²Π»ΡΠ»ΠΎΡΡ Π²ΡΡΠΎΠΊΠΎΠ΅ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π½Π° Π²ΡΠ΅Ρ ΡΡΠ°Π΄ΠΈΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ, ΡΡΠΎ Π΄Π°Π»ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΡΡΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ·. ΠΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΠΏΠΎΠ»Π½ΠΎΠΏΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΠ½ΠΊΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΠΌΠΌ Π±ΡΠ»ΠΈ Π²ΡΡΠ²Π»Π΅Π½Ρ ΡΠΎΠ½ΠΊΠΈΠ΅ Π΄Π΅ΡΠ°Π»ΠΈ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ° ΡΠΈΠΏΠ° ΠΠ‘Π-41. ΠΠ°Π½Π½Π°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° ΡΠ΄Π΅Π»Π°ΡΡ ΡΡΠ΄ Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠΉ ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠΈ ΠΏΡΠΈΡΠΎΠ΄Ρ ΡΡΠ΅Π΄Ρ, Π½Π° ΠΊΠ»ΡΡΠ΅Π²ΠΎΠΉ, Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΠ’ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ², ΡΡΠ°Π΄ΠΈΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ — Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΠ΅ ΡΡΡΡΠΊΡΡΡΠ½ΡΠ΅ ΠΈ ΡΠ΅ΠΊΡΡΡΡΠ½ΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΠ²ΠΈΠ»ΠΈΡΡ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΠ‘Π-41.
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Kresge Π‘.Π’., Leonowicz M.E., Roth W.J., Yartuli J.C., and Beck J.S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. // Nature, 1992, Vol.359, P.710−712.
- Beck J.S., Chu C.T.-W., Johnson I.D., Kresge C.T., Leonowicz M.E., Roth W.J., and Vartuli J.W. Method for synthesizing mesoporous crystalline material. WO Patent 91/11 390, 1991.
- IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 578.
- Taguchi A., and Schuth F. Ordered mesoporous materials in catalysis. // Micropor. Mesopor. Mater., 2005, Vol.77, P. 1−45.
- Ciesla U., and Schuth F. Ordered mesoporous materials. // Micropor. Mesopor. Mater., 1999, Vol.27, P. 131−149.
- Zhao X.S., Lu G.Q.(Max), and Millar G.J. Advances in mesoporous molecular sieve MCM-41. // Ind. Eng. Chem. Res., 1996, Vol.35, № 7, P.2075−2090.
- ΠΠΉΠ»Π΅Ρ P. Π₯ΠΈΠΌΠΈΡ ΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ°: ΠΠ΅Ρ. Ρ Π°Π½Π³Π».: Π 2 Ρ. — Π.: ΠΠΈΡ, 1982.
- Patent US 28 109 02 (Du Pont). 1957.
- Chiola V., Ritsko J.E., Vanderpool C.D. Process for producing low-bulk density silica. US Patent No. 3 556 725, 1971.
- Di Renzo F., Cambon H., and Durantre R. A 28-year-old synthesis of micelle-templated mesoporous silica. // Micropor. Mesopor. Mater., 1997, Vol.10, P.283−286.
- Beck J.S., US Patent No. 5 057 296, 1991.
- Yanagisava Π’., Schimizu Π’., Kidora Π., and Kato C. The preparation of alkyl-trimethylammoniumkanemite complexes and their conversion to microporous materials. //Bull. Chem. Soc. Jpn., 1990, Vol.63, P.988−992.
- Barton T.J., Bull L.M., Klemperer W.G., Loy D.A., McEnaney Π., Misono M., Monson P.A., Pez G., Scherer G.W., Vartuli J.C., and Yaghi O.M. Tailored porous materials. // Chem. Mater., 1999, Vol.11, № 10, P.2633−2656.
- Zhao X.S., Lu G.Q., Millar G.J., Whittaker A.J., and Zhu H.Y. Comprehensive study of surface chemistry of MCM-41 using Si"29 CP/MAS NMR, FTIR, pyridine-TPD, and TGA. // J. Phys. Chem. B, 1997, Vol.101, № 33, P.6525−6531.
- Brunei D. Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals. // Micropor. Mesopor. Mater., 1999, Vol.27, № 2−3, P.329−344.
- Moller K., and Bein T. Inclusion chemistry in periodic mesoporous hosts. // Chem. Mater., 1998, Vol.10, № 10, P.2950−2963.
- Π₯ΠΈΠΌΠΈΡ ΠΏΡΠΈΠ²ΠΈΡΡΡ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ / ΠΠΎΠ΄ ΡΠ΅Π΄. Π. Π. ΠΠΈΡΠΈΡΠΊΠΈΠ½Π°. -Π.:Π€ΠΠΠΠΠ’ΠΠΠ’, 2003. 592Ρ.
- Huber C., Moller K., and Bein T. Reactivity of a trimethylstannyl molybdenium complex in mesoporous MCM-41. // J. Chem. Soc. Chem. Commun., 1994, № 22, P.2619−2620.
- Maschmeyer Π’., Rey F., Sankar G., and Thomas J.M. Heterogeneous catalisys obtained by grafting metallocene complexes onto mesoporous silica. // Nature, 1995, Vol.378, № 6553, P.159−162.
- Liu C.-J., Li S.-G., Pang W.-P., and Che C.-M. Ruthenium porphyrin encapsulated in modified mesoporous molecular sieve MCM-41 for alkene oxidation. // Chem. Commun., 1997, Vol.1, P.65−66.
