Π”ΠΈΠΏΠ»ΠΎΠΌ, курсовая, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°
ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚

Поиск ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ транскрипционных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ гомСобоксного Π³Π΅Π½Π° Xanf-1 Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Ρƒ ΡˆΠΏΠΎΡ€Ρ†Π΅Π²ΠΎΠΉ Π»ΡΠ³ΡƒΡˆΠΊΠΈ

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Зарайский, А.Π“. (1998), ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ”ΠΠš Ρ‚Ρ€Π΅Ρ… новыхгомСобокс-содСрТащих Π³Π΅Π½ΠΎΠ² класса Anf ΠΈΠ· Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΊΡƒΡ€ΠΈΡ†Ρ‹ ΠΈ ΠΈΡΠΏΠ°Π½ΡΠΊΠΎΠ³ΠΎ Ρ‚Ρ€ΠΈΡ‚ΠΎΠ½Π°. Π¬’моорганмчСс/сйл химия 24,186βˆ’193. Зарайский А. Π“. 2004. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ молСкулярно-гСнСтичСских мСханизмовразвития ΠΌΠΎΠ·Π³Π° Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ эмбрионов ΡˆΠΏΠΎΡ€Ρ†Π΅Π²ΠΎΠΉ Π»ΡΠ³ΡƒΡˆΠΊΠΈ. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология, Π’.38, № 1, с. 40βˆ’47. Gates, M. A., Hibi, M., Renucci, A., Stemple, D., Radbill, A… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π°
  • 1. Π›ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΠΎΠ±Π·ΠΎΡ€
    • 1. 1. ΠΠ΅ΠΉΡ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈ Π°Π½Ρ‚ΠΈΠ½Π΅ΠΉΡ€ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹
    • 1. 2. РСгионализация Π½Π΅Ρ€Π²Π½ΠΎΠΉ Ρ‚Ρ€ΡƒΠ±ΠΊΠΈ
    • 1. 3. ВранскрипционныС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹, ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‰ΠΈΠ΅ участиС Π² Ρ€Π°Π½Π½Π΅ΠΉ дорсо-Π²Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π΅Ρ€Π²Π½ΠΎΠΉ пластинки
    • 1. 4. АнтСриорно-постСриорная рСгионализация Π½Π΅Ρ€Π²Π½ΠΎΠΉ пластинки
    • 1. 5. Π€Π°ΠΊΡ‚ΠΎΡ€Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠ³Ρ€Π°Ρ‚ΡŒ Ρ€ΠΎΠ»ΡŒ ΠΏΠΎΡΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ сигнала Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ€Π°Π½Π½Π΅ΠΉ ΠΠŸ Ρ€Π°Π·ΠΌΠ΅Ρ‚ΠΊΠ΅ Π½Π΅Ρ€Π²Π½ΠΎΠΉ пластинки
    • 1. 6. Роль Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΏΠ»Π°Π½Π°Ρ€Π½ΠΎΠΉ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ Π² Ρ€Π°Π·ΠΌΠ΅Ρ‚ΠΊΠ΅ Π½Π΅Ρ€Π²Π½ΠΎΠΉ пластинки
    • 1. 7. ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½Π°Ρ модСль ΠΠŸ Ρ€Π°Π·ΠΌΠ΅Ρ‚ΠΊΠΈ Π½Π΅Ρ€Π²Π½ΠΎΠΉ пластинки
    • 1. 8. Роль гомСобоксного Π³Π΅Π½Π° Π₯Π°Π³^ 1 Π² Ρ€Π°Π½Π½Π΅ΠΌ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π³ΠΎ ΠΌΠΎΠ·Π³Π° Ρƒ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½Ρ‹Ρ…
    • 1. 9. ΠŸΡ€ΠΈΡ†Π΅Π»ΡŒΠ½Ρ‹ΠΉ поиск транскрипционных рСгуляторов эмбриогСнСза ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ-ΠΎΠ΄Π½ΠΎΠ³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ систСмы
  • 2. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΡ
  • ΠŸΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅
    • 2. 1. Поиск транскрипционных рСгуляторов гомСобоксного Π³Π΅Π½Π° Xanfl
      • 2. 1. 1. Π‘ΠΊΡ€ΠΈΠ½ΠΈΠ½Π³ экспрСссионной ΠΊ Π”ΠΠš Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΈ ΠΏΠΎΠ·Π΄Π½Π΅ΠΉ гаструлы ΡˆΠΏΠΎΡ€Ρ†Π΅Π²ΠΎΠΉ Π»ΡΠ³ΡƒΡˆΠΊΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ ΠΎΠ΄Π½ΠΎ-Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ систСмы
      • 2. 1. 2. ΠšΡ€Π°Ρ‚ΠΊΠ°Ρ характСристика ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… транскрипционных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π°Π½Π°Π»ΠΈΠ· располоТСния ΠΈΡ… Π·ΠΎΠ½ экспрСссии ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π·ΠΎΠ½Π΅ экспрСссии Xanf
