ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅ Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π½ΡΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ²
Π ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ LDA+DMFT (QMC) ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π΄Π»Ρ 3d ΡΠΈΡΡΠ΅ΠΌ, Π² Sr2Ru04 ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Ρ ΡΠ²Π½ΡΠ΅ ΡΠ°ΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°ΡΡΡΠΈΡΠ°Π½Π½ΡΠΌ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌ ΡΠΎΡΠΎΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΡΠΌΠΈ ΡΠΏΠ΅ΠΊΡΡΠ°ΠΌΠΈ. Π‘Π²ΡΠ·Π°Π½Ρ Π»ΠΈ ΡΡΠΈ ΡΠ°ΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Ρ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΠΌΠ°ΡΡΠΈΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΈΠ»ΠΈ ΡΡΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΡΠΈΡΠΈΠ½Ρ Π»ΠΈΠ½ΠΈΠΈ Π½Π° ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΏΠ΅ΠΊΡΡΡ, ΠΈΠ»ΠΈ ΠΈΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠΈΡΠΎΠ²Π°ΡΡ ΠΊΠ°ΠΊ ΡΠ΅ΡΡΠ΅Π·Π½ΡΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΠΊ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π°, Π½Π° ΡΠ΅ΠΊΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΠΎΠΊΠ° Π½Π΅ ΡΡΠ½ΠΎ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
- Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΡΠ΄Π΅ΡΠΆΠΊΠ°
- ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ°
- ΠΡΡΠ³ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ
- ΠΠΎΠΌΠΎΡΡ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈ
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΠ»Π°Π²Π° 1. Π€ΡΠ½ΠΊΡΠΈΠΈ ΠΠ°Π½ΡΠ΅
- 1. 1. Π€ΡΠ½ΠΊΡΠΈΡ ΠΠ°Π½ΡΠ΅ Π΄Π»Ρ ΠΎΠ΄Π½ΠΎΠΉ Π·ΠΎΠ½Ρ v 1.2 Π€ΡΠ½ΠΊΡΠΈΠΈ ΠΠ°Π½ΡΠ΅ Π΄Π»Ρ Π³ΡΡΠΏΠΏΡ Π·ΠΎΠ½ Ρ 1.3 Π€ΡΠ½ΠΊΡΠΈΠΈ ΠΠ°Π½ΡΠ΅ Π² Π±Π°Π·ΠΈΡΠ΅ LMTO
- 1. 4. ΠΠ°ΡΡΠΈΡΠ½ΡΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠΎΠ² Π² Π±Π°Π·ΠΈΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅
- 1. 5. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅ ΡΠ΅ΡΠ΅Π· ΡΡΠ½ΠΊΡΠΈΠΈ ΠΡΠΈΠ½Π°
- ΠΠ»Π°Π²Π° 2. ΠΠ΅ΡΠΎΠ΄Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°
- 2. 1. Π’Π΅ΠΎΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»Π° ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ
- 2. 1. 1. ΠΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ (LDA)
- 2. 2. Π’Π΅ΠΎΡΠΈΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΠΏΠΎΠ»Ρ Π³ 2.3 Π Π°ΡΡΠ΅ΡΠ½Π°Ρ ΡΡ
Π΅ΠΌΠ° LDA+DMFT
- 2. 3. 1. Π€ΠΎΡΠΌΠ°Π»ΠΈΠ·ΠΌ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅ Π΄Π»Ρ LDA+DMFT
- 2. 3. 2. ΠΠ±ΡΠ°ΡΠ½ΠΎΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΏΠΎΠ»Π½ΠΎ ΠΎΡΠ±ΠΈΡΠ°Π»ΡΠ½ΠΎΠ΅ Π³ΠΈΠ»ΡΠ±Π΅ΡΡΠΎΠ²ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎ
- 2. 3. 3. Π‘Ρ Π΅ΠΌΠ° ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΡΠ°ΠΌΠΎΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ
- 2. 1. Π’Π΅ΠΎΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»Π° ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ
- 3. 1. Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° LiV 3.2 ΠΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΡΡΠΊΡΡΡΠ° Π¬1Π£Π³
- 3. 3. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ DFT/LDA ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ LiV
- 3. 4. Π£ΡΠ΅Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΉ Π² ΡΠ°ΠΌΠΊΠ°Ρ LDA+DMFT ΡΡ Π΅ΠΌΡ. t 3.4.1 ΠΠ΄Π½ΠΎΡΠ°ΡΡΠΈΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Ρ 3.4.2 ΠΠ°Π³Π½ΠΈΡΠ½Π°Ρ Π²ΠΎΡΠΏΡΠΈΠΈΠΌΡΠΈΠ²ΠΎΡΡΡ: ΠΊΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠΈΡ ΠΎΠ±ΠΌΠ΅Π½Π½ΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ
- 4. 1. ΠΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΡΡΠΊΡΡΡΠ° Π¬Π°Π³Π‘ΠΈΠ‘^ ΠΈ NCI2C11O
- 4. 2. DFT/LDA ΡΠ°ΡΡΠ΅Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² t-J ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π»Ρ ΠΠ’Π’ ΠΈ LTT ΡΠ°Π· La2Cu
- 4. 3. ΠΠΎΠ½Π½Π°Ρ ΡΡΡΡΠΊΡΡΡΠ° ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΠ°Π½ΡΠ΅ Π΄Π»Ρ ΠΠ’Π’ ΡΠ°Π·Ρ La2Cu
- 4. 4. ΠΠΎΠ½Π½Π°Ρ ΡΡΡΡΠΊΡΡΡΠ° ΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Ρ ΠΏΠ΅ΡΠ΅ΡΠΊΠΎΠΊΠ° Π΄Π»Ρ Ρ- ΠΈ ΠΏ-ΡΠΈΠΏΠΎΠ² ΠΊΡΠΏΡΠ°ΡΠΎΠ², ΡΠ°ΡΡΡΠΈΡΠ°Π½Π½ΡΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅
- 4. 5. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ²
- 5. 1. ΠΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΡΡ ΡΡΡΠ΅ΠΊΡΠΎΠ² Π² Sr2Ru
- 5. 2. ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½Π°Ρ ΡΡΡΡΠΊΡΡΡΠ° Sr2Ru
- I. 5.2.1 ΠΠΎΠ½Π½Π°Ρ ΡΡΡΡΠΊΡΡΡΠ°, ΡΠ°ΡΡΡΠΈΡΠ°Π½Π½Π°Ρ Π² ΡΠ°ΠΌΠΊΠ°Ρ LDA
- 9. 5.2.2 LDA+DMFT (QMC) ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ: ΡΠΎΠ»Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΉ
- 5. 2. 3. ΠΠ½Π°Π»ΠΈΠ· LDA+DMFT (QMC) ΡΠΏΠ΅ΠΊΡΡΠΎΠ²
- 5. 3. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ Π΄Π°Π½Π½ΡΠΌΠΈ
- 5. 3. 1. Π€ΠΎΡΠΎΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠΏΠ΅ΠΊΡΡΡ
- 5. 3. 2. Π‘ΠΏΠ΅ΠΊΡΡΡ ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ
- 5. 3. 3. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ ARPES Π΄Π°Π½Π½ΡΠΌΠΈ
ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅ Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π½ΡΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ²Π΅ΡΠ΄ΡΡ ΡΠ΅Π» Ρ ΡΠΈΠ»ΡΠ½ΡΠΌΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΌΠΈ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡΠΌΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π°ΠΆΠ½Π΅ΠΉΡΠΈΠΌ Π°ΡΠΏΠ΅ΠΊΡΠΎΠΌ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠΈ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°. Π ΡΠ°ΠΊΠΈΡ ΡΠΈΡΡΠ΅ΠΌΠ°Ρ ΡΡΠ΅Π΄Π½ΡΡ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² Π±ΠΎΠ»ΡΡΠ΅ ΠΈΠ»ΠΈ ΡΡΠ°Π²Π½ΠΈΠΌΠ° Ρ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ, ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Ρ ΠΈΠΌΠ΅ΡΡ ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΡ ΠΊ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ. Π‘ΡΠ΅Π΄ΠΈ ΡΠΈΠ»ΡΠ½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΠΎΠ±ΠΎΠ΅ ΠΌΠ΅ΡΡΠΎ Π·Π°Π½ΠΈΠΌΠ°ΡΡ ΠΎΠΊΡΠΈΠ΄Ρ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π½ΡΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ². Π ΡΡΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°Ρ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ 30 Π»Π΅Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΡΠΊΠΈΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΡΠ΅ΠΊΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π² ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΈΠΊΠ΅, ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Π΅, Π½Π°ΡΡΠ½ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ (ΡΠ²Π΅ΡΡ ΠΌΠΎΡΠ½ΡΠ΅ ΠΌΠ°Π³Π½ΠΈΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ²Π΅ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ², ΡΠΈΡΡΠ΅ΠΌΡ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΡΠ΅ΠΊΡΠ° Π³ΠΈΠ³Π°Π½ΡΡΠΊΠΎΠ³ΠΎ ΠΌΠ°Π³Π½Π΅ΡΠΎΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅ΠΏΠΈΡ, ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π²ΡΡΠΎΠΊΠΎΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π΄Π°ΡΡΠΈΠΊΠΈ, ΠΈ Ρ. Π΄.).
