Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

Исследование многоэтапных стохастических задач принятия решений

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Большинство задач планирования, проектирования и управления сводятся к исследованию моделей математического программирования. Исходная информация для планирования в экономике, технике, как правило, недостаточно достоверна. Параметры моделей принятия решений рассчитываются на информации, которая носит в той или иной мере вероятностный характер, вследствие этого часть или все параметры моделей… Читать ещё >

Содержание

  • ГЛАВА 1. ИССЛЕДОВАНИЕ МНОГОЭТАПНЫХ СТОХАСТИЧЕСКИХ ЗАДАЧ ПРИНЯТИЯ РЕШЕНИЙ
    • 1. Многоэтапные задачи принятия решений
      • 1. 1. Постановка одноэтапной стохастической задачи принятия решений
      • 1. 2. Общая постановка многоэтапной задачи принятия решений в условиях неполной информации с априорными решающими правилами
      • 1. 3. Многоэтапная задача с вероятностными ограничениями
      • 1. 4. Многоэтапная задача с вероятностным функционалом
    • 2. Полубесконечномерные аналоги для многоэтапных стохастических задач принятия решений
      • 2. 1. Многоэтапные модели с вероятностными ограничениями
      • 2. 2. Существование полубесконечномерного аналога для М-модели
      • 2. 3. Существование полубесконечномерного аналога для Р-модели
      • 2. 4. Единственность полубесконечномерного аналога для М-модели и Рмодели
  • ГЛАВА 2. ИССЛЕДОВАНИЕ МНОГОЭКСТРЕМАЛЬНЫХ И МНОГОКРИТЕРИАЛЬНЫХ ЗАДАЧ ПРИНЯТИЯ РЕШЕНИЙ
    • 3. Многоэкстремальные задачи стохастического программирования
      • 3. 1. Постановка задачи
      • 3. 2. Существование решений многоэкстремальной задачи
    • 4. Метод эталонных уровней в многокритериальной оптимизации
  • ГЛАВА 3. ПРИКЛАДНЫЕ МАТЕМАТИЧЕСКИЕ МОДЕЛИ ПРИНЯТИЯ РЕШЕНИЙ
    • 5. Математические модели управления тарифной политикой в топливноэнергетическом комплексе региона
      • 5. 1. Особенности финансово-хозяйственной деятельности энергоснабжающей организации в условиях естественной монополии
      • 5. 2. Планирование расходной части бюджета энергоснабжающей организации
      • 5. 3. Планирование доходной части бюджета энергоснабжающей организации
      • 5. 4. Многоэтапные модели принятия решений с априорными решающими правилами — Л/-модель, Р-модель
      • 5. 5. Детерминированные аналоги для многоэтапных моделей управления тарифной политикой в условиях неполной информации
    • 6. Задача экспорта природного газа ОАО «Газпром»

Исследование многоэтапных стохастических задач принятия решений (реферат, курсовая, диплом, контрольная)

В последние несколько десятилетий отмечается заметное развитие математической теории принятия решений, связанное с именами К. Эрроу, Дж. фон Неймана, О. Моргенштерна, П. Фишберна, Л. Саваджа, Д. Паккарда, Л. Заде, Р. Беллмана, Д. Б. Юдина и многих других. В последние годы были получены существенные результаты в области исследования стохастических задач принятия решений в условиях риска и неопределенности [1, 24, 54, 63, 72], многокритериальных задач [12,42,43,46, 58, 78].

Данная работа является попыткой продолжить исследования в области теории принятия решений в условиях неполной информации.

Актуальность темы

исследования.

Большинство задач планирования, проектирования и управления сводятся к исследованию моделей математического программирования. Исходная информация для планирования в экономике, технике, как правило, недостаточно достоверна. Параметры моделей принятия решений рассчитываются на информации, которая носит в той или иной мере вероятностный характер, вследствие этого часть или все параметры моделей могут выступать как случайные или неопределенные величины. Необходимость принятия решений в условиях неполной информации может возникнуть, когда времени на ее получение не хватает. В связи с этим, целесообразно рассматривать процесс принятия решений как стохастический.

Постановки одноэтапных стохастических задач принятия решений возникают как при рассмотрении стохастических аналогов детерминированных оптимизационных моделей принятия решений, исходные данные которых недостаточно достоверны, так и вследствие чисто вероятностных постановок.

В связи с необходимостью создания процедур принятия и корректировки решений, сочетающих противоречивые требования оперативности и обоснованности корректировки, появляется необходимость рассмотрения двухэтапных и многоэтапных задач.