    • 2. 2. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ€ΠΎΠ»ΠΈ транскрипционных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² FoxA4a/Pintallavis ΠΈ Xvent2 Π² Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ экспрСссии Xanf-1 Π² Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠΉ нСйроэктодСрмС
    • 2. 1. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° способности Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² FoxA4a/Pintallavis ΠΈ Xvent2 ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒΡΡ с Ρ€Π΅Π³ΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹ΠΌ элСмСнтом ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π° Π³Π΅Π½Π° Xanf-1 in vitro
      • 2. 2. 2. Анализ влияния экзогСнных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² FoxA4a/Pintallavis ΠΈ Xvent2 Π½Π° ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ Π³Π΅Π½Π° Xanf-1 Π² ΡΠΌΠ±Ρ€ΠΈΠΎΠ½Π°Ρ… ΡˆΠΏΠΎΡ€Ρ†Π΅Π²ΠΎΠΉ Π»ΡΠ³ΡƒΡˆΠΊΠΈ
      • 2. 2. 3. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ дСйствия эндогСнных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² FoxA4a/Pintallavis ΠΈ Xvent2 Π½Π° Π³Π΅Π½ Xanf
      • 2. 2. 4. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹ ΠΎ Π½Π΅ΠΏΠΎΡΡ€Π΅Π΄ΡΡ‚Π²Π΅Π½Π½ΠΎΠΌ воздСйствии транскрипционных рСпрСссоров FoxA4a/Pintallavis ΠΈ Xvent2 Π½Π° ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ Π³Π΅Π½Π° Xanf
      • 2. 2. 5. ПодавлСниС экспрСссии Π³Π΅Π½Π° Xanf-1 Π² Ρ‚ΡƒΠ»ΠΎΠ²ΠΈΡ‰Π½ΠΎΠΉ Π·ΠΎΠ½Π΅ Π½Π΅Ρ€Π²Π½ΠΎΠΉ пластинки Ρ…ΠΎΡ€ΠΎΡˆΠΎ согласуСтся с Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½ΠΎ-трансформационной модСлью Π½Π΅ΠΉΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ
  • Π’Ρ‹Π²ΠΎΠ΄Ρ‹
  • 3. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ
    • 3. 1. 1. Π Π΅Π°ΠΊΡ‚ΠΈΠ²Ρ‹
    • 3. 1. 2. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹
    • 3. 1. 3. Π›Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅
    • 3. 1. 4. Π›Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Π΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Π΅
    • 3. 1. 5. Π‘ΡƒΡ„Π΅Ρ€Ρ‹ ΠΈ Ρ€Π°ΡΡ‚Π²ΠΎΡ€Ρ‹
    • 3. 1. 6. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ срСды
    • 3. 1. 7. ΠŸΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Ρ‹
    • 3. 1. 8. ΠŸΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ dig-Π·ΠΎΠ½Π΄Ρ‹
    • 3. 2. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования
    • 3. 2. 1. ДроТТСвая ΠΎΠ΄Π½ΠΎ-гибридная систСма
    • 3. 2. 2. ΠœΠ΅Ρ‚ΠΎΠ΄ тормоТСния Π² Π³Π΅Π»Π΅ Π”ΠΠš-Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… комплСксов (Π•ΠœΠ—Π)
    • 3. 2. 3. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ для приготовлСния Π”ΠΠš-конструкций
    • 3. 2. 4. ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ конструкций для синтСза мРНК для ΠΌΠΈΠΊΡ€ΠΎΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΠΉ. .88 3.2.5 Вранскрипция in vitro
    • 3. 2. 6. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π·Π°Ρ€ΠΎΠ΄Ρ‹ΡˆΠ΅ΠΉ ΡˆΠΏΠΎΡ€Ρ†Π΅Π²ΠΎΠΉ Π»ΡΠ³ΡƒΡˆΠΊΠΈ
  • ΠœΠΈΠΊΡ€ΠΎΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΠΈ синтСтичСских мРНК Π² Π·Π°Ρ€ΠΎΠ΄Ρ‹ΡˆΠΈ ΡˆΠΏΠΎΡ€Ρ†Π΅Π²ΠΎΠΉ Π»ΡΠ³ΡƒΡˆΠΊΠΈ
    • 3. 2. 7. Π‘Π»ΠΎΠΊΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ экспрСссии Π³Π΅Π½ΠΎΠ² Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ подавлСния трансляции эндогСнной мРНК ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΠΉ антисмысловых ΠœΠΎΡ€Ρ„ΠΎΠ»ΠΈΠ½ΠΎ ΠžΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² (МО)
    • 3. 2. 8. Π‘ΠΈΠ½Ρ‚Π΅Π· dig-ΠΌΠ΅Ρ‡Π΅Π½Ρ‹Ρ… Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π·ΠΎΠ½Π΄ΠΎΠ²
    • 3. 2. 9. Ѐиксация Π·Π°Ρ€ΠΎΠ΄Ρ‹ΡˆΠ΅ΠΉ
    • 3. 2. 10. Гибридизация In situ
  • Бписок сокращСний
  • Благодарности