- Carvalho W.A., Wallau M., and Schuchardt U. Iron and copper immobilised on mesoporous MCM-41 molecular sieves as catalysts for the oxidation of cyclohexane. //J. Mol. Catal. A, 1999, Vol.144, № 1, P.91−99.
- Van Rhijn W.M., De Vos D.E., Sels B.F., Bossaert W.D., and Jacobs P.A. Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. // Chem. Commun., 1998, № 3, P.317−318.
- Rodriguez I., Iborra S., Corma A., Rey F., and Jorda J. MCM-41-Quaternary organic tetraalkylammonium hydroxide composites as strong and stable Bronsted base catalysts. // Chem. Commun., 1999, № 7, P.593−594.
- Zhang W., Glomski B., Pauly T.R., and Pinnavaia T.J. A new nonionic surfactant pathway to mesoporous molecular sieve silicas with long range framework order. // Chem. Commun., 1999, № 18, P.1803−1804.
- Tudor J., and O’Hare D. Stereospecific propene polymerisation catalysis using an organometallic modified mesoporous silicate. // Chem. Com., 1997, № 6, P.603−604.
- Shephard D.S., Maschmeyer T., Johnson B.F.G., Thomas J.M., Sankar G., Oz-kaya D., Zhou W., Oldroyd R.D., and Bell R.G. Bimetallic nanoparticle catalysts anchored inside mesoporous silica. // Angew. Chem. Int. Ed., 1997, Vol.36, № 20, P.2242−2245.
- Badiei A.R., and Bonneviot L. Modification of mesoporous silica by direct template ion exchange using cobalt complexes. // Inorg. Chem., 1998, Vol.37,№ 16, P.4142−4145.
- Van Der Voort P., Morey M., Stucky G.D., Mathieu M., and Vansant E.F. Creation of VOx surface species on pure silica MCM-48 using gas-phase modification with VO. // J. Phys. Chem. B, 1998, Vol.102, № 3, P.585−590.
- Ahn W.S., Lee D.H., Kim T.J., Seo G., and Ryoo R. Post-synthetic preparations of titanium-containing mesopore molecular sieves. // Appl. Catal. A, 1999, Vol.181, P.39−49.
- Feng X., Fryxell G.E., Wang L.Q., Kim A.Y., Liu J., and Kemmer K.M. Func-tionalized monolayers on ordered mesoporous supports. // Science, 1997, Vol.276, № 5314, P.923−926.
- Mercier L., and Pinnavaia T.J. Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation. // Adv. Mater., 1997, Vol.9, № 6, P.500-&.
- Beck J.S., Calabro D.C., McCullen S.B., Pelrine B.P., Schmitt K.D., Vartuli J.C. Sorption separation over modified synthetic mesoporous crystalline material. US Patent No. 5 220 101, 1993.
- Koyano K.A., Tatsumi T., Tanaka Y., Nakata S. Stabilization of mesoporous molecular sieves by trimethylsilylation. // J. Phys. Chem. B, 1997, Vol.101, № 46, P.9436−9440.
- Tatsumi T., Koyano K.A., Tanaka Y., and Nakata S. Mechanical stability of mesoporous materials, MCM-48 and MCM-41. // J. Por. Mater, 1999, Vol.6, P.13−17.
- Bai N., Chi Y., Zou Y., and Pang W. Influence of high pressure on structural property of mesoporous material MCM-41: study of mechanical stability. // Materials Letters, 2002, Vol.54, № 3, P.37−42.
- Zhao X.S., and Lu G.Q. Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study. // J. Phys. Chem., 1998, Vol.102, № 9, P. 1556−1561.
- Jaroniec C.P., Krak M., Jaroniec M., and Sayari A. Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes. // J. Phys. Chem. B, 1998, Vol.102, № 28, P.5503−5510.
- Mokaya R., and Jones W. Aluminosilicate mesoporous molecular sieves with enhanced stability obtained by reacting MCM-41 with aluminium chlorohydrate. // Chem. Commun., 1998, № 17, P.1839−1840.
- McCullen S.B., Vartuli J.C. Method for stabilizing synthetic mesoporous crystalline material. US Patent No. 5 156 829, 1992.
- Kisler J.M., Dahler A., Stevens G.W., and O’Connor A.J. Separation of biological molecules using mesoporous molecular sieves. // Micropor. Mesopor. Mater., 2001, Vol.44−45, P.769−774.
- Han Y.J., Stucky G.D., and Butler A. Mesoporous silicate sequestration and release of proteins. //J. Am. Chem. Soc., 1999, Vol.121, № 42, P.9897−9898.
- Hlavaty J., Rathousky J., Zukal A., and Kavan L. Carbonization of 1,4-diiodo-1,3-butadiyne and l-iodo-l, 3,5-hexatriyne inside the MCM-41 molecular sieve. // Carbon, 2001, Vol.39, P.53−60.
- De Vos D.E., Dams M., Sels B.F., and Jacobs P.A. Ordered mesoporous and mi-croporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic. // Chem. Rev., 2002, Vol.102, № 10, P.3615−3640.
- Biz S., and Ocelli M.L. Synthesis and characterization of mesostructured materials. // Catal. Rev—Sci. Eng., 1998, Vol.40, № 3, P.329−407.