Π‘ΠΈΡΡΠ΅ΠΌΡ Ρ Π½Π΅Π·Π°ΠΏΠΎΠ»Π½Π΅Π½Π½ΡΠΌΠΈ dΠΈ /-ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠ°ΠΌΠΈ Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠΏΠΈΠ½ΠΎΠ²ΡΡ , Π·Π°ΡΡΠ΄ΠΎΠ²ΡΡ ΠΈ ΠΎΡΠ±ΠΈΡΠ°Π»ΡΠ½ΡΡ ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΡΡ ΡΠ΅Π»ΡΠΉ ΠΊΠ»Π°ΡΡ ΡΠ²Π»Π΅Π½ΠΈΠΉ ΡΠΏΠΎΡΡΠ΄ΠΎΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΡΠ΅Π½Ρ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½Ρ ΠΊ Π½Π΅Π±ΠΎΠ»ΡΡΠΈΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌ Π²Π½Π΅ΡΠ½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² (ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°, Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅, Π»Π΅Π³ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅). ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ ΠΌΠ΅ΡΠ°Π»Π»-Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΠΊ Π² ΠΎΠΊΡΠΈΠ΄Π΅ Π²Π°Π½Π°Π΄ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π½Π° Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ² [1]- ΡΠ°Π·ΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Ρ Π² Π°ΠΊΡΠΈΠ½ΠΎΠΈΠ΄Π°Ρ ΠΈ Π»Π°Π½ΡΠ°Π½ΠΎΠΈΠ΄Π°Ρ , ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡΠΈΠ΅ ΡΠΎ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±ΡΠ΅ΠΌΠ° [2−4]- ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Ρ Π² ΡΠ²Π΅ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠ΅Π΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π² Π²ΡΡΠΎΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΡ ΡΠ²Π΅ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ (ΠΠ’Π‘Π) Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΎΠΊΡΠΈΠ΄ΠΎΠ² ΠΌΠ΅Π΄ΠΈ ΠΏΡΠΈ Π²ΡΡΠΎΠΊΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ (Π²ΡΡΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ Π°Π·ΠΎΡΠ°) [5,6]- «ΡΡΠΆΠ΅Π»ΡΠ΅ ΡΠ΅ΡΠΌΠΈΠΎΠ½Ρ» Π² /-ΡΠΈΡΡΠ΅ΠΌΠ°Ρ , ΡΠ»Π΅ΠΊΡΡΠΎΠ½Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ ΠΈΠΌΠ΅ΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ ΠΌΠ°ΡΡΡ Π² ΡΡΡΡΡΠΈ ΡΠ°Π· ΠΏΡΠ΅Π²ΡΡΠ°ΡΡΡΡ ΠΌΠ°ΡΡΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π° Π² ΠΏΡΠΎΡΡΡΡ ΠΌΠ΅ΡΠ°Π»Π»Π°Ρ [7,8]. ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΠ²ΠΎΠΈΠΌ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌ ΡΠΈΠ»ΡΠ½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π΄Π»Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΡΡΠΎΠΉΡΡΠ²Π°Ρ . ΠΠ΄Π½Π°ΠΊΠΎ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·ΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ²Π»Π΅Π½ΠΈΠΉ ΠΈ Π²ΡΡΠΎΠΊΠ°Ρ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΊ ΠΌΠ°Π»Π΅ΠΉΡΠΈΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌ Π²Π½Π΅ΡΠ½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π΄Π΅Π»Π°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΎΡΠ΅Π½Ρ ΡΠ»ΠΎΠΆΠ½ΡΠΌ. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠΈΠ»ΡΠ½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ.
Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ ΡΠΈΠ·ΠΈΠΊΠ° ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π° ΡΠΏΠΎΡΠΎΠ±Π½Π° ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΎΠ³ΡΠΎΠΌΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π²Π΅ΡΠ΅ΡΡΠ²: ΠΏΡΠΎΡΡΡΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ², Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΈ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΠΊΠΎΠ². ΠΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ (LDA)1 [9] ΠΎΠΊΠ°Π·Π°Π»ΠΎΡΡ Π²Π΅ΡΡΠΌΠ° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ. ΠΠΎ ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ LDA ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΎ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π³Π°Π·Π°, ΠΎΠ½ΠΎ Π½Π΅ Π²ΡΠ΅Π³Π΄Π° ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ ΡΡΡΡΠΊΡΡΡΡ Π²Π΅ΡΠ΅ΡΡΠ², Π² ΠΊΠΎΡΠΎΡΡΡ Π·Π°ΡΡΠ΄ΠΎΠ²Π°Ρ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ ΠΈΠΌΠ΅Π΅Ρ ΡΠΈΠ»ΡΠ½ΠΎ Π½Π΅ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΠ΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, ΠΈ Π³Π΄Π΅ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΡΡΠ΅ΠΊΡΡ ΠΈΠ³ΡΠ°ΡΡ Π½Π΅ΠΌΠ°Π»ΠΎΠ²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ [10].
Π‘ΠΈΠ»ΡΠ½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ°ΡΡΠΈΡΠ½ΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Π΅ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΡΡ ΡΡΡΠ΅ΠΊΡΠΎΠ² Π΄ΠΎΠ»Π³ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈΡΡ. ΡΠΎΠ»ΡΠΊΠΎ Π² ΡΠ°ΠΌΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Π° (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΠΎΠ΄Π΅Π»Ρ Π₯Π°Π±Π±Π°ΡΠ΄Π° [11]). Π’Π΅ΠΎΡΠΈΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΠΏΠΎΠ»Ρ (DMFT)2 [12, 13] ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΡΠΎΠ΄Π²ΠΈΠ½ΡΡΡΡΡ Π² ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ²Π»Π΅Π½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΎΠΏΠΈΡΠ°Π½Ρ ΠΌΠΎΠ΄Π΅Π»ΡΡ Π₯Π°Π±Π±Π°ΡΠ΄Π°. ΠΠ»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΠΏΠΎΡΡΠ΅Π±ΠΎΠ²Π°Π»ΠΎΡΡ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΈΠ΄Π΅ΠΉ Π·ΠΎΠ½Π½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΡΡ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΎΠ². Π’Π°ΠΊ Π²ΠΎΠ·Π½ΠΈΠΊ Π½ΠΎΠ²ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ LDA+DMFT [14−16], Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ»Π°Π±ΠΎ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΡ LDA, Π° ΡΠΈΠ»ΡΠ½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ (Π±ΠΎΠ»Π΅Π΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠ΅) ΡΠ»Π΅ΠΊΡΡΠΎΠ½Ρ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π² DMFT.
1 LDA — Local Density Approximation — ΠΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ. ΠΡΠΎΡ ΡΠ΅ΡΠΌΠΈΠ½ Π±ΡΠ» Π²Π²Π΅Π΄Π΅Π½ Π² Π°Π½Π³Π»ΠΎΡΠ·ΡΡΠ½ΠΎΠΉ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ ΠΈ ΡΡΠ°Π» ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΡΠΌ. ΠΠΎΡΡΠΎΠΌΡ Π΄Π°Π»Π΅Π΅ Π² ΡΠ΅ΠΊΡΡΠ΅ Π±ΡΠ΄Π΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π°Π±Π±ΡΠ΅Π²ΠΈΠ°ΡΡΡΠ° LDA. Π’Π°ΠΊΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π±ΡΠ΄Π΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π° Π΄Π»Ρ Π²ΡΠ΅Ρ Π°Π½Π³Π»ΠΎΡΠ·ΡΡΠ½ΡΡ Π°Π±Π±ΡΠ΅Π²ΠΈΠ°ΡΡΡ.