Поиск ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ транскрипционных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ гомСобоксного Π³Π΅Π½Π° Xanf-1 Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Ρƒ ΡˆΠΏΠΎΡ€Ρ†Π΅Π²ΠΎΠΉ Π»ΡΠ³ΡƒΡˆΠΊΠΈ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ВыяснСниС молСкулярно-гСнСтичСских ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Ρ€Π°Π½Π½Π΅Π³ΠΎ развития Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° — ΠΎΠ΄Π½Π° ΠΈΠ· Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π³Π΅Π½ΠΎΠΌΠΈΠΊΠΈ. Π—Π½Π°Π½ΠΈΠ΅ этих ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Ρ‚Π°ΠΊ ΠΆΠ΅ Π²Π°ΠΆΠ½ΠΎ для понимания ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ ΠΌΠ½ΠΎΠ³ΠΈΡ… наслСдствСнных Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Ρƒ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°.

Π‘Ρ€Π΅Π΄ΠΈ всСх ΠΎΡ‚Π΄Π΅Π»ΠΎΠ² Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Π² Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠ΅ΠΉ стСпСни ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ развития Ρ‚.Π½. ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π³ΠΎ ΠΌΠΎΠ·Π³Π°. ВмСстС с Ρ‚Π΅ΠΌ, выяснСниС ΠΈΠΌΠ΅Π½Π½ΠΎ этих ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΊΡ€Π°ΠΉΠ½Π΅ Π²Π°ΠΆΠ½ΠΎ Π²Π²ΠΈΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅Π΄Π½ΠΈΠΉ ΠΌΠΎΠ·Π³ ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π·Π° Π²Ρ‹ΡΡˆΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡ‹ Π½Π΅Ρ€Π²Π½ΠΎΠΉ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π² Ρ‚ΠΎΠΌ числС, Π·Π° ΠΌΡ‹ΡˆΠ»Π΅Π½ΠΈΠ΅ Ρƒ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΏΠ΅Ρ€Π΅Π΄Π½ΠΈΠΉ ΠΌΠΎΠ·Π³ являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½Ρ‹Ρ… анатомичСских ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ², ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ… ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΎΡ‚ Π²ΡΠ΅Ρ… Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π΅Π³ΠΎ развития Π²Π°ΠΆΠ½ΠΎ для понимания особСнностСй ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ Ρ‚ΠΈΠΏΠ° ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π² Ρ†Π΅Π»ΠΎΠΌ.

Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ поиск ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ рСгуляторных Π±Π΅Π»ΠΊΠΎΠ², ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… пространствСнно-Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ «Ρ€Π°ΡΠΏΠΈΡΠ°Π½ΠΈΠ΅» Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² Π·Π°Ρ‡Π°Ρ‚ΠΊΠ΅ ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π³ΠΎ ΠΌΠΎΠ·Π³Π°.

Π Π°Π½Π΅Π΅, Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ молСкулярных основ эмбриогСнСза Π˜Π‘Π₯ РАН, Π±Ρ‹Π» ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½ Π½ΠΎΠ²Ρ‹ΠΉ класс Π³ΠΎΠΌΠ΅ΠΎΠ΄ΠΎΠΌΠ΅Π½Π½Ρ‹Ρ… транскрипционных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ап^ отвСтствСнных Π·Π° Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ€Π°Π½Π½ΡŽΡŽ ΡΡ‚Π°Π΄ΠΈΡŽ развития Π·Π°Ρ‡Π°Ρ‚ΠΊΠ° ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π³ΠΎ ΠΌΠΎΠ·Π³Π° (2Π°Π³Π°1Π·ΠΊΡƒ Π΅1 Π°1., 1992; 2Π°Π³Π°1Π·ΠΊΡƒ Π°1., 1995; ΠšΠ°Π³Π°ΡˆΠΊΠ°ΡƒΠ° Π΅1 Π°1., 1997). На ΠΌΠΎΠ΄Π΅Π»ΠΈ эмбрионов ΡˆΠΏΠΎΡ€Ρ†Π΅Π²ΠΎΠΉ Π»ΡΠ³ΡƒΡˆΠΊΠΈ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΡŒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ класса транскрипционных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π₯апМ, ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΊΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Π·Π°Ρ‡Π°Ρ‚ΠΊΠ° ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π³ΠΎ ΠΌΠΎΠ·Π³Π°, Π° ΠΈΡΠΊΡƒΡΡΡ‚Π²Π΅Π½Π½ΠΎ вызванная активация Π₯Π°ΠΏ/-1 Π²Π½Π΅ Π·ΠΎΠ½Ρ‹ Π΅Π³ΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ экспрСссии — Π² ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅ΠΉ части Π½Π΅Ρ€Π²Π½ΠΎΠΉ пластинкиприводит ΠΊ ΡΠ΅Ρ€ΡŒΠ΅Π·Π½Ρ‹ΠΌ аномалиям ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π³ΠΎ ΠΌΠΎΠ·Π³Π° (Π‘Π°Π˜Π°Ρˆ & Π°1., 1998; Π•Π³ΡˆΠ°ΠΊΠΎΡƒΠ° Π΅1 Π°1., 1999).

Π’ ΡΠ²ΡΠ·ΠΈ с ΡΡ‚ΠΈΠΌ, Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ являСтся поиск ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ спСцифичСских транскрипционных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΡΡ‚Ρ€ΠΎΠ³ΡƒΡŽ ΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ экспрСссии Π₯Π°ΠΏ/-1 Π² Π³Ρ€Π°Π½ΠΈΡ†Π°Ρ… Π±ΡƒΠ΄ΡƒΡ‰Π΅Π³ΠΎ Π·Π°Ρ‡Π°Ρ‚ΠΊΠ° ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π³ΠΎ ΠΌΠΎΠ·Π³Π°.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ сопряТСно со Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ трудностями, обусловлСнными, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, ΠΌΠ°Π»Ρ‹ΠΌΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ Ρ€Π°Π½Π½Π΅Π³ΠΎ Π·Π°Ρ‡Π°Ρ‚ΠΊΠ° ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈ, ΠΊΠ°ΠΊ слСдствиС, вСсьма Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΊΠΎΠΏΠΈΠΉΠ½ΠΎΡΡ‚ΡŒΡŽ искомых транскрипционных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ тСхничСской Π·Π°Π΄Π°Ρ‡Π΅ΠΉ являСтся Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅ΠΉ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ систСматичСский поиск Ρ‚Π°ΠΊΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ экспрСссионных ΠΊΠ”ΠΠš Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊ ΡΠΌΠ±Ρ€ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ.

РСшСниС этих Π΄Π²ΡƒΡ… Π·Π°Π΄Π°Ρ‡ прСдставляСтся Π²Π°ΠΆΠ½Ρ‹ΠΌ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для выяснСния ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… рСгуляторов Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π³ΠΎ ΠΌΠΎΠ·Π³Π°, Π³Π΅Π½Π° Π₯Π°ΠΏ/-1, Π½ΠΎ ΠΈ Ρ Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² рСгуляции экспрСссии Π³Π΅Π½ΠΎΠ² Π² ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ.