- Hayward R.C., Alberius-Henning P., Chmelka B.F., and Stucky G.D. The current role of mesostructures in composite materials and device fabrication. // Micropor. Mesopor. Mater., 2001, Vol.44−45, P.619−624.
- Joo S.H., Choi S.J., Oh I., Kwak J., Liu Z., Terasaki O., and Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. // Nature, 2001, Vol.412, № 6843, P.169−172.
- Shin H.J., Ko C.H., and Ryoo R. Synthesis of platinum networks with nanoscopic periodicity using mesoporous silica as template. // J. Mater. Chem., 2001, Vol.11, № 2, P.260−261.
- Shin H.J., Ryoo R., Liu Z., and Terasaki O. Template synthesis of asymmetrically mesostructured platinum networks. // J. Am. Chem. Soc., 2001, Vol.123, № 6, P. 1246−1247.
- Huang M.H., Choudrey A., and Yang P. Ag nanowire formation within mesoporous silica. // Chem. Commun., 2000, № 12, P.1063−1064.
- Ryoo R., Joo S.H., Kruk M., and Jaroniec M. Ordered mesoporous carbons. // Adv. Mater., 2001, Vol.13, № 9, P.677−681.
- Biz S., and White M.G. Effect of post-synthesis hydrothermal treatments on the adsorptive volume of surfactant-templated mesostmctures. // Micropor. Mesopor. Mater., 2000, Vol.40, P. 159−171.
- Gregg S.J., and Sing K.S.W., Adsorbtion, Surface Area and Porosity, Academic Press, New York, 1982.
- Ravikovitch P.I., O Domhnail S.C., Neimark A.V., Schuth F., and Unger K.K. Capillary hysteresis in nanopores: Theoretical and experimental studies of nitrogen adsorption on MCM-41. II Langmuir, 1995, Vol.11, № 12, P.4765−4772.
- Branton P.J., Hall P.G., Sing K.S.W., Reichert H., Schuth F., and Unger K.K. Physisorption of argon, nitrogen and oxygen by MCM-41, a model mesoporous adsorbent. II J. Chem. Soc. Faraday Trans., 1994, Vol.90, № 19, P.2965−2967.
- Rathousky J., Zukal A., Franke O., and Schulz-Ekloff G. Adsorption on MCM-41 mesoporous molecular-sieves .1. Nitrogen isotherms and parameters of the porous structure. // J. Chem. Soc. Faraday Trans., 1994, Vol.90, № 18, P.2821−2826.
- Schmidt R., Stocker M., Hansen E., Akporiaye D., and Ellestad O.H. MCM-41 a model system for adsorption studies on mesoporous materials. // Micropor. Mater., 1995, Vol.3, P.443−448.
- Ravikovitch P.I., Wey D., Chuen W.T., Haller G.L., and Neimark A.V. Evaluation of pore structure parameters of MCM-41 catalyst supports and catalysts by means of nitrogen and argon adsorption. // J. Phys. Chem. B, 1997, Vol.101, № 19, P.3671−3679.
- Kruk Mi, Jaroniec M., and Sayari A. Adsorption study of surface and structural properties of MCM-41 materials of different pore sizes. II J. Phys. Chem. B, 1997, Vol.101, № 4, P.583−589.
- Schumacher K., Gran M., and Unger K.K. Novel synthesis of spherical MCM-48. // Micropor. Mesopor. Mater., 1999, Vol.27, P.201−206.
- Guinier A., Fournet G. Small Angle Scattering of X-Rays. Wiley: New York, 1955.
- Edler K.J., Reynolds P.A., White W.J., and Coolcson D. Diffuse wall structure and narrow mesopores in highly crystalline MCM-41 materials studied by X-ray diffraction. // J. Chem. Soc., Faraday Trans, 1997, Vol.93, № 1, P. 199−202.
- Auvray X., Petipas C., Anthore R., Rico I., and Lattes A. X-Ray diffraction study of mesophases of cetyltrimethylammonium bromide in water, formamide, and glycerol. // J. Phys. Chem., 1989, Vol.93, № 21, p.7458−7464.
- Flodstrom K., Wennrstorm H., and Alfredsson V. Mechanism of Mesoporous Silica Formation. A Time-Resolved NMR and TEM Study of Silica-Block Copolymer Aggregation. // Langmuir, 2004, Vol.20, P.680−688.
- Steel A., Carr S.W., and Anderson M.W. N"14 NMR-study of surfactant mesophases in the synthesis of mesoporous silicates. // J. Chem. Soc. Chem. Commun., 1994, Vol.13, P.1571−1572.
- Kirnade S.D., and Swaddle T.W. Silicon-29 NMR studies of aqueous silicate solutions. 2. Transverse silicon-29 relaxation and the kinetics and mechanism of silicate polymerization. // Inorg. Chem., 1988, Vol.27, № 23, P.4253−4259.
- Janicke M.T., Landry C.C., Christiansens.C., Kumar D., Stucky G.D., and Chmelka B.F. Aluminum incorporation and interfacial structures in MCM-41 mesoporous molecular sieves. // J. Am. Chem. Soc., 1998, Vol.120, β, P.6940−6951
- Ghanbari-Siahkali A., Philippou A., Garforth A., Cundy C.S., Anderson M.W., and Dwyer J. A comparison of direct synthesis and vapour phase alumination of MCM-41. // J. Mater. Chem., 2001, Vol.11, P.569−577.
