ΠΠΎΠ²Π°Ρ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½Π°Ρ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π° ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½Π° Ulysses: Drosophila Virilis
ΠΠ΅Π΄Π°Π²Π½ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ, ΡΡΠΎ ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½Ρ (ΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΡΠ΅ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ, ΡΠΈΡΠΎΠΊΠΎ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠ΅ Π² Π³Π΅Π½ΠΎΠΌΠ°Ρ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ, ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ, ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ ) ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄Π½ΡΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ, ΠΏΡΠΎΠ΄ΡΠΊΡΠ°ΠΌΠΈ ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΠ²Π»ΡΡΡΡΡ Π±Π΅Π»ΠΊΠΈ, Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΡΠ΅ ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠ½ΡΠΌ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΠΌ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π°ΠΌ. Π ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΠΈΠΌ, ΡΠ΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠ»ΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
- Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΡΠ΄Π΅ΡΠΆΠΊΠ°
- ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ°
- ΠΡΡΠ³ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ
- ΠΠΎΠΌΠΎΡΡ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈ
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΠΠΠΠ I. ΠΠΠΠΠ ΠΠΠ’ΠΠ ΠΠ’Π£Π Π«
- 1. ΠΠ±ΡΠ°Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·. 3 1.1. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·
- 1. 1. 1. Π’ΡΠ΅Ρ ΠΌΠ΅ΡΠ½Π°Ρ ΡΡΡΡΠΊΡΡΡΠ° ΠΏΠ΅ΠΏΡΠΈΠ½Π°
- 1. 1. 2. Π’ΡΠ΅Ρ ΠΌΠ΅ΡΠ½Π°Ρ ΡΡΡΡΠΊΡΡΡΠ° ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ HIV
- 1. 3. ΠΠ±ΡΠ°Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠ½ΡΡ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Π²ΠΈΡΡΡΠ° ΠΈΠΌΠΌΡΠ½ΠΎΠ΄Π΅ΡΠΈΡΠΈΡΠ° ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°
- 1. 3. 1. Π‘ΡΠ±ΡΡΡΠ°ΡΡ ΠΈ ΡΡΠ±ΡΡΡΠ°ΡΠ½Π°Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ
- 1. 3. 2. ΠΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π° ΠΈ ΡΠ°ΠΊΡΠΎΡΡ, Π²Π»ΠΈΡΡΡΠΈΠ΅ Π½Π° ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ
- 1. 4. ΠΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΡΡ ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠΎΠ² ΠΈ ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½ΠΎΠ²
- 2. ΠΠ±ΡΠ°Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΡΡ
Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²
- 2. 1. Π’ΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½Ρ
- 2. 2. Π Π΅ΡΡΠΎΠΏΠΎΠ·ΠΎΠ½Ρ
- 2. 3. Π Π΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½Ρ
- 2. 3. 1. Π‘ΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½ΠΎΠ² Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ copia Drosophila melanogaster ΠΈ
- 1. ΠΠ±ΡΠ°Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·. 3 1.1. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·
- 2. 3. 2. ΠΠΈΠ·Π½Π΅Π½Π½ΡΠΉ ΡΠΈΠΊΠ» ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠΎΠ² ΠΈ ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½ΠΎΠ²
- 2. 3. 3. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΈΡΠΈΠΉ Π½Π° Π³Π΅Π½ΠΎΠΌ Ρ
ΠΎΠ·ΡΠΈΠ½Π°
- 2. 3. 3. 1. ΠΠ΅Π³Π°ΡΠΈΠ²Π½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅
- 2. 3. 3. 2. ΠΠ°Π»Π΅ΡΠΈΠ²Π°Π½ΠΈΠ΅ Π΄Π²ΡΡ ΡΠ΅ΠΏΠΎΡΠ΅ΡΠ½ΡΡ ΡΠ°Π·ΡΡΠ²ΠΎΠ² ΠΠΠ
- 2. 3. 3. 3. Π£Π΄Π»ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠΌΠ΅Ρ
- 2. 3. 3. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΈΡΠΈΠΉ Π½Π° Π³Π΅Π½ΠΎΠΌ Ρ
ΠΎΠ·ΡΠΈΠ½Π°
- 1. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Ulysses Drosophila virilis Π² ΡΠΎΡΡΠ°Π²Π΅ ΠΏΠΎΠ»ΠΈΠ±Π΅Π»ΠΊΠ°-ΠΏΡΠ΅Π΄ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΈΠΊΠ°
- 2. ΠΠ»ΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π° ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Ulysses Drosophila virilis Π² ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΌ Π²Π΅ΠΊΡΠΎΡΠ΅ΡΠΠ’-23Π° (+)
- 4. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ² ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Ulysses
- 4. 1. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΡ ΠΈ ΠΈΠ·ΠΎΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠΈ (pi)
- 4. 2. ΠΠΈΠ΄ΡΠΎΠ»ΠΈΠ· ΠΌΠ΅Π»ΠΈΡΡΠΈΠ½Π°
- 4. 3. ΠΠΈΠ΄ΡΠΎΠ»ΠΈΠ· Π-ΡΠ΅ΠΏΠΈ ΠΈΠ½ΡΡΠ»ΠΈΠ½Π°
- 4. 4. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ-ΠΎΠΏΡΠΈΠΌΡΠΌΠ°