Многоэтапность в данной работе понимается как наличие нескольких I периодов принятия решений, разделенных во времени, на которых однородные по своему содержанию операции совершаются на основании уточненных данных, полученных в результате реализации предыдущих операций.

Для решения многоэтапных стохастических задач принятия решений делается переход к полубесконечномерным аналогам. Многие детерминированные аналоги многоэтапных стохастических задач являются многоэкстремальными моделями, поэтому в работе рассмотрена многоэкстремальная задача стохастического программирования.

Почти все сложные практические задачи принятия решений (и индивидуального, и тем более группового) являются многокритериальными. В связи с этим большое значение имеет теория принятия решений при наличии многих критериев. Рассмотренный в диссертационной работе метод позволяет решать многокритериальные задачи путем нахождения эталонного значения для критериев оценки качества альтернатив.

Полученные результаты проводимых исследований могут успешно применяться в сфере распределения ресурсов, при принятии инновационных, инвестиционных, социальных, политических решений, в экономическом анализе хозяйственной деятельности отдельных предприятий, отраслей народного хозяйства, а также в дальнейших исследованиях в области принятия решений в условиях неполной информации.

Широта применения результатов диссертационной работы говорит об ее актуальности.

Целью диссертационной работы является:

• исследование многоэтапных стохастических задач принятия решений, построение полубесконечномерных детерминированных аналогов;

• сведение многоэтапных задач принятия решений в условиях неполной информации к многоэкстремальным задачам;

• использование метода эталонных уровней при решении многокритериальных задач оптимизации;

• применение разработанных моделей к прикладным математическим задачам.

Методы исследования. В работе используются аппараты математического и стохастического программирования, теории принятия решений.

Научная новизна.

Для многоэтапных стохастических задач принятия решений найдены полубесконечномерные детерминированные аналоги, доказано их существование.

Используется новый подход к решению многоэтапных задач принятия решений в условиях неполной информации. Так как при решении многоэтапных задач на каждом этапе возникает необходимость минимизировать соответствующие «невязки», возникающие в результате нарушения условий задачи, то ее решение основывается на сведении к многоэкстремальной задаче математического программирования с выпуклой целевой функцией. Доказано существование решений прямой и двойственной многоэкстремальной задачи.

Использован метод эталонных уровней для решения многокритериальных задач оптимизации.

Полученные результаты применены в моделях управления тарифной политикой в топливно-энергетическом комплексе региона и в задаче экспорта природного газа ОАО «Газпром».

Степень обоснованности и достоверности научных положений и выводов.

Все результаты диссертационной работы строго доказаны в соответствующих утверждениях, что говорит об их достоверности.

Научная новизна результатов. Основные результаты, полученные в диссертационной работе, являются новыми.

Теоретическая и практическая значимость. Исследование, проведенное в диссертационной работе является законченным.

Результаты диссертационной работы исследованы, предложенные математические модели управления тарифной политикой в топливно-энергетическом комплексе региона и созданный на их основе программный комплекс успешно внедрены в практику работы Региональной энергетической комиссии Санкт-Петербурга (имеется соответствующий Акт о внедрении, приведенный в Приложении 1 к диссертационной работе). Полученные результаты так же применены для решения задачи экспорта природного газа ОАО «Газпром».

Апробация результатов исследования. Основные результаты диссертационной работы докладывались на семинарах кафедры математической теории экономических решений факультета прикладной математики — процессов управления Санкт-Петербургского государственного университета, на ХХХН-ХХХУ научных конференциях «Процессы управления и устойчивость» (Санкт-Петербург, СПбГУ, 2001;2004), использованы в лекциях курса по выбору «Методы прикладной математики в экономике».

Результаты исследования отражены в работах [26−32,44,48−52, 56].

ЗАКЛЮЧЕНИЕ

.

В данной диссертационной работе были получены следующие основные результаты.

1. Проведено исследование многоэтапных задач принятия решений в условиях неполной информации.

2. Для многоэтапных стохастических задач принятия решений с выпуклыми целевыми функционалами получены полубесконечномерные детерминированные аналоги, доказано их существование.

3. Полу бесконечномерные детерминированные аналоги преобразованы в многоэкстремальные задачи математического программирования. Доказано существование решений прямой и двойственной многоэкстремальной задачи.