- Ravikovitch P.I., Haller G.L., and Neimark A.V. Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts. // Advances in Colloid and Interface Science, 1998, Vol.77, P.203−226.
- Chenite A., and Le Page Y. Direct TEM imaging of tubules in calcined MCM-41 type mesoporous materials. // Chem. Mater., 1995, Vol.7, № 5, P.1015−1019.
- Chao K.J., Wu C.N., Chang A.S., and Hu S.F. The study of MCM-41 molecular sieves by energy-filtering TEM. // Micropor. Mesopor. Mater., 1999, Vol.27, P.287−295.
- McEnaney B., Mays T.J. in Porosity in Carbons, Patrick J.W., Ed, — E. Arnold: London, 1995, p 93.
- Bran M., Lallemand A., Quinson J.F., and Eyraud C. A new method for the simultaneous determination of the size and shape of pores, the thermoporometry. // Thermochim. Acta, 1977, Vol.21, P.59−88.
- Araujo A.S., and Jaroniec M. Determination of the surface area and mesopore volume for lanthanide-incorporated MCM-41 materials by using high resolution thermogravimetry. // Thermochimica Acta, 2000, Vol.345, β. P. 173−177.
- Hue Q, Leon R, Petroff P.M., and Stucky G.D. Mesostracture design with gemini surfactants supercage formation in a 3-dimensional hexagonal array // Science, 1995, Vol.268, № 5215, P.1324−1327.
- Ciesla U., Grun M., Isajeva T., Kurganov A.A., Neimarlc A.Y., Ravikovitch P.I., Schacht S., Schuth F., Unger K.K. in Pinnavia T.J., Thorpe M.F., (Eds.), Access in Nanoporous Materials, Plenum Press, New York, 1995, P.231.
- Kisler J.M., Gee M.L., Stevens G.W., and O’Connor A.J. Comparative study of silylation methods to improve the stability of silicate MCM-41 in aqueous solutions. // Chem. Mater., 2003, Vol.15, № 3, 619−624.
- Chen C.Y., Li H.Y., and Davis M.E. Studies on mesoporous materials I. Synthesis and characterization of MCM-41. // Micropor. Mater., 1993, Vol.2, P. 17−26.
- Feuston B.P., and Higgins J.B. Model structures for MCM-41 materials a molecular-dynamics simulation. // J. Phys. Chem., 1994, Vol.98, № 16, P.4459−4462.
- Behrens G., and Stucky G.D. Order molecular arrays as templates: a new approach to synthesizing mesoporous materials. // Angew. Chem., Int. Ed. Engl., 1993, Vol.32, P.669−696.
- Firouzi A., Atef F., Oertli A.G., Stucky G.D., and Chmelka B.F. Alkaline lyo-tropic silicate-surfactant liquid crystals. // J. Am. Chem. Soc., 1997, Vol.119, № 15, P.3596−3610.
- Walker S.A., and Zasadzinski J.A. Self-assembly of silicate surfactant mesophases. //Mater. Res. Symp. Proc., 1995, Vol.371, P.93−98.
- Chen C.-Y., Xiao S.-Q., and Davis M.E. Studies on ordered mesoporous materials. 3. Comparison of MCM-41 to mesoporous materials derived from kanemite. // Micropor. Mater., 1995, Vol.4, № 1, P. l-20.
- Inagaki S., Sakamoto Y., Fukushima Y., and Terazaki O. Pore wall of a mesoporous molecular sieve derived from kanemite. // Chem. Mater., 1996, Vol.8, № 8. P.2089−2095.
- Barret E.P., Joyner L.G., and Halenda P.H. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. // J. Am. Chem. Soc., 1951, 73, 373−380.
- Zhu H.Y., Zhao X.S., Lu G.Q., and Do D.D. An improved comparison plot method for pore structure characterisation of MCM-41. // Langmuir, 1996, Vol.12, № 26, P.6513−6517.
- Coustel N., DiRenzo F., and Fajula F. Improved stability of MCM-41 through textural control. // J. Chem. Soc. Chem Commun., 1994, Vol.8, P.967−968.
- Kruk M., Jaroniec M., and Sayari A. Structural and surface properties of siliceous and titanium-modified HMS molecular sieves. // Micropor. Mater., 1997, Vol.9, № 34, P.173−182.
- Mokaya R. Hydrothermaly-induced morphological transformation of mesoporous MCM-41 silica. // Micropor. Mesopor. Mater., 2001, Vol.44−45, P. 119−127.
- Cheng C.-F., Zhou W.Z., Park D.H., Klinowski J., Hargreaves M., and Gladen L.F. Controlling the channel diameter of the mesoporous molecular sieve MCM-41. // J. Chem. Soc. Faraday Trans, 1997, Vol.93, № 2, P.359−363.
- Tiemann M., Schulz M., Jager C., and Froba M. Mesoporous aluminophosphate molecular sieves synthesized under nonaqueous conditions. // Chem. Mater., 2001, Vol.13, № 9, P.2885−2891.
- Zhu H., Jones D.J., Zajac J., Dutartre R., Rhomari M., and Roziere J. Synthesis of periodic large mesoporous organosilicas and functionalization by incorporation of ligands into the framework wall. // Chem. Mater., 2002, Vol.14, № 12, P.4886−4894.