2 DMFT — Dynamical Mean Field Theory — Π’Π΅ΠΎΡΠΈΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΠΏΠΎΠ»Ρ.
ΠΠ΅Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Ρ Π² ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ²Π΅ΡΠ΄ΡΡ ΡΠ΅Π»Π°Ρ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΠΠ»ΠΎΡ Π° [17]. ΠΠ»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ Π² ΠΏΡΡΠΌΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Π±ΠΎΠ»ΡΡΠ΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΠ°Π½ΡΠ΅ [18]. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎ Π±Π»ΠΎΡ ΠΎΠ²ΡΠΊΠΎΠΌΡ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΠ΄ΠΎΠ±Π½ΠΎ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΠ»ΠΎΡ Π° ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π΅ ΠΎΡ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΉΠΊΠΈ ΠΊ Π΄ΡΡΠ³ΠΎΠΉ ΠΌΠ΅Π½ΡΡΡΡΡ Π»ΠΈΡΡ Π½Π° ΡΠ°Π·ΠΎΠ²ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ, Π° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΠ°Π½ΡΠ΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ Π² ΠΏΡΡΠΌΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅. ΠΠ΅ΠΎΠ΄Π½ΠΎΠ·Π½Π°ΡΠ½ΠΎΡΡΡ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅ Π΄ΠΎΠ»Π³ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΠ΅ΠΏΡΡΡΡΠ²ΠΎΠ²Π°Π»Π° ΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠ΅ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°. ΠΠ΅Π΄Π°Π²Π½ΠΎ Π±ΡΠ»ΠΈ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π·ΠΎΠ½Π½ΡΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ² [19−21]. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΠ°Π»ΠΈΠ·ΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅ Π² ΡΠ°Π±ΠΎΡΠ΅ [20] Π±ΡΠ» ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΡΠ°ΠΌΠΎΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ LDA+DMFT Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΠΈΠ»ΡΠ½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ. ΠΡΡΠ³ΠΎΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ ΡΡΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ΅, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠΉ Π½Π° ΡΠ΅ΠΎΡΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»Π° ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ, ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ Π² ΠΎΠ±Π·ΠΎΡΠ΅ [22]. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΠΎΡΠΌΠ°Π»ΠΈΠ·ΠΌ ΡΡΠΈΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΠΈΠ· ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π·ΠΎΠ½Π½ΡΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, ΡΠ²ΡΠ·ΡΠ²Π°Ρ ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌ ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΡΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΠΌΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΠΌΠΈ ΡΠ΅Π°Π»ΡΠ½ΡΡ Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ.
Π¦Π΅Π»Ρ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠΎΡΡΠΎΠΈΡ Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΡΠΈΠ»ΡΠ½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΎΠΊΡΠΈΠ΄ΠΎΠ² ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π½ΡΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ ΡΠ°ΡΡΠ΅ΡΠ½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠΎΡΠΌΠ°Π»ΠΈΠ·ΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅.
ΠΠ° Π·Π°ΡΠΈΡΡ Π²ΡΠ½ΠΎΡΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ:
β’ ΠΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· 1.5 ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ², ΡΠΎΡΠΌΠ°Π»ΡΠ½ΠΎ ΠΏΡΠΈΡ ΠΎΠ΄ΡΡΠΈΡ ΡΡ Π½Π° ΠΈΠΎΠ½ Π²Π°ΠΈΠ°Π΄ΠΈΡ Π² LiV" 204, ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π½Π°Π»ΠΈΡΠΈΡ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° S=1 /2 ΠΈ Π²ΠΎΡΠΏΡΠΈΠΈΠΌΡΠΈΠ²ΠΎΡΡΠΈ, ΠΏΠΎΠ΄ΡΠΈΠ½ΡΡΡΠ΅ΠΉΡΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΡΡΠΈ-ΠΠ΅ΠΉΡΡΠ°. ΠΡΡΠ°Π²ΡΠΈΠ΅ΡΡ 0.5 ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π° ΡΠΎΡΠΌΠΈΡΡΡΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΡΡ Π·ΠΎΠ½Ρ. Π€Π΅ΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ ΠΈ Π°Π½ΡΠΈΡΠ΅ΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ ΠΎΠ±ΠΌΠ΅Π½Π½ΡΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡΡΡ Π΄ΡΡΠ³ Π΄ΡΡΠ³Π°, ΠΌΠΎΠ³ΡΡ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΊ Π±Π»ΠΈΠ·ΠΊΠΎΠΉ ΠΊ Π½ΡΠ»Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ ΠΡΡΠΈ-ΠΠ΅ΠΉΡΡΠ°, Π½Π°Π±Π»ΡΠ΄Π°Π΅ΠΌΠΎΠΉ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ΅.
β’ ΠΠ»Ρ ΠΠ’Π‘Π ΠΊΡΠΏΡΠ°ΡΠΎΠ² Π¬Π°Π³Π‘ΠΈ04 ΠΈ NCI2C11O4 ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΠ°Π½ΡΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ. ΠΠ»Ρ ΡΡΠΈΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΠ΅Π°Π»ΡΠ½ΠΎΠΉ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΎΠ·ΠΎΠ½Π½ΠΎΠΉ, ΡΡΠ΅Ρ Π·ΠΎΠ½Π½ΠΎΠΉ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ·ΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ.
β’ Π‘Π°ΡΠ΅Π»Π»ΠΈΡ, Π½Π°Π±Π»ΡΠ΄Π°Π΅ΠΌΡΠΉ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ ΡΠΎΡΠΎΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΡΡ ΡΠΏΠ΅ΠΊΡΡΠ°Ρ S^RiiO^ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠΈΡΠΎΠ²Π°Π½ ΠΊΠ°ΠΊ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π½ΠΈΠΆΠ½Π΅ΠΉ Ρ Π°Π±Π±Π°ΡΠ΄ΠΎΠ²ΡΠΊΠΎΠΉ Π·ΠΎΠ½Ρ. Π Π°ΡΡΡΠΈΡΠ°Π½Π½ΡΠ΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½Π°Ρ ΠΌΠ°ΡΡΠ° 4Ρ/-ΡΠ»Π΅ΠΊΡΡΠΎΠΈΠΎΠ² ΠΈ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΡ ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΡΡ Π·ΠΎΠ½ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π΄Π°Π½Π½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΡΡΠΈΡΠ°ΡΡΡΡ ΡΠΈΠ»ΡΠ½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌ.
Π Π°Π±ΠΎΡΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° Π² Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠΈ ΠΎΠΏΡΠΈΠΊΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² ΠΠ½ΡΡΠΈΡΡΡΠ° ΡΠΈΠ·ΠΈΠΊΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π£ΡΠ Π ΠΠ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°ΡΡΠΈΡΠ½ΠΎ Π½Π° ΠΊΠ°ΡΠ΅Π΄ΡΠ΅ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠΈ III ΠΠ½ΡΡΠΈΡΡΡΠ° ΡΠΈΠ·ΠΈΠΊΠΈ Π£Π½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ° Π³. ΠΡΠ³ΡΠ±ΡΡΠ³Π° (ΠΠ΅ΡΠΌΠ°Π½ΠΈΡ). ΠΠ°Π½Π½Π°Ρ ΡΠ°Π±ΠΎΡΠ° ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»Π°ΡΡ ΠΏΡΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ΅ ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠ° Π£ΡΠ Π ΠΠ ΠΈ Π‘Π Π ΠΠ, Π³ΡΠ°Π½ΡΠ° Π Π€Π€Π-04−02−16 096, Π€ΠΎΠ½Π΄Π° ΡΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π½Π°ΡΠΊΠ΅, Π€ΠΎΠ½Π΄Π° Π½Π΅ΠΊΠΎΠΌΠΌΠ΅ΡΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌ «ΠΠΈΠ½Π°ΡΡΠΈΡ» .
ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΠΎΠ½Π½Π°Ρ ΡΠ°Π±ΠΎΡΠ° ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π²Π²Π΅Π΄Π΅Π½ΠΈΡ, ΠΏΡΡΠΈ Π³Π»Π°Π², Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΈ ΡΠΏΠΈΡΠΊΠ° Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ.
ΠΡΠ²ΠΎΠ΄Ρ.