- 4. 5. ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·Π° Π-ΡΠ΅ΠΏΠΈ ΠΈΠ½ΡΡΠ»ΠΈΠ½Π° ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·ΠΎΠΉ Ulysses ΠΏΠ΅ΠΏΡΡΠ°ΡΠΈΠ½ΠΎΠΌ
- 4. 6. ΠΠ²ΡΠΎΠ»ΠΈΠ·
- 5. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Ρ
ΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Ulysses
- 5. 1. ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ
- 5. 2. ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎ-Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Ulysses
- 5. 3. ΠΠ½Π°Π»ΠΈΠ· ΡΡΠ΅ΡΠΈΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ
- 5. 4. ΠΠ΅ΠΆΠ΄ΠΎΠΌΠ΅Π½Π½ΡΠΉ ΡΠ»ΠΎΠΉ
- 5. 5. ΠΠ½Π°Π»ΠΈΠ· ΠΊΠ°ΡΠΌΠ°Π½ΠΎΠ² ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Ulysses
- 5. 6. Π‘ΠΏΠ΅ΠΊΡΡ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ
- 5. 7. ΠΡΡΠ³ΠΎΠ²ΠΎΠΉ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π΄ΠΈΡ ΡΠΎΠΈΠ·ΠΌ (ΠΠ)
- 1. ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ
- 2. ΠΠ΅ΡΠΎΠ΄Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ
ΠΠΎΠ²Π°Ρ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½Π°Ρ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π° ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½Π° Ulysses: Drosophila Virilis (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
Π€ΡΠ½ΠΊΡΠΈΠΈ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· Π² ΠΆΠΈΠ²ΠΎΠΌ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ΅ ΡΡΠ΅Π·Π²ΡΡΠ°ΠΉΠ½ΠΎ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½Ρ. ΠΠ½ΠΈ ΡΡΠ°ΡΡΠ²ΡΡΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ ΠΏΠΈΡΠ΅Π²Π°ΡΠ΅Π½ΠΈΡ, Π² ΠΏΡΠΎΡΠ΅ΡΡΠΈΠ½Π³Π΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π³ΠΎΡΠΌΠΎΠ½ΠΎΠ² ΠΈ Π½Π΅ΠΉΡΠΎΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ², Π² ΡΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°. Π Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΠΌ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π°ΠΌ ΡΠ°ΠΊ ΠΆΠ΅ ΠΎΡΠ½ΠΎΡΡΡΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠΎΠ², Π²ΠΊΠ»ΡΡΠ°Ρ Π²ΠΈΡΡΡ ΠΈΠΌΠΌΡΠ½Π½ΠΎΠ³ΠΎ Π΄Π΅ΡΠΈΡΠΈΡΠ° ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° (HIV) ΠΈ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΡΠ΅ Π²ΠΈΡΡΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ . Π’ΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΡΠ΅ ΡΡΡΡΠΊΡΡΡΡ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· Π² Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΡ ΠΎΠ΄Π½Ρ, Ρ ΠΎΡΡ ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΈΠΌΠ΅ΡΡ ΡΡΠ΄ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ.
ΠΠ΅Π΄Π°Π²Π½ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ, ΡΡΠΎ ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½Ρ (ΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΡΠ΅ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ, ΡΠΈΡΠΎΠΊΠΎ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠ΅ Π² Π³Π΅Π½ΠΎΠΌΠ°Ρ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ, ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ, ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ ) ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄Π½ΡΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ, ΠΏΡΠΎΠ΄ΡΠΊΡΠ°ΠΌΠΈ ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΠ²Π»ΡΡΡΡΡ Π±Π΅Π»ΠΊΠΈ, Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΡΠ΅ ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠ½ΡΠΌ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΠΌ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π°ΠΌ.
Π ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΡΡ ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠΎΠ² ΠΈ ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½ΠΎΠ². ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π½Π΅Π΄Π°Π²Π½ΠΎ Π΄Π°Π½Π½ΡΠ΅ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΡΡ ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠΎΠ² ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΡΠ°Π΄ΠΊΠ΅ ΠΎΡΠ³Π°Π½ΠΎΠ² ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΡ, Π° ΡΠ°ΠΊ ΠΆΠ΅ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΡΡ ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠΎΠ² ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΏΡΠΈ Π·Π°ΡΠ°ΠΆΠ΅Π½ΠΈΠΈ HIV, Π΄Π΅Π»Π°ΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½ΠΎΠ² Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΎΠΉ. ΠΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΡΠ²Π»ΡΡΡΡΡ ΠΊΠ»ΡΡΠ΅Π²ΡΠΌΠΈ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠΎΠ² ΠΈ ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½ΠΎΠ² ΠΈ ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΌΠΈΡΠ΅Π½Ρ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ.
ΠΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΈΠ³ΡΠ°ΡΡ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠΌ ΡΠΈΠΊΠ»Π΅ ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠΎΠ², ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΡΡ ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠΎΠ² ΠΈ ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½ΠΎΠ². ΠΡΡΠ°ΡΠΈΠΈ Π°ΡΠΏΠ°ΡΡΠ°ΡΠΎΠ² Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ΅Π½ΡΡΠ°, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ-Π°ΠΊΡΠΈΠ²Π½ΡΡ Π±Π΅Π»ΠΊΠΎΠ² ΡΠ΅ΡΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° ΠΈ ΠΊΠ°ΠΊ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΊ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ.
ΠΠ°ΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΏΡΠΈΠ²Π»Π΅ΠΊ Ulysses — ΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΡΠΉ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ, ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Π½ΡΠΉ Π² Drosophila virilis. ΠΠ½ ΠΈΠΌΠ΅Π΅Ρ ΡΡΡΡΠΊΡΡΡΠ½ΡΡ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡ, Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ Π΄Π»Ρ LTR-ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½ΠΎΠ²: ΠΏΠ΅ΡΠ²Π°Ρ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½Π°Ρ ΡΠ°ΠΌΠΊΠ° ΡΡΠΈΡΡΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ΄ΠΈΡΡΠ΅Ρ Π±Π΅Π»ΠΊΠΈ ΠΌΠ°ΡΡΠΈΠΊΡΠ° ΠΈ ΠΊΠ°ΠΏΡΠΈΠ΄Π°, Π²ΡΠΎΡΠ°Ρ — ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ, ΠΎΠ±ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π½ΡΠΊΡΠΈΠΏΡΠ°Π·Ρ, Π ΠΠΠ°Π·Ρ Π ΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π·Ρ.
ΠΡΠ΅Π΄ΠΌΠ΅Ρ Π½Π°ΡΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ — ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π° ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½Π° Ulysses, ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠ°Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°ΡΠΈΠ²Π½ΡΠ΅ Π΄Π»Ρ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· ΡΡΡΡΠΊΡΡΡΠ½ΡΠ΅ ΠΎΠ±Π»Π°ΡΡΠΈ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΡΡΠΈΠ°Π΄Ρ DTG Π² ΠΎΠ±Π»Π°ΡΡΠΈ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ΅Π½ΡΡΠ°.
Π ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΠΈΠΌ, ΡΠ΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠ»ΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° ΠΈΠ· ΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° Ulysses Drosophila virilis. Π ΡΠ΅Π»ΠΎΠΌ Π΄Π°Π½Π½Π°Ρ ΡΠ°Π±ΠΎΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΏΠΎΠΏΡΡΠΊΠΎΠΉ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΠΎΠΉ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΈΠ· ΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°.
Π²ΡΠ²ΠΎΠ΄Ρ.
1. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΡΠΎΠ΄ΡΠΊΡΠ° ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΈ Π³Π΅Π½Π° ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½Π° Ulysses (Drosophila virilis) ΠΈ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ ΡΡΡΡΠΊΡΡΡ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ ΡΠ΅ΡΡΠΎΠ²ΠΈΡΡΡΠ½ΡΡ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΡΠ»Π°Π½ΠΊΠΈΡΡΡΡΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Ulysses.
2. ΠΠ»ΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠ΅ΠΉ Π³Π΅Π½Π° ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½Π° Ulysses Π² E. coli Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½ ΠΊΠΎΠ΄ΠΈΡΡΠ΅ΠΌΡΠΉ ΠΈΠΌ Π±Π΅Π»ΠΎΠΊ, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠΉ ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ.
3. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Ulysses, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Π΅Π΅ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ ΠΏΡΠΈ Π°Π²ΡΠΎΠ»ΠΈΠ·Π΅, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ ΠΏΡΠΈ Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·Π΅ ΠΏΠ΅ΠΏΡΠΈΠ΄Π½ΡΡ ΡΡΠ±ΡΡΡΠ°ΡΠΎΠ² ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·ΠΎΠΉ HIV-1. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π° ΡΠ΅ΡΡΠΎΡΡΠ°Π½ΡΠΏΠΎΠ·ΠΎΠ½Π° Ulysses ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠΈΡΠΎΠΊΠΎΠΉ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡΡ (Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·ΡΠ΅Ρ ΡΠ²ΡΠ·ΠΈ, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»ΡΠ½ΡΠΌΠΈ Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΡΡ ΠΈ Π·Π°ΡΡΠΆΠ΅Π½Π½ΡΡ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ). ΠΠΏΡΠΈΠΌΡΠΌ ΡΠ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ°Π²Π΅Π½ 5.5.
4. ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΡΡΡΠΎΠ΅Π½Π° ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Ulysses, ΡΠΎΠ³Π»Π°ΡΡΡΡΠ°ΡΡΡ Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ Π΄Π°Π½Π½ΡΠΌΠΈ ΠΏΠΎ ΡΠΏΠ΅ΠΊΡΡΠ°ΠΌ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ ΠΈ ΠΠ ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ Π°Π²ΡΠΎΠ»ΠΈΠ·Π°.
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Szecsi. Π .Π. The aspartic proteases. // Scand. J. Clin. Lab. Invest., 1992, v. 52, pp. 22−25.
- Bennett K., Levine Π’., Ellis J.S., Peanasky R.J., Samloff I.M., Kay J. Chain B.M. Antigen processing for presentation by class II major histocompatibility complex requires cleavage by cathepsin E. // Eur. J. Immunol., 1992, v. 22, pp. 1519−1524.
- Lees W.E., Kalinka S., Meech J., Capper S.J., Cook N.D., Kay J. Generation of human endothelin by cathepsin E.// FEBS Lett., 1990, v. 273, pp. 99−102.
- Pungercar J., Strukelj Π., Gubensek F., Turk V., Kregar I. Amino acid sequence of lamb prechymosin and its comparison to other chymosins. //Adv. Exp. Med. Biol., 1991, v. 306, pp. 127−131.
- Kay J., Dunn B.M. Viral proteinases: weakness in strength. // Biochim. Biophys. Acta, 1990, v. 1048, pp. 1−18.
- ΠΠ½ΡΠΎΠ½ΠΎΠ² B.K. // Π₯ΠΈΠΌΠΈΡ ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΠ·Π°. / M.: ΠΠ°ΡΠΊΠ°, 1991, 363 Ρ.
- Rajagopalan T.G., Stein W.H., Moore S. The inactivation of pepsin by diazoacetylnorleucinemethyl ester. // J. Biol. Chem., 1966, v. 241, pp. 4295−4297.
- Tang J. Specific and irreversible inactivation of pepsin by substrate-like epoxides. // J. Biol. Chem., 1971, v. 246, pp. 4510−4517.
- Marciniszyn J. Jr., Hartsuck J.A., Tang J. Mode of inhibition of acid proteases by pepstatin. // J. Biol. Chem., 1976, v. 251, pp. 7088−7094.
- Toogood H.S., Prescott M., Daniel R.M. A pepstatin-insensitive aspartic proteinase from a thermophilic Bacillus sp. // Biochem. J., 1995, v. 307, pp. 783−789.
- Ito M., Dunn B.M., Oda K. Substrate specificities of pepstatin-insensitive carboxyl proteinases from gram-negative bacteria. // J. Biochem. (Tokyo), 1996, v. 120, pp. 845−850.
- ΠΠ½Π΄ΡΠ΅Π΅Π²Π° H.C. Π‘ΡΡΡΠΊΡΡΡΠ° ΠΏΠ΅ΠΏΡΠΈΠ½Π°. I. Π‘ΠΎΠ±ΡΡΠ²Π΅Π½Π½Π°Ρ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ° ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ ΠΏΡΡΠΈ ΡΠ²ΠΎΠ»ΡΡΠΈΠΈ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·. // ΠΠΎΠ». Π±ΠΈΠΎΠ»., 1985, Ρ. 19, ΡΡΡ. 218−224.
- Davies D.R. The structure and function of the aspartic proteinases. //Annu. Rev. Biophys. Biophys. Chem., 1990, v. 19, pp. 189−215.
- Tang J., Wong R.N. Evolution in the structure and function of aspartic proteases. // J. Cell. Biochem., 1987, v. 33, pp. 53−63.
- Hartsuck J. A., Koelsch G., Remington S.J. The high-resolution crystal structure of porcine pepsinogen.//Proteins, 1992, v. 13, pp. 1−25.
- James M., Moore S., Sielecki A., Chernaia M., Tarasova N. The molecular structure of human progastricsin and its comparison with that of porcine pepsinogen. // Adv. Exp. Med. Biol., 1995, v. 362, pp. 11−18.
- Moore S.A., Sielecki A.R., Chernaia M.M., Tarasova N.I., James M.N. Crystal and molecular structures of human progastricsin at 1.62 A resolution. // J. Mol. Biol., 1995, v.247, pp. 466−485.
- Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W. Genome sequence of the human malaria parasite Plasmodium falciparum. // Nature, 2002, v.419 (6906), pp. 498−511.
- Sielecki A.R., Fedorov A.A., Boodhoo A., Andreeva N.S., James N.G. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution.// J. Mol. Biol. -1990 v.214 — pp.143−170.
- Andreeva N.S. Consensus template for the aspartic proteinase fold.// Adv. Exp. Med. Biol. 1992 — v.306 — pp.559−572.