- Hue Q.S., Margolese D.I., Ciesla U., Feng P.Y., Gier Π’.Π., Sieger P., Leon R., Petroff P.M., Schuth F., and Stucky G.D. Generalized synthesis of periodic surfactant inorganic composite-materials. //Nature, 1994, Vol.368, № 6469, 317−321.
- Ciesla U., Demuth D., Leon R., Petroff P., Stucky G.D., Unger K., and Schuth F. Surfactant controlled preparation of mesostructured transition-metal oxide compounds. // Chem. Com., 1994, № 11, P. 1387−1388.
- Che S., Garcia-Bennett A.E., Yokoi Π’., Sakamoto K., Kunieda H., Terasaki O., and Tatsumi T. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. //Nat. mater., 2003, Vol.2, № 12, P.801−805.
- Tanev P.T., and Pinnavaia T.J. A neutral templating route to mesoporous molecular-sieves. // Science, 1995, Vol.267, № 5199, P.865−867.
- Bagshaw S., Prouzet E., and Pinnavaia T.J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. // Science, 1995, Vol.269, P. 1242−1244.
- Manne S., Schaffer Π’.Π., Huo Q., Hansma P.K., Morse D.E., Stucky G.D., and I.A. Aksay LA. Gemini Surfactants at Solid-Liquid Interfaces: Control of Interfacial Aggregate Geometry. // Langmuir 1997, Vol.13, № 24, P. 6382−6387.
- Π‘ΡΠΏΡΠ°ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ Ρ ΠΈΠΌΠΈΡ: ΠΠΎΠ½ΡΠ΅ΠΏΡΠΈΠΈ ΠΈ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ / Π.-Π. ΠΠ΅Π½- ΠΠ΅Ρ. Ρ Π°Π½Π³Π». ΠΠΎΠ²ΠΎΡΠΈΠ±ΠΈΡΡΠΊ: ΠΠ°ΡΠΊΠ°. Π‘ΠΈΠ±. ΠΡΠ΅Π΄ΠΏΡΠΈΡΡΠΈΠ΅ Π ΠΠ, 1998. — 334 Ρ.
- ΠΠΈΡΠ΅Π»Π»ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΠΎ-Π°ΠΊΡΠΈΠ²Π½ΡΡ Π²Π΅ΡΠ΅ΡΡΠ² / Π. Π. Π ΡΡΠ°Π½ΠΎΠ² Π‘ΠΠ±: 1992. — 280Ρ. — ISBN 5−7245−0756−0
- Windsor Π . Π, in: Gray G. W, Windsor P.A. (Eds.), Liquid Crystals and Plastic Crystals, vol.1, Ellis Horwood, Chichester, 1974.
- Ekwall P, in: Brown G.H. (Ed.), Advances in Liquid Crystals, vol.1, Academic, New York, 1975.
- Myers D, Surfactant Science and Technology, VCH: New York, 1992.
- Lawrence M.J. Surfactant systems their use in drug-delivery. // Chem. Soc. Rev., 1994, Vol.23, № 6, P.417−424.
- Swaddle T.W., Salerno J., and Tregloan P.A. Aqueous aluminates, silicates, and aluminosilicates. // Chem. Soc. Rev., 1994, Vol.23, № 5, P.319−325.
- McCormick A.V., and Bell A.T. The solution chemistry of zeolite precursors. // Catal. Rev.-Sci. Eng., 1989, Vol.31, P.97−127.
- Linden M., Karlsson S., Agren P., Bussain P., and Amenitsch H. Solubilization of oil in silicate-surfactant mesostructures. // Langmuir, 2000, Vol.16, № 13, P.5831−5836.
- Ulagappan N., and Rao C.N.R. Evidence for supramolecular organization of al-kane and surfactant molecules in the process of forming mesoporous silica. // Chem. Commun, 1996, Vol.24, 2759−2760.
- Lind A., Andersson J., Karlsson S., Agren P., Bussian P., Amenitsch H., and Linden M. Controlled solubilization of toluene by silicate-catanionic surfactant mesophases as studied by in situ and ex situ XRD. // Langmuir, 2002, Vol.18, № 4, P.1380−1385.
- Kruk M., Jaroniec M., Antochshuk V., and Sayari A. Mesoporous silicate Surfactant composites with hydrophobic surfaces and tailored pore sizes. // J. Phys. Chem. B, 2002, Vol.106, № 39, P.10 096−10 101.
- Huo Q., Margolese D.I., and Stucky G.D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. // Chem. Mater., 1996, Vol.8, № 5, P. 1147−1160.
- Namba S., Mochizuki A., and Kito M. Fine control of pore size of highly ordered MCM-41 by using template mixtures of dodecyltrimethylammonium bromide/ hexadecyltrimethylammonium bromide with various molar ratios. // Chem. Let., 1998, Vol.7, P.569−570.
- Zhang J., Luz Z., and Goldfarb D. EPR studies of the formation mechanism of the mesoporous materials MCM-41 and MCM-50. // J. Phis. Chem. B, 1997, Vol.101, № 36, P.7087−7094.
- Attard G.S., Glyde J.C., and Goltner C.G. Liquid-Crystalline phases as templates for the synthesis of mosoporous silica. // Nature, 1995, Vol.378, № 6555, P.366−368.
- Inagaki S., Fukushima Y., and Kudora K. Synthesis of highly ordered mesoporous materials from a layered polysilicate. // Chem. Com., 1993, № 8, P. 680−682.