Π Π΄Π°Π½Π½ΠΎΠΉ Π³Π»Π°Π²Π΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ Π΄Π°Π²Π½ΠΈΠΉ ΡΠΏΠΎΡΠ½ΡΠΉ Π²ΠΎΠΏΡΠΎΡ, ΠΊΠ°ΡΠ°ΡΡΠΈΠΉΡΡ ΡΠΈΠ»Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΡΡ ΡΡΡΠ΅ΠΊΡΠΎΠ² Π² Sr2Ru04, ΡΠΎ Π΅ΡΡΡ Π²ΠΎΠΏΡΠΎΡ ΠΎ ΡΠΎΠΌ, Π½ΡΠΆΠ½ΠΎ Π»ΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ Sr2Ru04 ΠΊΠ°ΠΊ ΡΠΈΠ»ΡΠ½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ. ΠΡΠ²Π΅Ρ Π±ΡΠ» Π±Ρ ΡΡΠ²Π΅ΡΠ΄ΠΈΡΠ΅Π»ΡΠ½ΡΠΌ, Π΅ΡΠ»ΠΈ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ (ΡΠΈΡΠΈΠ½Ρ Π·ΠΎΠ½Ρ) Π±ΡΠ»ΠΎ Π±Ρ Π±ΠΎΠ»ΡΡΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΡ. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠ΅ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎΠΌΡ ΠΏΠ΅ΡΠ΅ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π²Π΅ΡΠ° ΠΈ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΊ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΠΊΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΡ Π½ΠΈΠΆΠ½Π΅ΠΉ ΠΈ Π²Π΅ΡΡ Π½Π΅ΠΉ Ρ Π°Π±Π±Π°ΡΠ΄ΠΎΠ²ΡΠΊΠΈΡ Π·ΠΎΠ½. Π ΡΠ»ΡΡΠ°Π΅ Sr2Ru04 ΠΏΠ΅ΡΠ΅ΠΊΡΡΡΠΈΠ΅ Ru-4d ΠΈ 0−2Ρ Π·ΠΎΠ½ Π·Π°ΡΡΡΠ΄Π½ΡΠ΅Ρ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ² Π² ΡΠΏΠ΅ΠΊΡΡΠ΅ Π½Π° ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΌ ΡΡΠΎΠ²Π½Π΅.
ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½Π°Ρ ΡΡΡΡΠΊΡΡΡΠ° Sr2Ru04 ΡΠ°ΡΡΡΠΈΡΠ°Π½Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ Π·ΠΎΠ½Π½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ Π² ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ LDA. ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΉ Π³Π°ΠΌΠΈΠ»ΡΡΠΎΠ½ΠΈΠ°Π½ ΠΌΠ°Π»ΠΎΠΉ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ Π² Π±Π°Π·ΠΈΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΊΡΡΡΠΈΠ΅ Ru-4d ΠΈ 0−2Ρ Π·ΠΎΠ½. ΠΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΡΡΠΈΡΠ΅Π½Ρ Π² ΡΠ°ΠΌΠΊΠ°Ρ LDA-fDMFT (QMC) ΡΡ Π΅ΠΌΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ab initio ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΈ Ρ ΡΠ½Π΄ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ. ΠΡΠΎ ΠΏΡΠΈΠ²Π΅Π»ΠΎ ΠΊ Π·Π°ΠΌΠ΅ΡΠ½ΠΎΠΌΡ ΠΏΠ΅ΡΠ΅ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π²Π΅ΡΠ° ΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ ΠΎΡΠΎΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠΉ Π½ΠΈΠΆΠ½Π΅ΠΉ Ρ Π°Π±Π±Π°ΡΠ΄ΠΎΠ²ΡΠΊΠΎΠΉ Π·ΠΎΠ½Ρ Π² ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠΎΠ² Ρ Π΄Π°Π½Π½ΡΠΌΠΈ XPS ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°, Π½ΠΈΠΆΠ½ΡΡ Ρ Π°Π±Π±Π°ΡΠ΄ΠΎΠ²ΡΠΊΠ°Ρ Π·ΠΎΠ½Π° ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π° Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ, ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π° -3 ΡΠ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΌ ΡΠΏΠ΅ΠΊΡΡΠ΅. Π ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΡΡΡ ΡΡΠΎΠΌΡ, LDA ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ ΠΏΡΠΈ ΡΡΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ ΠΏΡΠΎΠ²Π°Π». ΠΡΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ Π½Π΅ Π²ΡΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΏΠ΅ΠΊΡΡΡ ΠΈΠΌΠ΅ΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡ.
Π€ΠΎΡΠΌΠ°Π»ΠΈΠ·ΠΌ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΠ°Π½ΡΠ΅ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠΏΠ΅ΠΊΡΡΠ°ΠΌΠΈ Π² ΡΠΈΡΠΎΠΊΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΡΠ½Π΅ΡΠ³ΠΈΠΉ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΏΠ΅ΠΊΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠΎΠ³Π»Π°ΡΡΠ΅ΡΡΡ Ρ ΡΠΎΡΠΎΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΡΠΌΠΈ Π΄Π°Π½Π½ΡΠΌΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌΠΈ ΠΏΡΠΈ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΏΠ°Π΄Π°ΡΡΠΈΡ ΡΠΎΡΠΎΠ½ΠΎΠ².
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠΎΡΠΎΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΡΡ ΡΠΏΠ΅ΠΊΡΡΠΎΠ² Ρ Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΈ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ ΠΏΠ°Π΄Π°ΡΡΠΈΡ ΡΠΎΡΠΎΠ½ΠΎΠ² ΡΠ°ΠΊΠΆΠ΅ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Ρ Π² LDA+DMFT (QMC) ΡΠ°ΡΡΠ΅ΡΠ΅. ΠΡΡΠΈΡΠ»Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΌΠΈΡΠΎΠ²ΠΊΠΈ ΠΌΠ°ΡΡΡ ΠΏΠΎΡΡΠ΄ΠΊΠ° 2.5 Ρ ΠΎΡΠΎΡΠΎ ΡΠΎΠ³Π»Π°ΡΡΠ΅ΡΡΡ Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΌΠΈ ARPES, dHvA ΠΈ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ. ΠΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΡΠ΅ Π·ΠΎΠ½Ρ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΈΠ· LDA+DMFT (QMC) ΡΠ°ΡΡΠ΅ΡΠ°, Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌ ΡΠΎΠ³Π»Π°ΡΠΈΠΈ Ρ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠ΅ΠΉ, ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½Π½ΠΎΠΉ ΠΈΠ· ARPES Π΄Π°Π½Π½ΡΡ . Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ Π² ΠΏΠΎΠ»ΡΠ·Ρ Π²Π°ΠΆΠ½ΠΎΠΉ ΡΠΎΠ»ΠΈ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΡΡ ΡΡΡΠ΅ΠΊΡΠΎΠ² Π² S^RuO.*.
Π ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ LDA+DMFT (QMC) ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π΄Π»Ρ 3d ΡΠΈΡΡΠ΅ΠΌ [82, 187], Π² Sr2Ru04 ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Ρ ΡΠ²Π½ΡΠ΅ ΡΠ°ΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°ΡΡΡΠΈΡΠ°Π½Π½ΡΠΌ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌ ΡΠΎΡΠΎΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΡΠΌΠΈ ΡΠΏΠ΅ΠΊΡΡΠ°ΠΌΠΈ. Π‘Π²ΡΠ·Π°Π½Ρ Π»ΠΈ ΡΡΠΈ ΡΠ°ΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Ρ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΠΌΠ°ΡΡΠΈΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΈΠ»ΠΈ ΡΡΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΡΠΈΡΠΈΠ½Ρ Π»ΠΈΠ½ΠΈΠΈ Π½Π° ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΏΠ΅ΠΊΡΡΡ, ΠΈΠ»ΠΈ ΠΈΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠΈΡΠΎΠ²Π°ΡΡ ΠΊΠ°ΠΊ ΡΠ΅ΡΡΠ΅Π·Π½ΡΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΠΊ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π°, Π½Π° ΡΠ΅ΠΊΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΠΎΠΊΠ° Π½Π΅ ΡΡΠ½ΠΎ. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π΄ΠΎ ΡΠΈΡ ΠΏΠΎΡ Π½Π΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΡΠΏΠΎΡΠΎΠ± ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΠΌΠΎΠ³ΠΎ PES ΡΠΏΠ΅ΠΊΡΡΠ° ΠΈΠ· ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΈΡΡΡΡΠΈΠ΅ ΠΊΠ°Π½Π°Π»Ρ Π²ΠΎΠ·Π±ΡΠΆΠ΄Π΅Π½ΠΈΡ Π²ΠΌΠ΅ΡΡΠ΅ Ρ ΠΌΠ°ΡΡΠΈΡΠ½ΡΠΌΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΠΌΠΎΠ³ΡΡ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΊ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΡΠΎΡΠΌΡ Π»ΠΈΠ½ΠΈΠΈ, ΠΊΠ°ΠΊ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ Π€Π°Π½ΠΎ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠΎΠ² [213]. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π² Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΊ ΡΡΡΠ΅ΠΊΡΠ°ΠΌ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΉ Π² S^RuO.*, Π΄Π°Π½Π½ΡΠ΅ ΡΠ°ΡΡΠ΅ΡΡ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΡΡ ΡΡΡΠ΅ΠΊΡΠΎΠ² Π² ΡΠΈΡΡΠ΅ΠΌΠ°Ρ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΊ ΡΠΈΡΠΈΠ½Π΅ Π·ΠΎΠ½Ρ.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅ Π² Π΄Π°Π½Π½ΠΎΠΉ Π³Π»Π°Π²Π΅, ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ Π² [208,214] ΠΈ Π½Π΅ΠΎΠ΄Π½ΠΎΠΊΡΠ°ΡΠ½ΠΎ Π΄ΠΎΠΊΠ»Π°Π΄ΡΠ²Π°Π»ΠΈΡΡ Π½Π° ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΡΡ ΠΈ ΡΠ΅ΠΌΠΈΠ½Π°ΡΠ°Ρ .