- ΠΠ½Π΄ΡΠ΅Π΅Π²Π° H.C., ΠΡΡΠΈΠ½Π° A.E., ΠΠ΄Π°Π½ΠΎΠ² A.C., ΠΠ΅ΡΠΈΠΊ Π. Π., Π‘Π°ΡΡΠΎ Π. Π., Π€Π΅Π΄ΠΎΡΠΎΠ² Π. Π. ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ ΡΡΡΡΠΊΡΡΡΠ½ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·.// ΠΠΎΠ»Π΅ΠΊ. Π±ΠΈΠΎΠ». 1989 — Ρ.23 — ΡΡΡ.1523−1534.
- Lapatto R., Blundell Π’., Hemmings A., Overington J., Wilderspin A., Wood S., Merson
- J.R., Whittle P.J., Danley D.E., Geoghegan K.F., Hawrylic S.J., Lee S.E., Scheld K.G., Hobart P.M. X-ray analysis of HIV-1 proteinase at 2.7 A resolution confirms structural homology among retroviral enzymes. // Nature, 1989, v. 342, pp. 299−302.
- Stebbins J., Towler E.M., Tennant M.G., Deckman I.C., Debouck C. The 80's loop (residues 78 to 85) is important for the differential activity of retroviral proteases. // J. Mol. Biol., 1997, v. 267, pp. 467−475.
- Katz R.A. & Skalka A.M. The retroviral enzymes. // Annu. Rev. Biochem., 1994, v. 63, pp.133−173.
- Levy J.A. Pathogenesis of human immunodeficiency virus infection. // Microbiol. Rev., 1993, v. 57, pp. 183−289.
- Overton H.A., McMillan D.J., Gridley S.J., Brenner J., Red-Shaw S., Mills J.S. Effect of two inhibitors of the human immunodeficiency virus protease on the maturation of the HIV gag and gag-pol polyproteins. // Virology, 1990, v. 179, pp. 508−511.
- Jhonson M.I. & Hoth D.E. Present status and future prospects for HIV therapies. // Science, 1993, v. 260, pp. 1286−1292.
- Daube H., Billich A., Mann K., Schramm H.J. Cleavage of phosphorylase kinase and calcium-free calmodulin by HIV-1 protease. // Biochem. Biophys. Res. Communs., 1991, v. 178, pp. 892−896.
- Krafft G.A. & Wang G.T. Sinthetic approacher to continuous of retroviral proteases. // Meth. Enzymol., 1994, v. 241, pp. 70−86.
- Kay K. & Dunn B.M. Substrate specifity and inhibitors of aspartic proteinases. // Scand. J. Clin. Lab. Invest., 1992, v. 52, pp. 23−30.
- MeekTh.D., Rodriguez E.J., Angeles Th.S. Use of steady state kinetic methods to elucidate the kinetic and chemical mechanisms of retroviral proteases. // Meth. Enzymol., 1994, v. 241, pp. 127−156.
- Darke P.L., Jordan S.P., Hall D.L., Zugay J.A., Shater J.A., Kuo L.C. Dissociation and association of the HIV-1 protease dimmer subunits: equilibria and rates. // Biochemistry, 1994, v.33, pp. 98−105.
- Darke P.L. Stability of the dimeric retroviral proteases. // Meth. Enzymol., 1994, v. 241, pp. 104−127.
- Rose J.R., Salto R., Craik C.S. Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions. // J. Biol. Chem., 1993, v. 286, pp. 1 193 911 945.
- Jordan S.P., Zugay J.A., Darke P.L., Kuo L.C. Activity and dimerization of human immunodeficiency virus protease as a function of solvent composition and enzyme concentration. // J. Biol. Chem., 1992, v. 267, pp. 20 028−20 032.
- Davis DA, Dorsey K, Wingfield PT, Stahl S J, Kaufman J, Fales HM, Levine RL. Regulation of HIV-1 protease activity through cysteine modification. I I Biochemistry, 1996, v. 35(7), pp. 2482−8.
- Dunn B.M., Goodenow M.M., Gustchina A. and Wlodawer A. Retroviral proteases. // Genome Biology, 2002, v. 3(4), pp. 30 061−30 067.
- Jurgen H.B., Seelmeir S., von der Helm K. Molecular and enzymatic characterization of porcine endogenous retrovirus protease. // Journal of Virology, 2002, v.76, pp. 7913−7917.
- Zabransky A., Andreansky M., Hruskova-Heidingsfeldova O., Havlicek V., Hunter E., Ruml Π’., Pichova I. Three active forms of aspartic proteinase from Mason-Pfizer monkey virus. // Virology, 1998, v. 245(2), pp. 250−256.
- Merkulov G.V., Lawler J.F., Eby Y., Boeke J.D. Π’Ρ 1 proteolytic cleavage are required fortransposition: all sites are not equal. // Journal of Virology, 2001, v.75, pp. 638−644.