- Inagaki S, Koiwai A, Suzuki N, Fukushima Y, and Kuroda K. Syntheses of highly ordered mesoporous materials, FSM-16, derived from kanemite. // Bull. Chem. Soc. Jpn., 1996, Vol.69, P.1449−1457.
- Garcia-Bennett A. E., Terasaki O., Che S., and Tatsumi T. Structural investigations of AMS-n mesoporous materials by Transmission Electron Microscopy. // Chem. Mater., 2004, № 16, P.813−821.
- Tanev P.T., Chibwe M., and Pinnavaia T.J. Titanium-containing mesoporous molecular-sieves for catalytic-oxidation of aromatic-compounds. // Nature, 1994, Vol.368, № 6469, P.321−323.
- Zhao D.Y., Feng J.L., Huo Q.S., Melosh N., Fredrickson G.H., Chmelka B.F., and Stucky G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. // Science, 1998, Vol.279, № 5350, P.548−552.
- Israelachivili. J.N., Mitchell D.J., andNinham B.W. Theory of self-, assembly of hydrocarbon amphiphiles into micelles and bilayers. // J. Chem. Soc. Faraday Trans., 1976, Vol.72, P.1525−1568.
- Pevzner S., and Regev O. The in situ phase transitions occurring during bicon-tinuous cubic phase formation. // Micropor. Mesopor. Mater., 2000, Vol.38, P.413−421.
- Ogawa M., and Masukawa N. Preparation of transparent thin films of lamellar, hexagonal and cubic silica-surfactant mesostructured materials by rapid solvent evaporation methods. // Micropor. Mesopor. Mater., 2000, Vol.38, P.35−41.
- Schumacher K., Ravikovitch P.I., Du Chesne A., Neimark A.V., and Unger K.K. Characterization of MCM-48 materials. // Langmuir, 2000, Vol.16, P.4648−4654.
- Cai Q., Luo Z.-S., Pang W.-Q., Fan Y.-W., Chen X.-H., and Cui F.-Z. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. // Chem. Mater., 2001, Vol.13, № 2, P.258−263.
- Kruk M., Jaroniec M., Ko C.H., and Ryoo R. Characterization of the porous structure of SBA-15. // Chem. Mater., 2000, Vol.12, № 7, P.1961−1968.
- Kawi S., and Shen S.-C. Effects of structural and non-structural A1 species on the stability of MCM-41 materials in boiling water. // Materials Letters, 2000, Vol.42, № 1−2, P.108−112.
- Matsumoto A., Chen H., Tsutsumi K., Grun M., and Unger K. Novel route in the synthesis of MCM-41 containing framework aluminum and its characterization. // Micropor. Mesopor. Mater., 1999, Vol.32, P.55−62.
- Oumi Y, Tagaki H, Sumiya S, Mizuno R, Uozumi T, and Sano T. Novel post-synthesis alumination method for MCM-41 using trimethylaluminum. // Micro-por. Mesopor. Mater, 2001, Vol.44−45, P.267−274.
- Zhao X. S, Lu G. Q, and Hu X. Characterization of the structural and surface properties of chemically modified MCM-41 material. // Micropor. Mesopor. Mater, 2000, Vol.41, P.3 7−47.
- Lin H. P, Cheng S. F, and Mou C.Y. Effect of delayed neutralization on the synthesis of mesoporous MCM-41 molecular sieves. // Micropor. Mater, 1997, Vol.10, P. l11−121. «
- Cheng C. F, Park D. H, and Klinowski J. Optimal parameters for the synthesis of the mesoporous molecular sieve Si.-MCM-41. // J. Chem. Soc. Faraday Trans, 1997, Vol.93, № 1. P. 193−197.
- Ryoo R, and Kim J.M. Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium. // J. Chem. Soc. Chem. Commun, 1995, № 7, P.711−712.
- Ryoo R, and Jun S. Improvement of hydrothermal stability of MCM-41 using salt effects during the crystallization process. // J. Phys. Chem. B, 1997, Vol.101, № 3, P.317−320.
- Edler K. J, and White J.W. Further improvements in the long-range order of MCM-41 materials. //Chem. Mater, 1997, Vol.9, № 5, P.1226−1233.
- Lindlar B, Kogelbauer A, and Prins R. Chemical, structural, and catalytic characteristics of Al-MCM-41 prepared by pH-controlled synthesis. // Micropor. Mesopor. Mater, 2000- Vol.38, 167−176.
- Luechinger M, Frunz L, Pirngruber G. D, and Prins R. A mechanistic explanation of the formation of high quality MCM-41 with high hydrothermal stability. // Micropor. Mesopor. Mater, 2003, Vol.64, P.203−211.
- Jun S, Kim J. M, Ryoo R, Ahn Y.-S, and Han M. K. Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution. // Micropor. Mesopor. Mater, 2000, Vol.41, P. l 19−127.
- Kim W.J., Yoo J.C., and Hayhurst D.T. Synthesis of hydrothermally stable MCM-41 with initial adjustment of pH and direct addition of NaF. // Micropor. Mesopor. Mater., 2000, Vol.39, P. 177−186.
- Landau M.V., Varkey S.P., Herskowitz M., Regev O., Pevzner S., Sen Π’., and Luz Z. Wetting stability of Si-MCM-41 mesoporous material in neutral, acidic and basic aqueous solutions. // Microp. Mesopor. Mater., 1999, Vol.33, P.149−163.