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- W. B. Holzapfel, «Structural systematics of 4f and 5f elements under pressure,» J. Alloys Π‘ΠΎΡΡ. 223, 170 (1995).
- A.K. McMahan, C. Huscroft, R.T. Scalettar, and E.L. Pollock, «Volume-collapse tran- sitions in the rare earth metals,» J. Comput.-Aided Mater. Design 5, 131 (1998).
- M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, «Superconductivity at 93 Π in a new mixed-phase Yb-Ba-Cu-0compound system at ambient pressure,» Phys. Rev. Lett. 58, 908 (1987).
- E. Dagotto, «Correlated electrons in high-temperature superconductors,» Rev. Mod. Phys. 66, 763 (1994).
- G.R. Stewart, Z. Fisk, and M. S. Wire, «New Ce heavy-fermion system: CeCue,» Phys. Rev. Π 30, 482 (1984).
- G.R. Stewart, «Heavy-fermion systems,» Rev. Mod. Phys. 56, 755 (1984).
- B. ΠΠΎΠΏ, «ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½Π°Ρ ΡΡΡΡΠΊΡΡΡΠ° Π²Π΅ΡΠ΅ΡΡΠ²Π° — Π²ΠΎΠ»Π½ΠΎΠ²ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»Ρ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ,» Π£Π€Π 172, 336−348 (2002).
- Π. Terakura, Π’. Oguchi, Π. R. Williams, and J. Kiibler, «Band theory of insulating transition-metal monoxides: Band-structure calculations,» Phys. Rev. Π 30, 4734 (1984).
- J.C. Hubbard, Proc. Roy. Soc. A 276, 238 (1963).
- W. Metzner and D. Vollhardt, «Correlated lattice Fermions in d=oo dimensions,» Phys. Rev. Lett. 62, 324 (1989).
- D. Vollhardt, Correlated Electron System. — Singapore: V. J. Emery, World Scientific, 1993.
- V.L Anisimov, A. L Poteryaev, M.A. Korotin, A.O. Anokhin, and G. Kotliar, «First- principles calculations of the electronic structure and spectra of strongly correlated sys-tems: dynamical mean-field theory,» J. Phys. Cond. Matter. 9, 7359 (1997).
- ΠΠΆ. ΠΠ°ΠΉΠΌΠ°Π½, ΠΡΠΈΠ½ΡΠΈΠΏΡ ΡΠ΅ΠΎΡΠΈΠΈ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°. — ΠΠΎΡΠΊΠ²Π°: ΠΠΈΡ, 1974 .
- G. Π. Wannier, «The structure of electronic excitation levels in insulating crystals,» Phys. Rev. 52, 191 (1937).
- N. Marzari and D. Vanderbild, «Maximally localized generalized Wannier functions for composite energy bands,» Phys. Rev. Π 56, 12 847 (1997).
- V. I. Anisimov et al, «Full orbital calculation scheme for materials with strongly corre- lated electrons,» Phys. Rev. Π 71, 125 119 (2005).21. 0. Π. Andersen and T. Saha-Dasgupta, «Muffin-tin orbitals of arbitrary order,» Phys.Rev. Π 62, 16 219 (2000).
- G. Kothar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, and G.A. Marianetti, «Electronic structure calculations with dynamical mean-field theory: a spectral densityfunctional approach,» cond-mat/511 085 .
- W. Kohn, «Analytic properties of Bloch waves and Wannier functions,» Phys. Rev. 115, 809 (1959).
- E. I. Blount, «Formalisms of band theory,» Solid State Phys. 13, 305 (1962).
- W. Kohn, «Construction of Wannier functions and application to energy bands,» Phys. Rev. Π 7, 4388 (1973).
- A. ΠΠ½ΠΈΠΌΠ°Π»Ρ, ΠΠ²Π°ΠΏΡΠΎΠ²Π°Ρ ΡΠ΅ΠΎΡΠΈΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ²Π΅ΡΠ΄ΡΡ ΡΠ΅Π». -Π.: ΠΠΈΡ, 1981 .
- R. D. King-Smith and D. Vanderbilt, 'Theory of polarization of crystalline solids," Phys. Rev. Π 47, 1651 (1993).
- R. Resta, «Macroscopic polarization in crystalline dielectrics: the geometric phase ap- proach,» Rev. Mod. Phys. 66, 899 (1994).
- A. J. Williamson, Randolph Q. Hood, and J. C. Grossman, «Linear-scaling quantum Monte Carlo calculations,» Phys. Rev. Lett. 87, 246 406 (2001).
- A. Calzolari, N. Marzari, L Souza, and M. B. Nardelli, «Ab initio transport properties of nanostructures from maximally localized Wannier functions,» Phys. Rev. Π 69, 3 5108(2004).
- W. Ku, H. Rosner, W. E. Pickett, and R. T. Scalettar, «Insulating ferromagnetism in 1. a4Ba2Cu20io: an ab initio Wannier function analysis,» Phys. Rev. Lett. 89, 16 7204(2002).
- I. Paul and G. Kotliar, «Thermal transport for many-body tight-binding models,» Phys. Rev. Π 67, 115 131 (2003).
- D. M. Whittaker and M. P. Croucher, «Maximally localized Wannier functions for pho- tonic lattices,» Phys. Rev. Π 67, 85 204 (2003).
- A. Garcia-Martin, D. Hermann, F. Hagmann, K. Busch, and P. Wolfle, «Defect com- putations in photonic crystals: a solid state theoretical approach,» Nanotechnology 14,177 (2003).
- G. F. Koster, «Localized functions in molecules and crystals,» Phys. Rev. 89, 67 (1953).
- G. Parzen, «Electronic energy bands in metals,» Phys. Rev. 89, 237 (1953).
- W. Kohn and J. R. Onffroy, «Wannier functions in a simple nonperiodic system,» Phys. Rev. Π 8, 2485 (1973).
- W. Kohn, «Construction of Wannier functions and applications to energy bands,» Phys. Rev. 7, 4388 (1973).
- W. Kohn, «Wannier functions and self-consistent metal calculations,» Phys. Rev. Π 10, 382 (1974).
- J. J. Rehr and W. Kohn, «Wannier functions in crystals with surfaces,» Phys. Rev. Π 10, 448 (1974).
- M. R. Geller and W. Kohn, «Theory of generalized Wannier functions for nearly periodic potentials,» Phys. Rev. Π 48, 14 085 (1993).
- P. W. Anderson, «Self-consistent pseudopotentials and ultralocalized functions for energy bands,» Phys. Rev. Lett. 21, 13 (1968).
- J. Des Cloizeaux, «Orthogonal orbitals and generalized Wannier functions,» Phys. Rev. 129, 554 (1963).
- J. Des Cloizeaux, «Energy bands and projection operators in a crystal: analytic and asymptotic properties,» Phys. Rev. 135, A685 (1964).
- J. Des Cloizeaux, «Analytical properties of n-dimensional energy bands and Wannier functions,» Phys. Rev. 135, A698 (1964).
- M. Born and R. Oppenheimer, «Zur Quantentheorie der Molekeln,» Ann. Phys. (Leipzig) 84, 457 (1927).
- R. Jones and 0. Gunnarsson, «The density functional formalism, its applications and prospects,» Rev. Mod. Phys. 61, 689 (1989).
- E. MuUer-Hartmann, Z. Phys. Π 74, 507 (1989).
- E. Muller-Hartmann, Z. Phys. Π 76, 211 (1989). 55. ΠΈ. Brandt and Π‘ Mielsch, 'Thermodynamics and correlation functions of the Falicov-Kimball model in large dimensions," Z. Phys. Π 76, 365 (1975).
- V. Janis and D. Vollhardt, «Comprehensive mean field theory for the Hubbard model,» Int. J. Mod. Phys. 6, 731 (1992).
- A. Georges and G. Kotliar, «Hubbard model in infinite dimensions,» Phys. Rev. Π 45, 6479 (1992).
- M. Jarrell, «Hubbard model in infinite dimensions: a quantum Monte Carlo study,» Phys. Rev. Lett. 69, 168 (1992).
- Th. Pruschke, M. Jarrell, and J. K. Freericks, «Anomalous normal-state properties of high- Tc superconductors: intrinsic properties of strongly correlated electron systems?,"Adv. in Phys. 44, 187 (1995).
- A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, «Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions,» Rev. Mod.Phys. 68, 13 (1996).