- Irwin P. A., VoytasD.F. Expression and processing ofproteins encoded by the Saccharomy ces retrotransposon Ty5. // Journal of Virology, 2001, v.75, pp. 1790−1797.
- BergD.E., and Howe M. // Mobile DNA. / American Society for Microbiology, Washington D.C., 1989, p. 347.
- Engel W., and Preston C. Formation of chromosome rearrangements by P factors in Drosophila. // Genetics, 1984, v. 107, pp. 657−678.
- Langley C., Montgomery E., Hudson R., Kaplan N. and Charlesworth B. On the role of unequal exchange in the containment of transposable element copy number. // Genet. Res., 1988, v. 52, pp. 223−236.
- Strand D., and McDonald J. Insertion of a copia element 5' to the Drosophila melanogaster alcohol dehydrogenase gene (adh) is associated with altered developmental and tissue-specific patterns of expression. // Genetics, 1989, v. 121, pp. 787−794.
- Cai H., and Levine M. The gypsy insulator can function as a promoter-specific silencer in the Drosophila embryo. // EMBO J., 1997, v. 16, pp. 1732−1741.
- Georgiev P., and Corces V. The su (Hw) protein bound to gypsy sequences in one chromosome can repress enhancer-promoter interactions in the paired gene located in the other homolog. // Proc. Natl. Acad. Sci. USA, 1995, v. 92, pp. 5184−5188.
- Moore J.K. & Haber J.E. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. // Nature (London), 1996, v. 383, pp. 644−646.
- Biessmann H., Valgeirsdottir K., Lofsky A., Chin C., Ginther Π., et al. HeT-A, a transposable element specifically involved in «healing» broken chromosome ends in Drosophilamelanogaster. // Mol. Cell. Biol., 1992b, v. 12, pp. 3910−3918.
- Levis R., Ganesan R., Houtchens K., Tolar L. and Sheen F. Transposons in place of telomeric repeats at a Drosophila telomere. // Cell, 1993, v. 75, pp. 1083−1093.
- Rio D. Regulation of Drosophila P-element transposition. // Trends Genet. 1991, v. 7, pp. 282−287.
- Kaufman P. and Rio D. P-element transposition in vitro by a cut-and-paste mechanism and uses GTP as a cofactor. // Cell, 1992, v. 69, pp. 27−39.
- Beall E., and Rio D. Drosophila IRBP/Ku p70 corresponds to the mutagen-sensitive mus309 gene and is involved in P-element excision in vivo. // Genes. Dev., 1996, v. 10, pp. 921−933.
- Siebel C., Admon A. and Rio D. Soma-specific expression and cloning of PSI, a negative regulator of P-element pre-mRNA splicing. // Genes. Dev., 1995, v. 9, pp. 269−283.
- Rebatchouk D., and Narita J. Foldback transposable elements in plants. // Plant Mol. Biol., 1997, v. 34, pp. 831−835.
- Dawson A., Hartswood E., Paterson T. and Finnegan D. A LINE-like transposable element in Drosophila, the I factor, encodes a protein with properties similar to those of retroviral nucleocapsids. // EMBO J., 1997, v. 16, pp. 4448−4455.
- Xiong Y., and Eikbush T. Origin and evolution of retroelements based upon their reverse transcriptase sequences. // EMBO J., 1990, v. 9, pp. 3353−3362.
- Luan D., Korman M., Jakubczak J. and Eickbush T. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. // Cell, 1993, v. 72, pp. 595−605.a
- Kim A., Terzian C., Santamaria P., Pelisson A., Purdqhomme N., et al. Retroviruses ininvertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. // Proc. Natl. Acad. Sci. USA, 1994, v. 91, pp. 1285−1289.
- Tanda S., Mullor J. and Corces V. The Drosophila Tom retrotransposon encodes an envelope protein. // Mol. Cell. Biol., 1994, v. 14, pp. 5392−5401.
- Nuzhdin S., Pasyukova E. and Mackay T. Positive association between copia transposition rate and copy number in Drosophila melanogaster. // Proc. R. Soc. Lond. B. Biol. Sci., 1996, v. 263, pp. 823−831.
- Zelentsova H., Poluectova H., Mnjoian L., Lyozin G., Veleikodvorskaja V., Zhivotovsky L., Kidwell M.G., Evgen’ev M.B. Distribution and evolution of mobile elements in the virilis species of Drosophila. // Chromosoma, 1999, v. 108, pp. 443−456.
- Evgen’ev M.B., Corces V.G., Lankenau D.-H. Ulysses transposable element of Drosophila shows high structural similarities to functional domains of retroviruses. // J. Mol. Biol., 1992, v. 225 (3), pp. 917−924.
- Lower R., Lower J., Kurth R. The viruses in all of us: characteristics and biologicalsignificance of human endogenous retrovirus sequences. // Proc. Natl. Acad. Sci. USA, 1996, v. 93, pp. 5177−5184.