- WanK., Liu Q., and Zhang C. Thermal stability of Si-MCM-41 in gaseous atmosphere. // Materials Letters, 2003, Vol.57, 3839−3842.
- Zhang Y., Wu D., Sun Y., and Peng S. Synthesis of more stable MCM-41 under high-pressurized conditions. // Materials Letters, 2002, Vol.55, № 1−2, P.17−19.
- Mokaya R. Influence of pore wall thickness on the steam stability of Al-grafted MCM-41. // ChemCom., 2001, № 7, P.633−634.
- Yu, J, Shi, J.-L, Wang, L.-Z, Ruan, M.-L, and Yan, D.-S. Preparation of High Thermal Stability MCM-41 in the Low Surfactant/Silicon Molar Ratio Synthesis System, Materials Letters, 2001, Vol. 48, P. 112−116.
- Xia Q.-H, Hidajat K, and Kawi S. Improvement of the hydrothermal stability of fluorinatedMCM-41 material. //Materials Letters, 2002, Vol.42, P. 102−107.
- Doyle A, and Hodnett B.K. Stability of MCM-48 in aqueous solution as a function of pH. // Microp. Mesopor. Mater, 2003, Vol.63, P.53−57.
- Xia Y, and Mokaya R. Enhanced hydrothermal stability of Al-grafted MCM-48 prepared via various alumination routes. // Micropor. Mesopor. Mater, 2004, Vol.74, P.179−188.
- Nishiyama N, Tanaka S, Egashira Y, Oku Y, and Ueyama K. Enhancement of structural stability of mesoporous silica thin films prepared by spin-coating. // Chem. Mater, 2002, Vol.14, № 10, P.4229−4234.
- Ishikawa T, Matsushita M, Yasukawa A, Kandori K, Inagaki S, Fukushima T, and Kondo S. Surface silanol groups of mesoporous silica FSM-16. // J. Chem. Soc, Faraday Trans, 1996, Vol.92, № 11, P. 1985−1989.
- ΠΡΠ³ΠΈΠ½ Π.Π. Π‘ΡΡΡΠΊΡΡΡΠ½Π°Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡ ΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠ² ΠΏΠΎ Π΄Π°Π½Π½ΡΠΌ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΈ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ Ρ ΠΈΠΌΠΈΠΈ. // ΠΠ€Π₯, -1989, -Π’ΠΎΠΌ LXIII, -ΠΡΠΏ.2, -Π‘ 290−305.
- Kleestorfer Π, Vinek Π, and Jentys A. Structure simulation of MCM-41 type materials. // J. Mol. Catal. A, Chem, 2001, Vol.166, P.53−57.
- Wu C. N, Tsai T. S, Liao C. N, and Chao K.J. Controlling pore size distributions of MCM-41 by direct synthesis. // Micropor. Mater, 1996, Vol.7, № 4, P.173−185.
- Jentys A, Kleestorfer K, and Vinek H. Concentration of surface hydroxyl groups on MCM-41. // Micropor. Mesopor. Mater, 1999, Vol.27, P.321−328.
- Sayari A, and Hamoudi S. Periodic mesoporous silica-based organic-inorganic nanocomposite materials. // Chem. Mater. 2001, Vol.13,№ 10, P. 3151−3168.
- Solovyov L. A, Kirik S. D, Shmakov A. N, and Romannikov V.N. X-Ray structural modeling of mesoporous mesophase material. // Micropor. Mesopor. Mater, 2001, Vol 44−45, P. 17−23.
- Solovyov L. A. Full-profile refinement by derivative difference minimization. // J. Appl>. Cryst, 2004- Vol.37, P.743−749.
- Solovyov L.A., Kirik S.D., Shmakov A.N., and Romannikov Y.N. A continuous electron density approach in Rietveld analysis for structure investigations of the mesoporous silicate materials. // Advances in X-ray analysis, 2001, V.44, P. 110−115.
- Kim W.J., Yoo J.C., and Hayhurst D.T. Synthesis of MCM-48 via phase transformation with direct addition of NaF and enhancement of hydrothermal stability by post-treatment in NaF solution. // Micropor. Mesopor. Mater., 2001, Vol.49, P. 125 137.
- Kim J.M., Jun S., and Ryoo R. Improvement of hydrothermal stability of mesoporous silica using salts: reinvestigation for time-dependent effects. // J. Phys. Chem. B, 1999, Vol.103, P.6200−6205.
- Lin H.-P., and Mou C.-Y. Salt effect in post-synthesis hydrothermal treatment of MCM-41. // Micropor. Mesopor. Mater., 2002, Vol.55, P.69−80.
- Oye G., Sjoblom J., and Stocker M. Synthesis and characterization of siliceous and aluminum-containing mesoporous materials from different surfactant solutions. // Micropor. Mesopor. Mater., 1999, Vol.27, P. 171−180.
- Igarashi N., Koyano K.A., Yoshiyori T., Shinichi N., Hashimoto K., and Ta-tsumi T. Investigation of the factors influencing the structural stability of mesoporous silica molecular sieves. // Micropor. Mesopor. Mater., 2003, Vol.59, P.43−52.
- Kleitz F., Schmidt, W., and Schuth, F. Evolution of mesoporous materials during the calcination process: structural and chemical behavior. // Micropor. Mesopor. Mater., 2001, Vol.44−45, P.95−109.