4. Показано, что исходные задачи могут быть заменены многокритериальными задачами. Использован метод эталонных уровней для решения многокритериальных задач оптимизации.

5. Полученные математические результаты использовались при решении задачи управления тарифной политикой в топливно-энергетическом комплексе региона и задачи экспорта природного газа ОАО «Газпром». С помощью программного продукта были получены основные показатели финансово-хозяйственной деятельности Региональной энергетической комиссии (РЭК) Санкт-Петербурга (имеется Акт о внедрении, приведенный в Приложении 1 к диссертационной работе).

Полученные результаты проводимых исследований могут успешно применяться в сфере распределения ресурсов, при принятии инновационных, инвестиционных, социальных, политических решений, в экономическом анализе хозяйственной деятельности отдельных предприятий, отраслей народного хозяйства, а также в дальнейших исследованиях в области принятия решений в условиях неполной информации.

Показать весь текст

Список литературы

  1. Л.М., Бочкарева И. М. О задаче стохастического программирования с вероятностными ограничениями. — В кн.: Оптимальное планирование. Вып. 16. — Новосибирск, 1970. — с.3−9.
  2. И. Ю. Исследование проблем принятия решений в условиях неполной информации: Дисс. канд. физ.-мат. наук. СПб, 1999. — 160с.
  3. А.И. Об одной задаче оптимального планирования в условиях неопределенности // Экономика и математические методы. Том 4. -Вып.5, 1968 — с.783−791.
  4. Э.Й. Многоцелевая оптимизация // Сб. Математические методы в социальных науках. Вып. 7. Вильнюс, 1976 а — с. 17−67.
  5. Э.Й. Оптимальность в играх и решениях. М.: Наука, 1990. -253с.
  6. Э.Й. Теория полезности // Итоги науки и техники. Сер. Теория вероятностей. Математическая статистика. Теоретическая кибернетика. -1977 а. Т.14, с.123−151.
  7. Э.Й., Майминас Е. З. Решения: теория, информация, моделирование. М.: Радио и связь, 1981. — 328с.
  8. Ю.Н. Целевые функции социально-экономического планирования. М.: Экономика, 1983. 275с.
  9. Ю.Б. Введение в теорию исследования операций. М.: Наука, 1971.-383с.
  10. Ю.Демьянов В. Ф., Васильев Л. В. Недифференцируемая оптимизация. М.: Наука, 1981.-384с.
  11. П.Демьянов В. Ф., Малоземов В. Н. Введение в минимакс. М.: Наука, 1972. -368с.
  12. В.Е. Многокритериальные модели принятия решений с неопределенностью. Тбилиси, Мецниераба, 1983. 104с.
  13. В.Е. Модели и процедуры принятия решений. Тбилиси, Мецниераба, 1981.- 118с.
  14. JI.A. Основы нового подхода к анализу сложных систем и процедуры принятия решений // Математика сегодня. М.: Знание, 1974. -273с.
  15. В.В., Петросян J1.A. Математические модели в экологии. С-Пб.: Изд-во СПбГУ, 1997. -256с.
  16. В.И., Петросян JI.A. Задача распределения капиталовложений. JL: Изд-во ЛГУ, 1971.-24с.
  17. В.И., Петросян Л. А. Математические методы в планировании. Л.: Изд-во ЛГУ, 1982.-112с.
  18. А.Д., Тихомиров В. М. Теория экстремальных задач. М.: Наука, 1974.-480с.
  19. А.И., Позняк A.C., Пропой А. И. Условия оптимальности для некоторых задач стохастического программирования // Автоматика и телемеханика. 1971. -№ 10. — с.87−94.
  20. С. Математические методы в теории игр, программировании и экономике. М.: Мир, 1964. — 838с.
  21. В.Г. Математическое программирование. М.: Наука, 1975. -272с.
  22. А.Я., Рубинов А. М., Яновская Е. Б. Оптимальный выбор распределений в сложных социально-экономических задачах (вероятностный подход). Ленинград: Наука, 1980. — 167с.
  23. В.В. Методы оценки инвестиционных проектов. М.: Финансы и статистика, 1998. 144с.
  24. В.В. Стохастическое программирование. Итоги науки. Теория вероятностей. Мат. Статистика. Теоретическая кибернетика. М., 1970. -119с.