- Yoshioka K., Kanda H., Akiba H., Enoki M. and Shiba T. Identification of an unusual structure in the Drosophila melanogaster transposable element copia: evidence for copia transposition through an RNA intermediate. // Gene, 1991, v. 103, pp. 179−184.
- Eichinger D. and Boeke J. A specific terminal structure is required for Π’Ρ 1 transposition.//
- Genes. Dev., 1990, v. 4, pp. 324−330.
- Lower R. The pathogenic potential of endogenous retroviruses: facts and fantasies. // Trends in microbiology, 1999, v. 7 (9), pp. 350−355.
- Kazazian H.H.J. Mobile elements and disease. // Current opinion in genetics & Development, 1998, v. 8, pp. 343−350.
- Challem J.J. and Taylor E.W. Retroviruses, ascorbate, and mutations, in the evolution of Homo Sapiens. // Free radical biology & Medicine, 1998, v. 25 (1), pp. 130−132.
- Kazazian H.H.J., Wong C., Scot A.F., Philips D.G. Haemophilia A resulting from de novo insertion of LI sequences represent a novel mechanism for mutation in man. // Nature, 1998, v. 332, pp. 164−166.
- Kazazian H.H.J & Moran J.V. The impact of LI retrotransposons on the human genome. // Nat Genet., 1998, v. 19, pp. 19−24.
- Kidwell M.G. and Lisch D.R. Transposable elements and host genome evolution. // Tree, 2000, v. 15 (3), pp. 95−99.
- Teng S.-C., Bohue K. & Gabriel A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. // Nature (London), 1996, v. 383, pp. 641−644.
- ΠΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ½ΡΠΈΠΊΠ»ΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ»ΠΎΠ²Π°ΡΡ. / M.: Π‘ΠΎΠ². ΠΠ½ΡΠΈΠΊΠ»ΠΎΠΏΠ΅Π΄ΠΈΡ, 1989, 864Ρ.
- Greider CW, Blackburn EH. A telomeric sequence in the RNA ofTetrahymena telomerase required for telomere repeat synthesis. Nature, 1989, v. 337(6205), pp. 331−7.
- Cooke HJ, Smith Π A. Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harb Symp Quant Biol, 1986−51 Pt 1, pp. 213−9.
- Allshire RC, Gosden JR, Cross SH, Cranston G, Rout D, Sugawara N, Szostak JW,
- Fantes PA, Hastie ND. Telomeric repeat from T. thermophila cross hybridizes with human telomeres, Nature, 1988, v. 332(6165):656−9.
- Lundblad V, Szostak JW. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell, 1989, v.57(4), pp. 633−43.
- Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl AcadSciUSA, 1992, v. 89(21), pp. 10 114−8.
- Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW. Specific association of human telomerase activity with immortal cells and cancer. Science, 1994, v. 266(5193), pp. 2011−5.
- Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science, 1998, v. 279(5349), pp. 349−52.
- Pardue M.-L. & DeBaryshe P.G. Drosophila telomeres: two transposable elements with important roles in chromosomes. // Genetica, 1999, v. 107, pp. 189−196.
- Kidwell M.G. and Lisch D. Transposable elements as sources of variation in animals and plants. // Proc. Natl. Acad. Sci. USA, 1997, v. 94, pp. 7704−7711.
- Eickbush Π’.Π. Telomerase and retrotransposons: which came first? // Science, 1997, v. 277, pp. 911−912.
- Nakamura T.M., Gregg B.M., Chapman K.B. Telomerase catalytic subunit homologs from fission yeast and human. // Science, 1997, v. 277, pp. 995−997.
- ΠΠΎΠΏΠΎΠ² E.M. // ΠΡΠΎΠ±Π»Π΅ΠΌΠ° Π±Π΅Π»ΠΊΠ°. Π’ΠΎΠΌ 3 / Π.: ΠΠ°ΡΠΊΠ°, 1997, Ρ. 75−77.
- Huang Xiao-Qin, Jiang Hua-Liang, Luo Xiao-Min. A 3D-structural model of memapsin 2protease generated from theoretical study. // Acta Pharmacol Sin, 2001, v. 22(1), pp. 50−56,
- Andreeva N., Bogdanovich P., Kashparov I., Popov M., Stengach M. Is histoaspartic protease a serine protease with a pepsin-like fold? // Proteins: Structure, Function and Bioinformatics, 2004, v. 55, pp. 705−710.
- Kulkarni S.S., Kulkarni V.M. Structure based prediction of binding affinity of human immunodeficiency virus-1 protease inhibitors. // Journal Chem. Inf. Comput. Sci., 1999, v. 39, pp. 1128−1140.
- Ersmark K., Feierberg I., Bjelic S., Hulten J., Samuelsson Π., Aqvist J, Hallberg A. C2-symmetric inhibitors of Plasmodium falciparum plasmepsin II: synthesis and theoretical predictions. // Bioorg Med Chem., 2003, v. 11(17), pp. 3723−33.