- Gallis K.W., and Landry C.C. Synthesis of MCM-48 by a phase transformation process. // Chem. Mater., 1997, Vol. 9, P. 2035-&.
- Xu J., Luan Z.H., He H.Y., Zhou W.-Z., and Kevan L. A reliable synthesis of cubic mesoporous MCM-48 molecular sieve. // Chem. Mater., 1998, Vol. 10, P. 3690−3698.
- Schulz-Ekloff G., Rathousky J., and Zukal A. Controlling of morphology and characterization of pore structure of ordered mesoporous silicas. // Micropor. Mesopor. Mater., 1999, Vol. 27, P. 273−285.
- Solovyov L.A., Zaikovskii V.I., Shmakov A.N., Belousov O.V., and Ryoo R. Framework characterization of mesostructured carbon CMK-1 by X-ray powder diffraction and electron microscopy. // J. Phys. Chem. B, 2002, Vol.106, P. 12 198−12 202.
- ΠΠ°ΡΡΠ΅Π½ΠΎΠ² Π.Π., ΠΠ΅ΡΡΠΈΠ½ΠΈΠ½Π° M.Π., ΠΠ΅Π»ΠΎΡΡΠΎΠ² O.B., ΠΠΈΡΠΈΠΊ Π‘. Π. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ² ΡΠΈΠΏΠ° ΠΠ‘Π-41 Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠΎΡΡΠ°Π²Π° ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ. / ΠΠ΅ΡΡΠ½ΠΈΠΊ ΠΡΠ°ΡΠΠ£- 2003- № 2. — Π‘. 100−106.
- ΠΠ°ΡΡΠ΅Π½ΠΎΠ² Π.Π., ΠΠΈΡΠΈΠΊ Π‘. Π. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ Π½Π° Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΡΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΠ‘Π-41. / Π₯ΠΈΠΌΠΈΡ Π² ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°Ρ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ. -2003. -№ 11. -Π‘.787−793.
- ΠΠΈΡΠΈΠΊ Π‘.Π., ΠΠ΅Π»ΠΎΡΡΠΎΠ² Π. Π., ΠΠ°ΡΡΠ΅Π½ΠΎΠ² Π. Π., ΠΠ΅ΡΡΠΈΠ½ΠΈΠ½Π° Π. Π. Π‘ΠΈΡΡΠ΅ΠΌΠ½ΡΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρ ΡΠΎΠ»ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΡΠΈΠ½ΡΠ΅Π·Π° ΠΈ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΠ‘Π-41. / Π€ΠΈΠ·ΠΈΠΊΠ° ΠΈ Ρ ΠΈΠΌΠΈΡ ΡΡΠ΅ΠΊΠ»Π°. -2005. -Π’.31. -№ 4. -Π‘.5 89−604.
- Yongde X.Y., and Mokaya R. Aluminosilicate MCM-48 materials with enhanced stability via simple post-synthesis treatment in water. // Micropor. Mesopor. Mater., 2004, Vol.68, P. l-10.
- Rathousky J., Zukalova M., Zukal A., And Had J. Homogeneous precipitation of siliceous MCM-41 and bimodal silica. // Collect. Czech. Chem. Commun., 1998, Vol.63, P.1893−1906.
- ΠΠ°ΡΡΡΠ½ΠΎΠ² Π.Π. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈ Π°Π½Π°Π»ΠΈΠ· ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΠ‘Π-41. / ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΠΈ ΠΌΠΎΠ»ΠΎΠ΄ΡΡ ΡΡΠ΅Π½ΡΡ ΠΠΠ¦ Π‘Π Π ΠΠ. ΠΡΠ°ΡΠ½ΠΎΡΡΡΠΊ: ΠΠΠ Π‘Π Π ΠΠ. -2003. -Π‘.22−27.
- Newalkar B.L., and Komarneni S. Control over microporosity of ordered micro-porous-mesoporous silica SBA-15 framework under microwave-hydrothermal conditions: effect of salt addition. // Chem. Mater., 2001, Vol.13, № 12, P.4573−4579.
- ΠΠ°ΡΡΡΠ½ΠΎΠ² Π.Π. Π ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΌΠ΅Π·ΠΎΠΏΠΎΡΠΈΡΡΡΡ ΠΌΠ΅Π·ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². / ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΠΈ ΠΌΠΎΠ»ΠΎΠ΄ΡΡ ΡΡΠ΅Π½ΡΡ ΠΠΠ¦ Π‘Π Π ΠΠ. ΠΡΠ°ΡΠ½ΠΎΡΡΡΠΊ: ΠΠΠ Π‘Π Π ΠΠ. -2004. -Π‘.35−39.
- Gallis K.W., and Landry Π‘.Π‘. Rapid calcination of iianostructured silicate composites by microwave irradiation. // Adv. Mater., 2001, Vol.13, № 1, P.23−26.
- ΠΠ°ΡΡΠ΅Π½ΠΎΠ² B.A. Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΠΈΠΏΠ° ΠΠ‘Π-41 Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡ ΡΡΡΡΠΊΡΡΡΡ. / ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΠΈ ΠΌΠΎΠ»ΠΎΠ΄ΡΡ ΡΡΠ΅Π½ΡΡ ΠΠΠ¦ Π‘Π Π ΠΠ. ΠΡΠ°ΡΠ½ΠΎΡΡΡΠΊ: ΠΠΠ Π‘Π Π ΠΠ. -2005. -Π‘.35−38.