- Π . Hohenberg and W. Kohn, «Inhomogeneous electron gas,» Phys. Rev. 136, B864 (1964).
- M. Levy, «Universal variational functionals of electron densities, first-order density ma- trices, and natural spin- orbitals and solution of the v-representability problem,» Proc.Natl. Acad. Sci. (USA) 76, 6062 (1979).
- W. Kohn and L.J. Sham, «Self-consistent equations including exchange and correlation effects,» Phys. Rev. 140, A1133 (1965).
- J.C. Slater, Quantum theory of molecules and solids. — New York: McGrow-Hill, 1974. — Vol. IV .
- L. Hedin and B.I. Lundqvist, «Explicit local exchange-correlation potentials,» J. Phys. C: Solid St. Phys. 4, 2064 (1971).
- P.W. Anderson, Moment formation in solids. — New York and London: W.J.L. Buyers, Plenum Press, 1984. — 313 p .
- G. Kotliar and D. Vollhardt, «Strongly correlated materials: insights from dynamical mean-field theory,» Phys. Today 57, 53 (2004).
- J.E. Hirsch and R.M. Fye, «Monte Carlo method for magnetic impurities in metals,» Phys. Rev. Lett. 56, 2521 (1986).
- H. Keiter and J.C. Kimball, «Perturbation technique for the Anderson hamiltonian,» Phys. Rev. Lett. 25, 672 (1970).
- Th. Pruschke and N. Grewe, «The Anderson model with finit Coulomb repulsion,» Z. Phys. Π 74, 439 (1989).
- Th. Pruschke, D.L. Cox, and M. Jarrell, «Hubbard model at infinite dimensions: ther- modynamic and transport properties,» Phys. Rev. Π 47, 3553 (1993).
- M. Caffarel and W. Krauth, «Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity,» Phys. Rev. Lett. 72, 1545(1994).
- R. Bulla, «The numerical renormalization group method for correlated electrons,» Adv. Solid State Phys. 40, 169 (2000).
- H. Kajueter and G. Kotliar, «Band degeneracy and the Mott transition: dynamical mean field study,» Int. J. Mod. Phys. Π 11, 729 (1997).
- M.B. Zoin, Th. Pruschke, J. Keller, A.I. Poteryaev, LA. Nekrasov, and V.I. Anisimov, «Combining density-functional and dynamical-mean-field theory for Lai_a-Srj-TiO3,"Phys. Rev. Π 61, 12 810 (2000).
- M.J. Rozenberg, «Integer-filling metal-insulator transitions in the degenerate Hubbard model,» Phys. Rev. Π 55, R4855 (1997).
- J.E. Han, M. Jarrell, and D.L. Cox, «Multiorbital Hubbard model in infinite dimensions: Quantum Monte Carlo calculation,» Phys. Rev. Π 58, R4199 (1998).
- Π. Held and D. Vollhardt, «Microscopic conditions favoring itinerant ferromagnetism: Hund’s rule coupling and orbital degeneracy,» Euro. Phys. J. Π 5, 473 (1998).
- LA. Nekrasov, K. Held, N. Blumer, A.I. Poteryaev, V.I. Anisimov, and D. Vollhardt, «Calculation of photoemission spectra of the doped Mott insulator Lai_xSra-TiO3 using
- DA+DMFT (QMC),» Euro. Phys. J. Π 18, 55 (2000).
- Π. Held, I. Π. Nekrasov, G. Keller, V. Eyert, N. Bluemer, A. K. McMahan, R.T. Scalet- tar, T. Pruschke, V. I. Anisimov, and D. Vollhardt, «Realistic investigations of correlatedelectron systems with LDA+DMFT,» Psi-k Newsletter 56, 65 (2003).
- A. Georges, «Strongly correlated electron materials: Dynamical mean-field theory and electronic structure,» cond-mat/403 123 .
- K. Held, «Electronic structure calculations using dynamical mean field theory,» cond- mat/511 293 .
- V. Anisimov, J. Zaanen, and O. Andersen, «Band theory and Mott insulators: Hubbard ΠΈ instead of Stoner /,» Phys. Rev. Π 44, 943 (1991).
- V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Gzyzyk, and G. A. Sawatzky, «Density-functional theory and NiO photoemission spectra,» Phys. Rev. Π 48, 16929(1993).
- V.I. Anisimov, F. Aryasetiawan, and A. Lichtenstein, «First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method,"J. Phys.: Gondens. Metter. 9, 767 (1997).
- Hans L. Skriver, The LMTO method: muffin-tin orbitals and electronic structure. — New York: Springer, 1984. -271 p .
- K. Andres, J. E. Graebner, and H. R. Ott, «4/-virtual-bound-state formation in GeAb at low temperatures,» Phys. Rev. Lett. 35, 1779 (1975).
- H. R. Ott, H. Rudigier, P. Delsing, and Z. Fisk, «Magnetic ground state of a heavy- electron system: U2Zni7,» Phys. Rev. Lett. 52, 1551 (1984).
- F. Steglich, J. Aarts, G. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schafer, «Superconductivity in the presence of strong pauli paramagnetism: GeGu2Si2,» Phys.Rev. Lett. 43, 1892 (1979).
- G. R. Stewart, Z. Fisk, J. 0. Willis, and J. L. Smith, «Possibility of coexistence of bulk superconductivity and spin fiuctuations in UPt3,» Phys. Rev. Lett. 52, 679 (1984).
- H. R. Ott, H. Rudigier, Z. Fisk, and J. L. Smith, «UBei3: an unconventional actinide superconductor,» Phys. Rev. Lett. 50, 1595 (1983).
- S. Kondo et al, «LiV2O4: a heavy fermion transition metal oxide,» Phys. Rev. Lett. 78, 3729 (1997).
- R. Ballou, E. Leli’evre Berna, and B. Fak, «Spin fluctuations in (Yo.97Sco.o3)Mn2: a ge- ometrically frustrated, nearly antiferromagnetic, itinerant electron system,» Phys. Rev.1.ett. 76, 2125 (1996).
- S.A. Garter, T.F. Rosenbaum, P. Metcalf, J.M. Honig, and J. Spalek, «Mass enhancement and magnetic order at the Mott-Hubbard transition,» Phys. Rev. Π 48, 16 841 (1993).
- D.C. Johnston, C.A. Swenson, and S. Kondo, «Specific heat (1.2−108 K) and thermal expansion (4.4−297 K) measurements of the 3d heavy-fermion compound LiV2O4,» Phys.Rev. Π 59, 2627 (1999).
- P.W. Anderson, «Ordering and antiferromagnetism in ferrites,» Phys. Rev. Π 102, 1008 (1956).
- V.I. Anisimov, M.A. Korotin, M. Zolfi, T. Pruschke, K. Le Hur, and T.M. Rice, «Elec- tronic structure of the heavy fermion metal LiV2O4,» Phys. Rev. Lett. 83, 364 (1999).
- J. Matsuno, A. Fujimori, and L.F. Mattheiss, «Electronic structure of spinel-type 4,» Phys. Rev. Π 60, 1607 (1999).
- V. Eyert and K.-H. Hock, «Electronic structure of V2O5: role of octahedral deformations,» Phys. Rev. Π 57, 12 727 (1998).
- V. Eyert, K.-H. Hock, S. Horn, A. Loidl, and P. S. Riseborough, «Electronic structure and magnetic interactions in LiV2O4,» Europhys. Lett. 46, 762 (1999).
- K. Terakura, T. Oguchi, A.R. Williams, and J. Kubler, «Band theory of insulating transition-metal monoxides: band-structure calculations,» Phys. Rev. Π 30, 4734 (1984).
- S.-H. Lee, Y. Qiu, C. Broholm, Y. Ueda, and J.J. Rush, «Spin fiuctuations in a magnet- ically frustrated metal LiV2O4,» Phys. Rev. Lett. 86, 5554 (2001).
- H. Kessler and M.J. Sienko, «Low-temperature magnetic susceptibility of the spinel 4,» J. Chem. Phys. 55, 5414 (1971).
- K. Miyoshi, M. Ihara, K. Fujiwara, and J. Takeuchi, «Magnetic and calorimetric studies of Li (Vi_xMx)2O4 (M = Cr, Ti) spinel compounds,» Phys. Rev. Π 65, 92 414 (2002).
- A. Krimmel, A. Loidl, M. Klemm, S. Horn, and H. Schober, «Magnetic properties of the d-metal heavy-fermion system Lii_a.Znj-V2O4,» Physica Π 276, 766 (2000).
- J. Zaanen. and G.A. Sawatzky ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ J=0.64 ΡΠ, «Systematics in band gaps and optical spectra of 3D transition metal compounds,» J. Solid State Chem. 88,8 (1990).