1. Зарайский А. Π“. 2004. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ молСкулярно-гСнСтичСских мСханизмовразвития ΠΌΠΎΠ·Π³Π° Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ эмбрионов ΡˆΠΏΠΎΡ€Ρ†Π΅Π²ΠΎΠΉ Π»ΡΠ³ΡƒΡˆΠΊΠΈ. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология, Π’.38, № 1, с. 40−47.

2. Казанская О. Π’., Π•Ρ€ΠΌΠ°ΠΊΠΎΠ²Π° Π“. Π’., ПаннСзС М., Π‘ΠΎΠ½Ρ‡ΠΈΠ½Π½Π΅Π»Π»ΠΈ Π•,.

3. Зарайский, А.Π“. (1998), ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ”ΠΠš Ρ‚Ρ€Π΅Ρ… новыхгомСобокс-содСрТащих Π³Π΅Π½ΠΎΠ² класса Anf ΠΈΠ· Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΊΡƒΡ€ΠΈΡ†Ρ‹ ΠΈ ΠΈΡΠΏΠ°Π½ΡΠΊΠΎΠ³ΠΎ Ρ‚Ρ€ΠΈΡ‚ΠΎΠ½Π°. Π¬’моорганмчСс/сйл химия 24,186−193.

4. Amaya, E., Musci, T.J., and Kirscher, M.W.(1991) Expression of adominant-negative mutant of the FGF receptor disrupts mesoderm formation in.

6. Ang, S.-L., and Rossant, J. (1994). HNF-Π—Ρ€ is essential for node andnotochord formation in mouse development. Cell 78, 561−574.

7. Arend, D., and Niibler-Jang, K. (1994). Imversion of dorsoventral axis?1. Nature 311, 26.

8. Asano M, Emori Y, Saigo K, Shiokawa K., 1992, Isolation andcharacterization of a Xenopus cDNA which encodes a homeodomain highly homologous to Drosophila Distal-less. J Biol Chem. Mar 15−267(8):5044−7.

9. Barth, K. A., Wilson, S. W. (1995). Expression of zebrafish nkx2.2 isinfluenced by sonic hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development 111, 1755−1768.

10. Basler, k., Edlund, Π’., Jessel, T.M., and Yamada, T. (1993). Control of cellpattem in the neural tube: Regulation of cell differentiation by dorsalin-1, a novel.

11. TGPp family member. Cell 1Πͺ, 687−702.

12. Bauer, D.V., Huang, S., Moody, S.A. (1994). The cleavage stage origin of.

13. Spemann’s Organizer: analysis of the movements of blastomere clones beforeand during gastrulation in Xenopus. jDeve/opmew/120, 1179−89.

14. Bayramov AV, Martynova NY, Eroshkin FM, Ermakova GV, Zaraisky.

15. AG., 2004, The homeodomain-containing transcription factor X-nkx-5.1 inhibitsexpression of the homeobox gene Xanf-1 during the Xenopus laevis forebrain development. MecA Dev. Dec-121(12):1425−41.

16. Bellefroid, E. D., Kobbe, A., Gruss, P., Pieler, Π’., Gurdon, J.B.,.

17. Papalopulu, N. (1998).Xiro3 encodes a Xenopus homolog of the Drozophila1. oquois genes and functions in neural specification. EMBOJ. 17.191−203.

18. Bosse, A., Zulch, A., Becker, M. Π’., Torres, M., Gomes-Srarmeta, J.L.,.

19. Modolell, J., Gruss, P. (1997). Identification of the vertebrate Iroquos homeoboxgene family with overlapping expression during early development of the nervous system. MecA. Dev. 67. 169−181.

20. Brewster, R., Lee, J., Ruiz I Altaba, A.(1998).Gli/Zic factors pattern theneural plate by defining domains of cell differentiation. Nature 393, 579−583.

21. Byrd, C.A., and Burd, G.D. (1993) The quantitative relationship betweenolfactory axons and mitral/tufted cells in developing Xenopus With partially deafferented olfactory bulbs. J. Neurobiol.24, 1229−1242.

22. Chen, Y.-P., Huang, Y., and Solursh, M. (1994). A concentration gradientof retinoids in the early Xenopus laevis embrio. Dev. Biol. 161, 70−76.

23. Chiang, C, Litingtung, Y., Lee, E., Young, K. E., Corden, J. L., Westhal,.

24. H. and Beachy, P.A. (1996). Cuclopia and defective axial pattering in micelacking Sonic hedgehog gene function. Nature 383, 407−413.

25. Chitnis, A., Mntner C. (1996). Sensitivity of proneural genes to lateralinhibition affects the pattern of primary neurons mXenopus embryos. Development 122,2295−2301.

26. Chitnis, A. (1999). Control of neurogenesis-lessons from frog, fish and flies.

27. Current Opinion in Neurobiology 9, 18−25.

28. Chitnis, A., Henrique, D., Lewis, J., Ish-Horowicz, D., and Kintler, C.(1995). Primary neurogenesis mXenopus embrios regulated by a homologue of.

29. Drosophila neurogenesis gene Delta. Nature Πͺ1?>, 761−766.

30. Chow, R.L., Altmann, C. R., Lang, R. A., and Haemmati-Brivanlou, A.(1999), Pax6 induces ectopic eyes in a vertebrate. Development 126,4213−4222.

31. Cho KW, Blumberg B, Steinbeisser H, De Robertis EM.

32. Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox genegoosecoid. Ce//67:1111−20.

33. Cox, W. G., and Hemmati-Brivanlou, A. (1995). Caudalization of neuralfate by tissue recombination and bFGF. Development 121, 4349−4358.