  25. В.В., Быкова И. Ю. Распределение ресурсов. Двухэтапная задача принятия решений // Математическое моделирование сложных систем. — Санкт-Петербург, 1999. —С. 133−136.
  26. В.В., Суворова М. А. Линейная свертка критериев в задачах многокритериальной оптимизации. СПб: СПбГУ, 2002. — 48с.
  27. В.В., Суворова М. А. Многокритериальные задачи оптимизации. -СПб: СПбГУ, 2002. 53с.
  28. В.В., Суворова М. А. Многоэкстремальные многокритериальные задачи принятия решений // Процессы управления и устойчивость: Труды XXXIII научной конференции студентов и аспирантов факультета ПМ-ПУ. СПб: ООП НИИ Химии СПбГУ, 2002. — с. 503−506.
  29. В.В., Суворова М. А. Основы принятия решений. — СПб: СПбГУ, 2002. — 102с.
  30. В.В., Суворова М. А. Принятие решений в условиях неполной информации. СПб: СПбГУ, 2002. — 80с.
  31. В.В., Суворова М. А. Элементы теории оптимизации. СПб: СПбГУ, 2002.-73с.
  32. В.В., Шагов A.B. Ценообразование в условиях естественной монополии // Экономические реформы в России: Материалы III международной науч.-практ. конф. СПб: Нестор, 2000. — с. 213−214.
  33. М.К., Янушкевич O.A. О разрешимости векторной задачи с помощью алгоритма линейной свертки критериев //Матем. заметки. -1997. Т. 62. — № 4. — с. 502−509.
  34. И.И. Линейная свертка критериев в многокритериальной оптимизации //Автоматика и телемеханика. 1997. — № 9. с. 119−125.
  35. Ф., Михалевич М. В. Прикладные аспекты стохастического программирования. Душанбе, «Маориф», 1989. -340с.
  36. Дж. фон, Моргенштерн О. Теория игр и математическое поведение. -М.: Наука, 1970. 707с.
  37. JI.A. Дифференциальная игра распределения капиталовложений и ресурсов // Управляемые динамические системы. Саранск, 1991. — с.4−11.
  38. JI.A. Задача распределения капиталовложений по отраслям. Теоретико-игровой подход // Математические методы в социальных науках. Вильнюс, 1981. — Вып. 14.-е. 51−59.
  39. В.В. Об относительной важности критериев в многокритериальных задачах принятия решений. В кн.: Многокритериальные задачи принятия решений. М.: Машиностроение, 1978.-е. 48−92.
  40. В.В., Ногин В. Д. Парето-оптимальные решения многокритериальных задач. М.: Наука, 1982. 254с.
  41. Д.Г., Савкина Е. С., Суворова МЛ. Многокритериальные модели принятия решений с неопределенностью // Экономика, экология и общество России в 21-м столетии: Труды 3-й Международной науч.-пракг. конф. СПб: Изд-во СПбГТУ, 2001. — с. 216−218.
  42. М.М. О логической свертке вектора критериев в задаче аппроксимации множества Парето // Журн. вычислит, математики и мат. физики. 1996. — Т. 36. -№ 5. — с. 62−74.
  43. Р.Г. Численные методы в многокритериальных задачах. М.: Наука, 1978.-240с.
  44. М.А. Двухэтапная задача стохастического программирования и многоэкстремальность. Дипломная работа. СПб, 2001. — 36с.
  45. М.А. Исследование многокритериальных многоэтапных задач программирования // Процессы управления и устойчивость: Труды XXXIV научной конференции студентов и аспирантов факультета ПМ-ПУ. СПб: ООП НИИ Химии СПбГУ, 2003. — с. 596−600.
  46. М.А. Метод эталонных уровней. // Процессы управления и устойчивость: Труды XXXV научной конференции студентов и аспирантов факультета ПМ-ПУ. — СПб: ООП НИИ Химии СПбГУ, 2004. — с. 601−605.
  47. М.А. Многокритериальные многоэкстремальные задачи принятия решений. // Тезисы докладов Международной матем. конф. Еругинские чтения IX, Витебск, Витебский гос. Университет, 2003. с. 129−130.
  48. М.А., Окунцева С. И., Кульчановская Н. И. //Многоэкстремальная задача стохастического программирования. Экономика, экология и общество России в 21-м столетии: Труды 3-й Международной науч.-практ. конф. СПб: Изд-во СПбГТУ, 2001. — с. 222−224.
  49. М.А., Чередниченко С. Н. Нормативный подход в многокритериальной оптимизации // Процессы управления и устойчивость: Труды XXXIV научной конференции студентов и аспирантов факультета ПМ-ПУ. СПб: ООП НИИ Химии СПбГУ, 2003. -с. 601−605.