- ΠΠ½Π΄ΡΠ΅Π΅Π²Π° H.C., ΠΠ΅ΡΠΈΠΊ Π. Π. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΡΡ ΡΡΡΡΠΊΡΡΡ Π³ΠΈΠ±ΠΊΠΈΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ» Π±Π΅Π»ΠΊΠΎΠ². // ΠΠΎΠ». Π±ΠΈΠΎΠ»., 1995, Ρ. 29, ΡΡΡ. 1102−1113.
- Scheinker V.S., Lozovskaja E.R., Bishop J.G., Corces V.G., Evgen’ev M.B. A Long Terminal Repeat-Containing Retrotransposon is Mobilized During Hybrid Dysgenesis in Drosophila virilis. // Proc. Natl. Acad.Sci.USA, 1990, v. 87, pp. 9615−9619.
- Andreeva N.S. A consensus template for the aspartic proteinase fold. // Adv. in Exp. Med. Biol., 1991, v. 306, pp. 559−572.
- Stebbins J. & Debouk Ch. Expression system for retroviral proteases. // Meth. Enzymol:., 1994, v. 241, pp. 3−16.
- Rizzo C.J. & Korant B.D. Genetic approachesdisigned to minimize cytotoxicity of retroviral protease. // Meth. Enzymol., 1994, v. 241, pp. 16−24.
- Wondrak E.M., Louis J.M., MoraP.T., Orozlan S. Purification of HIV-1 wild-type protease and characterization of proteolytically inactive HIV-1 protease mutants by pepstatin A affinity chromatography. // FEBS Lett., 1991, v.280, pp. 347−350.
- Mirgorodskaya O., Kazanina G., Mirgorodskaya E., Vorotynseva Π’., Zamolodchikova Π’., Alexandrov S. A comparative study of the specificity of melittin hydrolysis by dupdenase, trypsin and plasmin. // Prot. Pept. Lett., 1996, v. 3, pp. 315−320.
- ΠΠ΅ΡΠ³ΠΎΡΡΠΎΠ²Π° Π.Π. // ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΡΠΊΡΡΡΠ½ΡΡ ΠΎΡΠ½ΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·. ΠΡΡΠ°Π³Π΅Π½Π΅Π· ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΠΠ§-1. ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ ΡΡΠ΅Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ° Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π°ΡΠΊ. / ΠΠΎΡΠΊΠ²Π°, 1998.
- Π‘ΠΈΠΌΠ°Π½ΠΊΠΎΠ²Π° Π.Π., ΠΠΈΡΠ³ΠΎΡΠΎΠ΄ΡΠΊΠ°Ρ Π. Π., Π‘Π°Π²Π΅Π»ΡΠ΅Π²Π° Π. Π., ΠΠ΅ΡΠ½Π΅Ρ Π ., Π ΠΎΠΉΠΏΡΡΠΎΡΡΡ Π., ΠΠ»Π΅ΠΊΡΠ°Π½Π΄ΡΠΎΠ² Π‘Π. ΠΡΠΈΠ±Π½Π°Ρ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ½Π°Ρ npoTeHHa3aH3Trichodermaviride. Π‘ΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ ΠΏΡΠΈ Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·Π΅ ΠΎΠ»ΠΈΠ³ΠΎΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ². // ΠΠΈΠΎΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ Π₯ΠΈΠΌΠΈΡ, 1997, Ρ. 25, Ρ. 611−614.
- Marti-Renom M. A, Stuart A., Fiser A., Sanchez R., Melo F., Sali A. Comparative protein structure modeling of genes and genomes. // Annu. Rev. Biophys. Biomol. Struct., 2000, v. 29, pp. 291−325.
- Brooks B.R., Bruccoleri R.E., Olafson B.D., StatesD.J., Swaminathan S., and Karplus M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. //J. Π‘ΠΎΡΡ. Chem., 1983, v. 4, pp.187−217.
- Fidy J., LabergeM., Ullrich Π., Polgar L., Szeltner Z., Gallay J., and Vincent M. Tryptophan rotamers that report the conformational dynamics of proteins // Pure Appl. Chem., 2001, v. 73(3), pp. 415−419.
- Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1989.
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.//Anal. Biochem., 1976, v.72 pp.248 254.
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage Π’47/Nature (London), 1970, v.227 pp.680−685.
- Lin ΠΠ., Cheng S.Y. An efficient method to purify active eukaryotic proteins from the inclusion bodies in Escherichia coli.// Biotechniques, 1991, v. 11 p.748
- Provencher, S.W., Glockner J., Estimation of globular protein secondary structure from circular dichroism. // Biochemistry, 1981, v.20, pp. 33−37.
- Laskowski R A, MacArthur M W, Moss D S & Thornton J M. PROCHECK: a program to check the stereochemical quality of protein structures. //J. Appl. Cryst., 1993, v.26, pp.283 291.