34. Couly, G. and Le Dourin, N.M. (1988). The fate map of the cephalic neuralprimordium at the presomitic to the 3-somite stage in the avian embryo.

35. Development 103, Supplement, 101−113.

36. Crossley, P. H., Martinez, S. and Martin, G. R. (1996). Midbraindevelopment induced by FGF8 in the chick embryo. Nature 380, 66−68.

37. Cohen SM, Jurgens G., 1989, Proximal-distal pattern formation in.

38. Drosophila: cell autonomous requirement for Distall-less gene activity in limbdevelopment. EMBO J, 8, 2045;2055.

39. Cunliffe, v., and Smith, J. C. (1994). Specification of mesodermal pattern in.

40. Xenopus laevis by interaction between Brachiyry, noggin, and Xwnt-8. EMBO J.13, 349−359.

41. Diakoku, S., Chikamori, M., Adachi, Π’., Okamura, Y., Nishiyama, T. and.

42. Tsurio, Y. (1983). Ontogenesis of hΠ·Ρ„othalamic immunoreactive ACTH cells invivo and in vitro: role of Rathke’s pouch. Dev. Biol. 97, 81−88.

43. Dale, L., Howes, G., Price, B.M. J., and Smith J. Π‘ (1992). Bonemorfogenetic protein 4: A ventralizing factor in early Xenopus development. 1. Development 115, 573−585.

44. Davidson, D. R., and Hill, R. E. (1991). Msh-like genes: A family ofhomeobox genes with wideranging expression during vertebrate development.

46. Dattani M. Π’., Martinez-Barbera J. P., Thomas P. Q., Brickman J. M.,.

47. Gupta R., Mortensson I. L., Toresson H., Fox M., Wales J. K., Hindmarsh P.

48. C, Krauss S., Beddington R. S. and Robinson I. C, 1998. Mutations in thehomeobox gene HESXl/Hesxl associated with septo-optic dysplasia in human and mouse. Nat. Genet. 19, 125−133.

49. Dirksen ML, Mathers P, Jamrich M., 1993, Expression of a Xenopus.

50. Distal-less homeobox gene involved in forebrain and cranio-facial development.

52. De Robertis, E. M., and Sasai, Y. (1996). A common plan for dorso-ventralpatterning in Bilateria. Nature 380, 37−40,.

53. De Robertis E.M. and Kuroda H. (2004). Dorsal-Ventral patterning andneural induction in Xenopus embrios. Ann.Rev.Cell Dev.Biol.2004.20:258−308.

54. Deschet, K., Bourrat, F., Chourrout, D., Joly, J.S. (1998). Expressiondomain of the medaca (Oryzias latipes) 01-Gsh 1 gene are reminiscent of those of clustered and orphan homeoboxes genes. Dev. Genes Evol. 208. 235−244.

55. Dirksen, M. L., and Jamrich, M. (1992). A novel, activin-inducible, blastopore lipspecific gene of Xenopus laevis contains a fork-head DNA binding domain. Genes Dev. 6, 599−608.

56. Doniach, T. (1993), Planar and vertical induction of anterioposterior patternduring the development of the amphibian central nervous system. J. Neurobiol. 24, 1256−1275.

57. Doniach, T. (1995). Basic FGF as induscer of anteroposterior neural pattern.1. Ce//83, 1067−1070.

58. Eagleson, G., Ferreiro, B. and Harris, W. A. (1995). Fate of anterior neuralridge and morphogenesis oiibQ Xenopus forebrain. J. Neurobiol. 28, 14 158.

59. Echelard, Y., Epstein, D.J., St-Jacques, Π’., Shen, L., Mohleer, J.,.

60. McMahon, J. A., and McMahon, A. P. (1993). Sonic hedgehog, a member of afamily of putative signaling molecules, is implicated in the regulation of CNS polarity. Ce//75, 1417−1430.

61. Ekker, M., Akimenko M.A., AUende, M.L., Smith, R., Droin, G., 1. ngille, R. M., Weinberg, E.S., Westerfield, M. (1997). Relationship among msx gme structure and function in zebrafish and other vertebrates. Mol. Biol. Evol. 14,1008−1022.

62. Ekker, S.C., Mc Grew, L. L., Lai, C.-J., Lee, J. J., von Kessler, D. P.,.

63. Moon, R. Π’., and Beachy, P. A. (1995), Disting expression and shared activitiesof members of the hedgehog gene family of Xenopus laevis. Development 121, 2337−2347.

64. Ermakova, G. V., Alexandrova, E.M., Kazanskaya, O. V., Vasiliev, O. L.,.

65. Smith, M. W., and Zaraisky, A.G. (1999). The homeobox gene, Xanf-l cancontrol both neural differentiation and pattering in the presumptive anterior neuroectoderm of iheXenopus laevis embryo. Development 126,4513−4523.

66. Eroshkin F, Kazanskaya O, Martynova N, Zaraisky A., 2002.

67. Characterization of cis-regulatory elements of the homeobox gene Xanf-l. Gene285, 279−286.

68. Fainsod, A., Steibeisser, H., and De Robertis, E. M. (1994). On thefunction of BMP-4 in patterning the marginal zone of the Xenopus embrio. EMBO 1. J. 13,5015−5025.

69. Fan, C.-M., Porter, J. A., Chiang, C, Chang, D. Π’., Beachy, P. A., and.

70. TessierLavigne, M. (1995). Long-range sclerotome induction by sonichedgehog: Direct role of the aminoterminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell 81, 457−465.

71. Fekany, K., Yamanaka, Y., Leung, Π’., Sirotkin, H. I., Topczewski, J.,.

72. Gates, M. A., Hibi, M., Renucci, A., Stemple, D., Radbill, A., et al. (1999). Thezebrafish bozozok locus encodes Drarma, a homeoprotein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 126, 1427−1438.