  50. А., Куо Б. Оптимальное управление и математическое программирование. М.: Наука, 1975. -279с.
  51. Р.И. Модели принятия решений в условиях неопределенности. -М.: Наука, 1981.-257с.
  52. П.С. Теория полезности для принятия решений. М.: Наука, 1978.-352с.
  53. Д.А., Суворова М. А. Компромиссные решения в лексикографической оптимизации// Экономика, экология и общество России в 21-м столетии: Труды 4-й Международной науч.-практ. конф. Том 4 СПб: Изд-во СПбГТУ, 2002. — с. 124−125.
  54. A.B. Исследование моделей принятия решений в условиях четкой и нечеткой информации: автореферат дисс. канд. физ.-мат. наук. СПб, 2002.- 18с.
  55. Р. Многокритериальная оптимизация. Теория, вычисления и приложения. М.: Радио и связь, 1992. 504с.
  56. Д.Б. Вычислительные методы многокритериальной оптимизации // Известия АН СССР. Техническая кибернетика. — 1983. — № 4.
  57. Д.Б. Вычислительные методы теории принятия решений. — М.: Наука, 1989. —319с.
  58. Д.Б. Задачи и методы стохастического программирования. М.: Советское радио, 1979. 392с.
  59. Д.Б. Математические методы управления в условиях неполной информации. М.: Советское радио, 1974. -400с.
  60. Д.Б. Обобщенное математическое программирование // Экономика и математические методы. 1984. — Том 20. -№ 1. — с. 148−167.
  61. Charnes, A., Kirby M.J.L., Raike W.M. Solution theorems in probabilistic programming: A linear programming approach // J. Math. Anal. Appl. 1967. -Vol. 20.-p. 565−582.
  62. Fishburn P.C. A general theory of subjective probabilities and expected utilities. Ann. Math. Statistics 40,1969. p. 1419−1429.
  63. Fishburn P.C. Even-chance lotteries in social choice theory // Theory and Decision. 1972. — Vol. 3. — p. 18−40.
  64. Fishburn P.C. Utility theory // Management science, 14, 1968, p.335−378.
  65. George F. H. Problem solving. — London: Gerald Duckworth & Co. Ltd, 1980. — 194 pp.
  66. Gunderson H.S., J.G. Morris, H.E. Thompson Stochastic programming with recourse: a modification from an applications viewpoint // J. Oper. Res. Soc. -1978.-Vol. 29.-p. 769−778.
  67. Hansotia B.J. Stochastic linear programming with recourse: a tutorial //Decision Sci. 1980. -Vol. 11.-p. 151−168.
  68. Kail P. Computational methods for solving two-stage stochastic linear programming problem // Z. Angew. Math. Phys. 1979. — Vol. 30. — p. 261 271.
  69. Kall P. Stochastic programming // European J. Oper. Res. 1982. — Vol. 10. -p. 125−130.
  70. Kolbin V.V. System optimization methodology. I. Singapore: World scientific publ., 1998. — 436pp.
  71. Kolbin V.V. System optimization methodology. II. Singapore: World scientific publ., 1999. — 385pp.
  72. Packard D.J. A preference logic minimally complete for expected utility maximization // J. Philosophical Logic. 1975. — Vol. 4. — p. 223−235.
  73. Packard D.J. Preference relations // J. Math. Psych. — 1979. — Vol. 19. — № 3. —p. 295−306.
  74. Sengupta J.K., Tintner G. A review of stochastic linear programming // Internat. Statist. Rev. 1971. — Vol. 39. — p. 197−223.
  75. Stadler W. A survey of multicriteria optimization or the vector maximum problem. Part I: 1776−1960 // J. Optimaz. Theory and Appl. 1979. — Vol. 29. -№l.-p. 1−52.
  76. Wets R. Stochastic programs with fixed recourse // SIAM Rev. 1974. — Vol. 16.-p. 309−339.
  77. White D.J. A min-max-max-min approach to solving a stochastic programming problem with simple recourse. // Management science. Vol.38 — № 4, 1992. -p. 540−554.
  78. Williams A.C. On stochastic linear programming // J. Soc. Induzt. Appl. Math. 1965.-Vol. 13.-p. 927−940.
  79. Yilmaz M.R. Multiattribute utility theory: a survey // Theory and Decision. -1978. -Vol. 9. -№ 4. p. 317−347.
Заполнить форму текущей работой