Распределение частот и его графическое изображение
Добавим относительные частоты, начиная с наименьшего значения признака и придадим каждой функции значение суммы (в том числе его собственного вклада), так чтобы получилось распределение. Это указывает для каждого значения признака, насколько велика его доля меньших или равных соответствующего характеристического значения. Процент начинается с 0 и приближается к 1 или 100 процентам. Графически это… Читать ещё >
Распределение частот и его графическое изображение (реферат, курсовая, диплом, контрольная)
Частотное распределение — метод статистического описания данных (измеренных значений, характерных значений). Математически распределение частот является функцией, которая в первую очередь определяет для каждого показателя идеальное значение, так как эта величина обычно уже измерена. Такое распределение можно представить в виде таблицы или графика, моделируя функциональные уравнения. В описательной статистике частота распределения имеет ряд математических функций, которые используются для выравнивания и анализа частотного распределения (например, нормальное распределение распределение Гаусса).
Объём данных (измеренные значения, данные обследования) является первым оригинальным неупорядоченным списком. Во-первых, его необходимо отсортировать. От первоначального списка, в этом случае, может возникнуть небольшое отклонение квантилей (статистический разброс), вероятного отклонения и стандартного отклонения (эмпирическое правило: стандартное отклонение = расстояние / 6).
Затем мы придаем каждой величине значение и суммируем их. Как правило, мы получаем абсолютную частоту. Опираясь на данные абсолютной частоты, вычисляем общее количество значений выборки и вычисляем относительные частоты. Теперь у нас есть упорядоченное множество пар значений (характерные значения и связанных с ними относительные частоты), так называемый рейтинг.
Добавим относительные частоты, начиная с наименьшего значения признака и придадим каждой функции значение суммы (в том числе его собственного вклада), так чтобы получилось распределение. Это указывает для каждого значения признака, насколько велика его доля меньших или равных соответствующего характеристического значения. Процент начинается с 0 и приближается к 1 или 100 процентам. Графически это изображается слабой монотонно возрастающей кривой, имеющей удлиненную S-образную форму. Существуют многочисленные попытки воспроизведения результатов распределения функциональными уравнениями. Распределение суммы, в зависимости от значений признаков самый простой тип представления распределения частот.
По правилам также необходимо произвести классификацию характерных значений. Эта процедура делит диапазон значений, возникающих, например, в 10 или 20 одинаковой ширины классов (редких значений по краям (см. «выбросы») иногда группирующихся вместе в большими классами). Затем определяется плотность функции, производной функции распределения в соответствии с характеристикой значения в случае непрерывного распределения. Кроме того, частоту можно определить не только путем подсчета, но также, например, путем взвешивания. Тогда мы получим распределение массы вместо ряда распределения. В принципе, можно воспользоваться любой аддитивной величиной для измерения частоты. Если случайная выборка сильно отличается от нормального распределения (кривой нормального распределения), то данные могут быть смещены с помощью выбора эффектов или тенденций. Различные статистические тесты предлагают вывод или дисперсионный анализ. Если размер выборки находится в суперпозиции нескольких подмножеств (возрастное распределение, профессий, групп), то распределение частот вместо максимальных также может быть двух-или многомерным.
Графики являются наглядной формой отображения рядов распределения. Для изображения рядов применяются линейные графики и плоскостные диаграммы, построенные в прямоугольной системе координат.
Для графического представления атрибутивных рядов распределения используются различные диаграммы: столбиковые, линейные, круговые, фигурные, секторные и т. д.
Для дискретных вариационных рядов графиком является полигон распределения.
Полигоном распределения называется ломаная линия, соединяющая точки с координатами или где — дискретное значение признака, — частота, — частость.
График строится в принятом масштабе. Вид полигона распределения приведен на рис. 5.1.
Для изображения интервальных вариационных рядов применяют гистограммы, представляющие собой ступенчатые фигуры, состоящие из прямоугольников, основания которых равны ширине интервала, а высота — частоте (частости) равноинтервального ряда или плотности распределения неравноинтервального. Построение диаграммы аналогично построению столбиковой диаграммы. Общий вид гистограммы приведен на рис. 5.2.
Для графического представления вариационных рядов может использоваться также кумулята — ломаная линия, составленная по накопленным частотам (частостям). Накопленные частоты наносятся в виде ординат; соединяя вершины отдельных ординат отрезками прямой, получаем ломаную линию, имеющую неубывающий вид. Координатами точек на графике для дискретного ряда являются для интервального ряда — начальная точка графика, имеет координаты самая высокая точка. Общий вид кумуляты приведен на рис. 5.3. Использование кумуляты особенно удобно при проведении сравнений вариационных рядов.
При построении графиков рядов распределения большое значение имеет соотношение масштабов по оси абсцисс и оси ординат. В этом случае и необходимо руководствоваться «правилом золотого сечения», в соответствии с которым высота графика должна быть примерно в два раза меньше его основания.