73. Gaiano, N., Kohtz, J. D., Turnbull, D. H., and Fishell, G. A. (1999). Amethod for rapid gain-of-fimction studies in the mouse embryonic neuros system.

75. Gammill LS, Sive H. (1997). Identification of otx2 target genes andrestrictions in ectodermal competence during Xenopus cement gland formation.

77. Geoffroy St. Hilaire, E. (1822). Considerations generales sur la vertebre.

79. Glinca, A., Wu, W., Onichtchouk, D., Blumenstock, C, and Niers, C.(1998). Dickkopf-1 is a member of a new family of secreted proteins and function in head induction. Nature 3, 357−362.

80. Gomes-Skarmeta, J. L., del Corral, R. D., de la Calle-Mustlnes, E., Ferre.

81. Marco, D., Modolell, J. (1996). Araucan and caupolican, two members of thenovel Iroquois complex, encode homeoproteins that control proneural and veinforming genes. Cell 85, 95−105.

82. GomesSkarlmeta, J. L., Glavic, A., da la Calle-Mustienes, E., Modolell,.

83. J., Mayor, R. (1998). Xiro, a Xenopus homolog of the Drosophila Iroquoiscomplex genes, control development at the neural plate. EMBOJ. 17, 181−190.

84. Graff, J. M., Thries, R. S., Song, J. J., Celeste, A. J., and Melton, D. A.(1994). Studies sNiih^i Xenopus BMP receptor suggest that ventral mesodermindusing signals override dorsal signals in vivo. Cell 79, 169−179.

85. Graziadei, P. P. Π‘ and MontiGraziadei, A. G. (1992). The influence ofthe olfactory placode on the development of the telencephalon ш Xenopus laevis. 1. Neurosci. 46, 617−629.

86. Grinblat, Y., Gamse, J., Patel, M., Sive, H. (1998). Determination of thezebrafish forebrain: induction and pattering. Development 125, 4403−4416.

87. Gristman, K., Zhang, J., Cheng, S., Heckscher, E., Talbot, W., and.

88. Schier, A. (1999). The EGF-CFC protein one-eyed pinhead is essential for nodalsignaling. Ce//97,121−132.

89. Gristman, K., Talbot, W., and Schier, A.S.(2000). Nodal signaling patternsthe organizer. Development 127, 921−932.

90. Grosschendl, Π³., Gierse, K., and Pagel, J. (1994). HMG domain proteins:

91. Architectaral elements in the assembly of nucleoprotein structures. Trends Genet.10, 94−99.

92. Gruss, P., and Walter, C. (1992). Pax in development. Cell 69, 719−722.

93. Hamburger, V.(1988)" The Heritage of Experimental Embryology: Hans.

94. Spemann and the Organizer" Oxford Univ. Press, Oxford.

95. Gstaiger M, Knoepfel L, Georgiev O, Schaffner W, Hovens CM.(1995).

96. А B-cell coactivator of octamer-binding transcription factors.

98. Haremaki T, Tanaka Y, Hongo I, Yuge M, Okamoto H. (2003) Integrationof multiple signal transducing pathways on Fgf response elements of the Xenopus caudal homologue Xcad3. Development. Oct-130(20):4907−17. Epub 2003 Aug 20.

99. Hashimoto, H., Itoh, M., Yamanaka, Y., Yamashita, S., Shimizu, Π’.,.

100. Solica-Krezel, L., Hibi, M., and Hirano, T. (2000). Zebrafish Dkkl function inforebrain specification and axial mesendroderm formation. Dev. Biol. 217,138−152.

101. Harland R. M., 1991. In situ hybridization: an improved whole-mountmethod for Xenopus embryos. Methods Cell Biol. 36, 685−695.

102. Hawley, S. H. Π’., Wunneberg-Stapleton, K., Hashimoto, C, Laurent, M.

103. N., Watanabe, Π’., Blumberg, B. W., and Cho, K. W. Y. (1995). Disruption of.

104. BMP signals in embryonic Xenopus ectoderm leads to direct neural induction.1. Genes Dev. 9,2923−2935.

105. Heisenberg, C.-P., Brand, M., Jiang, Y.-J., Warga, R., Beuchle, D., van.

106. Eeden, F.J.M., Furutani-Seiki, M., Granato, M., Haffter, P., Hammerschmidt,.

107. M., et al. (1996). Genes involved in forebrain development in the zebrafish, Danioverio. Development 123, 191−203.

108. Hemmati-Brivanlou, A., Stewart, R. M., and Harland, R. M. (1990).

109. Region-specific neural induction of an engrailed protein by anterior notochord in.

111. Hemmati-Brivanlou, A., and Melton, D. (1994). Inhibition of activinreceptor signaling promotes neutralization in Xenopus. Cell 77, 273−281.

112. Hemmati-Brivanlou, A., and Melton, D.(1997). Vertebrate neural induction.

114. Hermesz E., Mackem S., Mahon K. A., 1996. Rpx: a novel anteriorrestricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke’s pouch of the mouse embryo. Development 122, 41−52.

115. HoUey, S. A., Jackson, P. D., Sasai, Y., Lu, Π’., De Robertis, E. M.,.

116. Hoffmann, F. M., and Ferguson, E. L. (1995), A conserved system for dorsoventral pattering in insects and verterbrates involving sog and chd. Nature 376, 249−253.

117. Jacobson M. (1990). Methods for clonal analysis and tracing cell lineages inthe verterbrate CNS. In Methods in Neuroscience, ed PM Conn. Orlando, FL: 1. Academic.