- I. A. Nekrasov, Z. V. Pchelkina, G. Keller, Th. Pruschke, K. Held, A. Krimmel, D. Vollhardt, and V. I. Anisimov, «Orbital state and magnetic properties of LiV2O4,» Phys.Rev. Π 67, 85 111 (2003).
- W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933).
- J.G. Bednorz and K.A. Miiller, «Possible high Tc superconductivity in the Ba-La-Cu-0 system,» Zeitschrift fur Physik Π 64, 189 (1986).
- P. Dai, B.C. Chakoumakos, G.F. Sun, K.W. Wong, Y. Xin, and D.F. Lu, «Synthesis and neutron powder diffraction study of the superconductor HgBa2Ca2Cu3O8+
- J. Bardeen, L. N. Cooper, and J. R. Schrieffer, «Theory of superconductivity,» Phys. Rev. 108, 1175 (1957).
- Π.Π. Π ΠΈΠ½Π·Π±ΡΡΠ³, «Π‘Π²Π΅ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ: ΠΏΠΎΠ·Π°Π²ΡΠ΅ΡΠ°, Π²ΡΠ΅ΡΠ°, ΡΠ΅Π³ΠΎΠ΄Π½Ρ, Π·Π°Π²ΡΡΠ°,» Π£Π€Π 170, 619 (2000).125. http://superconductors.org .
- Y. Yanase, Π’. Jujo, Π’. Nomura, Π. Ikeda, Π’. Hotta, and Π. Yamada, «Theory of super- conductivity in strongly correlated electron systems,» Phys. Rep. 387, 1 (2003).
- P.W. Anderson, «The resonating valence bond state in La2CuO4 and superconductivity,» Science 235, 1196 (1987).
- P.W. Anderson, The Theory of Superconductivity in the High-Tc Cuprates. — Princeton: Princeton University Press, 1997 .
- N.F. Mott, Proc. Phys. Soc. London, A 62, 416 (1949).
- N.F. Mott, Metal-insulator transitions.-London/Philadelphia: Teilor and Francis, 1990 .
- H. Wilhelm, C. Cros, E. Reny, G. Demazeau, and M. Hanfland, «Influence of pressure on the crystal structure of Nd2CuO4,» J. Mater. Chem. 8, 2729 (^ 1998).
- R. J. Cava, R. B. van Dover, B. Batlogg, and E. A. Rietman, «Bulk superconductivity at 36 Π in Lal.8Sr0.2CuO4,» Phys. Rev. Lett. 58, 408 (1987).
- J.D. Axe and M. K. Crawford, «Structural instabilities in lanthanum cuprate supercon- ductors,» J. Low. Temp. Phys. 95, 271 (1994).
- H. Tou, M. Matsumura, and H. Yamagata, «^^Cu nuclear spin-lattice relaxation study for low-temperature structural transition in (Lai_iBaa-)2CuO4 around x==0.06,» J. Phys.Soc. Jap. 62, 1474 (1993).
- T. Kamiyama, F. Izumi, H. Takahashi, J.D. Jorgensen, B. Dabrowski, R.L. Hitterman, D.G. Hinks, H. Shaked, Π’.Π. Mason, and M. Seabaugh, «Pressure-induced structuralchanges in Nd2-xCexCuO4 (x = 0 and 0.165),» Physica G 229, 377 (1994).
- V.I. Anisimov, M.A. Korotin, I.A. Nekrasov, Z.V. Pchelkina, and S. Sorella, «First princi- ples electronic model for high-temperature superconductivity,» Phys. Rev. Π 66, 10 0502(2002).
- A.I. Lichtenstein, M.I. Katsnelson, V.P. Antropov, and V.A. Gubanov, «Local spin den- sity functional approach to the theory of exchange interactions in ferromagnetic metalsand alloys,» J. Magn. Magn. Mater. 67, 65 (1987).
- A.I. Liechtenstein, V.I. Anisimov, and J. Zaanen, «Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators,» Phys. Rev. Π 52, R5467(1995).
- V.I. Anisimov and 0. Gunnarsson, «Density-functional calculation of effective Goulomb interactions in metals,» Phys. Rev. Π 43, 7570 (1991).
- A. Nazarenko, K.J.E. Vos, S. Haas, E. Dagotto, and R.J. Gooding, «Photoemission spectra of Sr2CuO2Gl2: a theoretical analysis,» Phys. Rev. Π 51, 8676 (1995).
- L. F. Mattheiss, «Electronic band properties and superconductivity in La2-yXyGuO4,» Phys. Rev. Lett. 58, 1028 (1987).
- J. Yu, A. J. Freeman, and J. H. Xu, «Electronically driven instabilities and supercon- ductivity in the layered La2_xBa2:GuO4 perovskites,» Phys. Rev. Lett. 58, 1035 (1987).
- Tamio Oguchi, «Electronic property of La2GuO4 with two different layered structures,» Jpn. J. Appl. Phys. 26, L417 (1987).
- A. Bianconi, M. De Santis, A. Di GiccoA., M. Flank, A. Fontaine, P. Lagarde, H. Katayama-Yoshida, A. Kotani, and A. Marcelli, «Symmetry of the 3d^ ligand hole in-duced by doping in YBa2Gu3O7_j,» Phys. Rev. Π 38, 7196 (1988).
- Π’. Chen, L. Π. Tjeng, J. Kwo, Π. L. ΠΠ°ΠΎ, Π . Rudolf, F. Sette, and R. Π. Fleming, «Out-of-plane orbital characters of intrinsic and doped holes in La2-a-SrxCuO4,» Phys.Rev. Lett. 68, 2543 (1992).
- A. Borisov V. Gavrichkov and S. G. Ovchinnikov, «Angle-resolved photoemission data and quasiparticle spectra in antiferromagnetic insulators ΠΠ³Π³Π‘ΠΈΠΠ³Π‘Π¬ and Π‘Π°Π³Π‘ΠΈΠΠ³Π‘Π¬,"Phys. Rev. Π 64, 235 124 (2001).
- O.K. Andersen, Z. Pawlowska, and O. Jepsen, «Illustration of the linear-muffin-tin- orbital tight-binding representation: compact orbitals and charge density in Si,» Phys.Rev. Π 34, 5253 (1986).
- Π. Johansson, «Energy position of 4/ levels in rare-earth metals,» Phys. Rev. Π 20, 1315 (1979).
- W. A. Harrison, «Localization in / shell metals,» Phys. Rev. Π 29, 2917 (1984).
- D. J. Singh, «Adequacy of the local-spin-density approximation for Gd,» Phys. Rev. Π 44, 7451 (1991).
- A. K. McMahan, R. M. Martin, and S. Satpathy, «Calculated effective Hamiltonian for 1. a2CuO4 and solution in the impurity Anderson approximation,» Phys. Rev. Π 38, 6650(1988).
- M. S. Hybertsen, M. Schloter, and N. E. Ghristensen, «Calculation of Coulomb- interaction parameters for La2CuO4 using a constrained-density-functional approach,"Phys. Rev. Π 39, 9028 (1989).
- A. K. McMahan, J. F. Annett, and R. M. Martin, «Cuprate parameters from numerical Wannier functions,» Phys. Rev. Π 42, 6268 (1990).
- H. Eskes and G. A. SawatzkyL. F. Feiner, «Effective transfer for singlets formed by hole doping in the high-Tc superconductors,» Physica Π‘ 160, 424 (1989).
- F. Mila, «Parameters of a Hubbard hamiltonian to describe superconducting Cu oxides,» Phys. Rev. Π 38, 11 358 (1988).
- E. B. Stechel and D. R. Jennison, «Electronic structure of Π‘ΠΈΠΠ³ sheets and spin-driven high-Tc superconductivity,» Phys. Rev. Π 38, 4632 (1988).
- M. S. Hybertsen, E. B. Stechel, M. Schluter, and D. R. Jennison, «Renormalization from density-functional theory to strong-coupling models for electronic states in Cu-0materials,» Phys. Rev. Π 41, 11 068 (1990).
- V. I. Anisimov and A. V. Kozhevnikov, «Transition state method and Wannier func- tions,» Phys. Rev. Π 72, 75 125 (2005).
- F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichtenstein, «Frequency-dependent local interactions and low-energy effective models from electronicstructure calculations,» Phys. Rev. Π 70, 125 104 (2005).
- M. Cococcioni and S. de Gironcoli, «Linear response approach to the calculation of the effective interaction parameters in the LDA + U method,» Phys. Rev. Π 71, 3 5105(2005).
- Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, and F. 1. ichtenberg, «Superconductivity in a layered perovskite without copper,» Nature (Lon-don) 372, 532 (1994).
- M. Imada, A. Fujimori, and Y. Tokura, «Metal-insulator transitions,» Rev. Mod. Phys. 70, 1039 (1998).