118. Jacobson, A.G. (1963). The determination and positioning of the nose, lensand ear. Interactions within the ectoderm, and between the ectoderm and underlying tissues. J. Exp. Zool. 154, 273−284.

119. Jaynes, J.B. and O’Farrell, P.H. (1991). Active repression of transcriptionby the engrailed homeodomain protein. ^ MBO J. 10, 1427−1433.

120. Jones, C. M., Lyons, K. M., Lapan, P. M., Wright, Π‘ V. E., and Hogan,.

121. B. L. M. (1992). DVR-4 (bone morphogenetic protein-4) as a posteriorventralizing factor mXenopus mesoderm induction. Development 115, 639−647.

122. Kazanskaya, O., Glinka, A., and Niehrs, C. (2000). The role of Xenopusdickkopfl in prechordal plate specification and neural pattering. Development 127, 4981−4992.

123. Kaestner, K.H. (2000). The hepatocyte nuclear factor 3 (HNF3 or FOXA) family in metabolism. Trends Endocrinol. Metab. 11,281−285.

124. Kaufmann, E., Muller, D., Knochel, W. (1995). DNA recognition siteanalysis of Xenopus winged helix proteins. J. Mol. Biol. 248, 239−254.

125. Kessler, D. S. and Melton, D. A. (1994). Verterbrate Embryonic Induction:

126. Mesodermal and Neural Pattering. Science 266, 596−604.

127. Kim, C.-H., Oda, Π’., Itoh, M., Jiag, D., Artinger, K. Π’.,.

128. Chandrasekharappa, S. C, Driever, W., and Chinis, A.B. (2000). Repressoractivity of haedless/ TcF3 is essential for vertebraite head formation. Nature 407, 913−916. «.

129. Knoetgen, Н., Teichmann, U., and Kessel, M. (1999). Head-organizingactivities of endodermal tissues in vertebrates. Cell. Mol Biol. 45, 481−492.

130. Kobayashi, M., Toyama, R., Takeda, H., Dawid, I. Π’., and Kawakami, K.(1998). Overexpression of forebrain-specific homeobox gene six3 induces rostral forebrain enlagement in zebrafish. Development 125, 2973−2982.

131. Korzh, v., Sleptsova, I., Liao, J., HE, J., Gong, Z. (1998). Expression ofzebrafish bHLH genes ngnland nrd defines disting stages of neural differentiation. 1. Dev. Z)y". 213, 92−104.

132. Krauss, S., Concordet, J.-P., and Ingham, P. W, (1993). A functionalconserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell IS, 1431−1444.

133. Kudo N, Kimura Y. (2002) Nuclear DNA endoreduplication during petaldevelopment in cabbage: relationship between ploidy levels and cell size. J Exp ^ot.May-53(371):1017−23.

134. Kuo, J. C, Patel, M., Gamse, J., Merzdorf, C, Liu, X., Apekin, V., Sive,.

135. TGF-beta inhibits pulmonary surfactant protein-B gene transcription through.

136. SMAD3 interactions with NKX2.1 and HNF-3 transcription factors. J. Biol.1. Π‘/Π³Π΅Ρ‚. 277,38 399−38 408.

137. Mangold, O. (1933). Uber die Induktionsfahigkeit der vershiedenen Bezirkeder Neurula von Urodelen. Naturwissenshaften 12, 761−76.

138. Martynova N, Eroshkin F, Ermakova G, Bayramov A, Gray J, Grainger.

139. R, Zaraisky A., 2004, Patterning the forebrain: FoxA4a/Pintallavis and Xvent2determine the posterior limit of Xanfl expression in the neural plate. Development. 1. May-131(10):2329−38.

140. Masai, I. M., Heisenberg, C.-P.H., Barth, K.A., Macdonald, R., Adamek,.

141. S., and Wilson, S. W. (1997). Floating head and masterhlind regulate neuronalpattering in the roof of the forebrain. Neuron 18,43−57.

142. McChinnis, W., and Krumlaf, R.(1992). Homeobox genes and axialpattering. Cell 68, 283−302.

143. Mizuseki, K., Kishi, M., Metsui, M., Nacanishi, S., Sasai, Y. (1998).

144. Xenopus and Zicrelated-1 Sox-2, two factors induced by chordin, have distingactivities in the initiation of neural induction. Development 125, 579−587.

145. Mizuseki, K., Kishi, M., Shiota, K, Nacanishi, S., Sasai, Y. (1998).Sox D: an essential mediator of induction of anterior neural tissues in Xenopus embryos. 1. Neuron, 21, 77−85.

146. Morgan, R., Sargent, M.G. (1997). The role in neural pattering of translationinitiation factor elF4AIIinduction of neural fold genes. Development 124, 27 512 760. ΠΏΠΎ.

147. Nakata, К., Nagai, Π’., Aruga, J., Mikoshiba, K.(1997) JCenopus Zic3, aprimary regulator both in neural and neural crest development. Proc. Natl. Acad. 1. Sci. Π¨Π›. 94, 11 980;11985.

148. Nakata, K., Nagai, Π’., Aruga, J., Mikoshiba, K. (1998).Xenopus Zic familyand its role in neural and naural crest development. Mech. Dev. 75, 43−51.

149. Niehrs, C. (1999). Head in WNT. Trends Genet. 15, 314−319.

150. Nieuwkoop, P. D.(1952). Activation and organization of the central nervoussystem in amphibians. Part 1,2,/. Exp. Zool. 120, 1−81.

151. Nieuwkoop, P. D., and Koster, K. (1995). Vertical versus planar inductionin amphibian early development. Dev. Growth Differ. 37, 653−688.