- A.P. Mackenzie, S.R. Julian, A.J. Diver, G.J. McMullan, M.P. Ray nad G.G. Lonzarich, Y. Maeno, S. Nishizaki, and T. Fujita, «Quantum oscillations in the layered perovskitesuperconductor Sr2RuO4,» Phys. Rev. Lett. 76, 3786 (1996).
- A.P. Mackenzie, S.R. Julian, G.G. Lonzarich, Y. Maeno, and T. Fujita, «Comment on «Extended van Hove singularity in a noncuprate layered superconductorPhys. Rev. Lett. 78, 2271 (1997).
- A. V. Puchkov, Z.-X. Shen, T. Kimura, and Y. Tokura, «ARPES results on Fermi surface revisited,» Phys. Rev. Π 58, R13322 (1998).
- Π’. Katsufuji, M. Kasai, and Y. Tokura, «In-plane and out-of-plane optical spectra of Sr2RuO4,» Phys. Rev. Lett. 76, 126 (1996).
- T. Oguchi, «Electronic band structure of the superconductor Sr2RuO4,» Phys. Rev. Π 51, 1385 (1995).
- D. J. Singh, «Relationship of Sr2RuO4 to the superconducting layered cuprates,» Phys. Rev. Π 52, 1358 (1995).
- I. Hase and Y. Nishihara, «Electronic structures of Sr2RuO4 and Sr2RhO4,» J. Phys. Soc. Japan 65, 3957 (1996).
- M. Schmidt, T. R. Cummins, M. Burk, D. H. Lu, N. Nucker, S. Schuppler, and F. 1. ichtenberg, «Nature of the electronic states in the layered perovskite noncuprate su-perconductor Sr2RuO4,» Phys. Rev. Π 53, R14761 (1996).
- T. Yokoya, A. Chainani, T. Takahashi, H. Katayama-Yoshida, M. Kasai, Y. Tokura, N. Shanthi, and D. D. Sarma, «Evidence for correlation effects in Sr2RuO4 from resonantand x-ray photoemission spectroscopy,» Phys. Rev. Π 53, 8151 (1996).
- I. H. Inoue, A. Kimura, A. Harasawa, A. Kakizaki, Y. Aiura, S. Ikeda, and Y. Maeno, «Spectral weight redistribution in a layered 4d-electron superconductor Sr2RuO4,» J.Phys. Chem. Solids 59, 2205 (1998).
- T. T. Tran, T. Mizokawa, S. Nakatsuji, H. Fukazawa, and Y. Maeno, «Correlation effects in Sr2RuO4 and Ca2RuO4: Valence-band photoemission spectra and self-energycalculations,» Phys. Rev. Π 70, 153 106 (2004).
- A. Fujimori, I. Hase, H. Namatame, Y. Fujishima, Y. Tokura, H. Eisaki, S. Uchida, K. Takegahara, and F. M. F. de Groot, «Evolution of the spectral function in Mott-Hubbardsystems with d^ configuration,» Phys. Rev. Lett. 69, 1796 (1992).
- M. B. Zoin, Th. Pruschke, J. Keller, A. L Poteryaev, L A. Nekrasov, and V. L Anisimov, «Combining density-functional and dynamical-mean-field theory for Lai_a-Sra-TiO3,"Phys. Rev. Π 61, 12 810 (2000).
- E. Pavarini, S. Biermann, A. Poteryaev, A. L Lichtenstein, A. Georges, and O. K. Andersen, «Mott transition and suppression of orbital fluctuations in orthorhombic 3d^perovskites,» Phys. Rev. Lett. 92, 176 403 (2004).
- A. Sekiyama et ai, «Mutual experimental and theoretical validation of bulk photoemis- sion spectra of Sri_j-CaxV03,» Phys. Rev. Lett. 93, 156 402 (2004).
- T. M. Rice and M. Sigrist, «Sr2RuO4: an electronic analogue of ^He?,» J. Phys. Condens. Matter 7, L643 (1995).
- G. Baskaran, «Why is Sr2RuO4 not a high Tc superconductor? Electron correlation, Hund’s coupling and p-wave instability,» Physica Π 224, 490 (1996).
- Bergemann, Π. Π . Mackenzie, S. R. Julian, D. Forsythc, and E. Ohmichi, «Quasi-two- dimensional Fermi liquid properties of the unconventional superconductor Sr2RuO4,"Adv. Phys. 52, 639 (2003).
- I. I. Mazin and D. J. Singh, «Ferromagnetic spin fluctuation induced superconductivity in Sr2RuO4,» Phys. Rev. Lett. 79, 733 (1997).
- P. K. de Boer and R. A. de Groot, «Electronic structure of magnetic Sr2RuO4,» Phys. Rev. Π 59, 9894 (1999).
- G. J. McMullan, M. P. Ray, and R. J. Needs, «Comparison of the calculated and observed Fermi surfaces of Sr2RuO4,» Physica Π 223- 224, 529 (1996).
- D. H. Lu, M. Schmidt, T. R. Cummins, and S. Schuppler, «Fermi surface and extended van Hove singularity in the noncuprate superconductor Sr2RuO4,» Phys. Rev. Lett. 76,4845 (1996).
- T. Yokoya, A. Chainani, T. Takahashi, H. Ding, J. C. Campuzano, H. Katayama- Yoshida, M. Kasai, and Y. Tokura, «Extended van Hove singularity in a noncupratelayered superconductor Sr2RuO4,» Phys. Rev. Lett. 76, 3009 (1996).
- T. Yokoya, A. Chainani, T. Takahashi, H. Ding, J. C. Campuzano, H. Katayama- Yoshida, M. Kasai, and Y. Tokura, «Angle-resolved photoemission study of Sr2RuO4,"Phys. Rev. Π 54, 13 311 (1996).
- R. Matzdorf, Z. Fang, Ismail, Jiandi Zhang, T. Kimura, Y. Tokura, K. Terakura, and E. W. Plummer, «Ferromagnetism stabilized by lattice distortion at the surface of thep-wave superconductor Sr2RuO4,» Science 289, 746 (2000).
- A. Damascelli et ai, «Fermi surface, surface states, and surface reconstruction in Sr2RuO4,» Phys. Rev. Lett. 85, 5194 (2000).
- A. Damascelli, «Probing the electronic structure of complex systems by ARPES,» Physica Scripta T 109, 61 (2004).
- A. Liebsch and A. Lichtenstein, «Photoemission quasiparticle spectra of Sr2RuO4,» Phys. Rev. Lett. 84, 1591 (2000).
- V. L Anisimov, L A. Nekrasov, D. E. Kondakov, T. M. Rice, and M. Sigrist, «Orbital- selective Mott-insulator transition in Ca2_iSra-RuO4,» Euro. Phys. J. Π 25, 191 (2002).
- M. Braden, A. H. Moudden, S. Nishizaki, Y. Maeno, and T. Fujita, «Structural analysis of Sr2RuO4,» Physica Π‘ 273, 248 (1997).
- M. Jarrell and J. E. Gubernatis, «Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data,» Phys. Rep. 269, 133 (1996).
- J. J. Yeh and L Lindau, «Atomic subshell photoionization cross sections and asymmetry parameters: 1 < Z < 103,» Atomic data and nuclear data tables (Academic, New York)32, 1 (1985).
- Π. J. Arko, J. J. Joyce, L. Morales, J. Wills, J. Lashley, F. Wastin, and J. Rebizant, «Electronic structure of a- and 7-Pu from photoelectron spectroscopy,» Phys. Rev. Π62, 1773 (2000).
- Th. Pruschke A. Sekiyama S. Suga V.I. Anisimov D. Vollhardt Z.V. Pchelkina, I.A. Nekrasov, «Evidence for strong electronic correlations in the spectra of Sr2RuO4,"cond-mat/601 507 .
- I. A. Nekrasov, K. Held, G. Keller, D. E. Kondakov, Th. Pruschke, M. Kollar, O. K. Andersen, V. I. Anisimov, and D. Vollhardt, «Momentum-resolved spectral functions ofSrVOa calculated by LDA+DMFT,» Phys. Rev. Π 73, 155 112 (2006).
- S. Biermann, A. Dallmeyer, C. Carbone, W. Eberhardt, Π‘ Pampuch, 0. Rader, M. I. Katsnelson, and A. I. Lichtenstein, «Observation of Hubbard bands in 7-manganese,"JETP Letters 80, 612 (2005).
- A. Sekiyama et ai, «Technique for bulk fermiology by photoemission applied to layered ruthenates,» Phys. Rev. Π 70, 60 506® (2004).
- A. Sekiyama and S. Suga, «High-energy bulk-sensitive angle-resolved photoemission study of strongly correlated systems,» J. Electron Spectrosc. Relat. Phenom. 137- 140,681 (2004).