152. Nieuwkoop, P.D., and Nigtevecht, G.V. (1954). Neural activation andtransformation in explants of competent ectoderm under the influence of fragments of anterior notochord mmodolQS. J.Embryol. Exp.Morph. 2, 175−193.

153. Ntisslein-Volhard, C, and Wieschaus, E. (1980). Mutations affectingsegment number and polarity in Drosophila. Nature 287, 795−801.

154. Onichtch ouk, D., Gawantka, V., Dosch, R., Delius, H., Hirschfeld, K.,.

155. Blumenstock, C, Niehrs, C. (1997). The Xvent-2 homeobox gene is part of the.

156. BMP-4 signalling pathway controlling dorsoventral patterning of Xenopusmesoderm. Development 122, 3045−3053.

157. Wilson SI, Edlund T.(2001) Neural induction: toward a unifying mechanism.

158. NatNeurosci. 2001 Nov-4 Supphl 161−8.

159. Padgett, R. W., ST. Johnson, R.D., and Gelbart, W. M.(1993). Human.

160. BMP-4 can confer normal dorsal-ventral pattering in the Drosophila embryo. Proc.

161. Natl. Acad. Sci. USA 90, 2905−2909.

162. Penton, A., Chen, Y., Staehling-Hampton, K., Wrana, j.l., Attisano, L.,.

163. Szidonua, J., Cassill, J. A., Massaque, J., and Hoffman, F. M. (1994).1.entification of two bone morphogenetic protein type 1 reseptors in Drosophila and evidence that Brk 25D is a decapentaplegic receptor. Cell 78, 239−250. 1. l l.

164. Papalopulu N, Kintner C, 1993, Xenopus Distal-less related homeoboxgenes are expressed in the developing forebrain and are induced by planar signals.

166. Perea-Gomes, A., Rhinn, M., and Ang, S.-L. (2000). Role of anteriorvisceral endoderm in restricting posterior signals in the mouse embryo. Int. J. Biol. 45.

167. Piccolo, S., Aguis, E., Leyns, L., Bhattacharyya, S., Grunz, H.,.

168. Bowmeester, Π’., and De Robertis, E. M. (1999). The head inducer Cerberus is amultifunctional antagonist of nodal, BMP and Wnt signals. Nature 397, 707−710.

169. Piccolo, S., Sasai, Y., Lu, Π’., and De Robertis, E. M. (1996), Dorso-ventralpattering m Xenopus: Inhibition of ventral signals by direct binding of Chordin to 1. BMP-4. Cell 86, 589−598.

170. Price, M. (1993). Members of the Dlxand Nkx-2-genes families areregionally expressed in the developing forebrain. J. Neurobiol. 24, 1385−1399.

171. Rao, Y. (1994). Conversion of mesodermalizing molecule, ihQ Xenopus.

172. Brachiury gene, into a neuralizing factor. Genes Dev. 8, 939−947,.

173. Richter, K., Grunz, H., and Dawid, I. B, (1988), Gene expression in theembryonic nervous system of Xenopus laevis. Proc. Natl. Acad. Sci. USA 85, 8086−8090.

174. Riddle, R. D., Johnson, R.L., Laufer, E., and Tabin, C. (1993). Sonichedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401−1416.

175. Rlssi, M., Wittbrodt, J., Delot, E., Naegeli, M., and Rosa, F. M. (1995),.

176. Zebrafish Radar: A new member of the TGF-P superfamily defines dorsal regionsof the neural plate and the embryonic retina. Mech. Dev. 49, 223−224.

177. Roelink, H., Augsburger, A., Heemskerk, J., Korz, V., Norlin, S., Ruiz i.

178. Ataba, A., Tanabe, Y., Placzek, M., Edlund, Π’., Jessel, T. M., and Dodd, J.(1994). Floor plate and motor neuron induction by vhh-1, a verterbrate homolog of hedgehog expressed by the notochord. Cell 16, 761−775,.

179. Rubenstein, J.L. R., Shimamura, K. (1998), Regionalization of theprozencephalic neural plate, Annu. Rev.Neurosci. 21,445−477,.

180. Ruiz I Altaba, A. (1992). Planar and vertical signals in the induction andpattering of the Xenopus nervous system. Development 115, 67−80.

181. Ruiz I Altaba, A., and Jessell, T. M. (1991). Retinoid acid modifies thepattern of cell differentiation in the central nervous system of neurula stage.

182. Xenopus embryos. Development 112, 945−958.

183. Ruiz I Altaba, A., and Jessell, T. M. (1992). Pintallavis, a gene expressed inthe organizer and midline cells of firog embryos: Involvement in the development of the neural axis. Development 116, 81−93.

184. Ruiz i Altaba, A., Cox, C, Jessell, T.M., Klar, A. (1993). Ectopic neuralexpressionof a floor plate marker in frog embryos injected with the midline transcription factor Pintallavis. Proc. Natl. Acad. Set 90, 8268−8272.

185. Saha, M. S., Servetnic, M. and Granger, R.M. (1992). Vertebrate eyedevelopment. Curr. Opin. Genet. Dev. 2, 582−588.

186. Sasai, Y., Lu, Π’., Steinbeisser, H., Geissert, D., Gont, L. K., and De.

187. Robertis, E. M. (1994). Xenopus chordin: a novel dorsalizing factor activated byorganizer-specific homeoboxes genes. Cell 79, 779−790.

188. Sasai, Y., Lu, Π’., Steinbeisser, H., and De Robertis, E. M. (1995).

189. Regulation of neural indaction by the chd and BMP-4 antagonistic pattering signalsin Xenopus. Nature 376, 333−336.

190. Sasai, Y. (1998). Identifying the missing links: genes that connect neuralinduction and primary neurogenesis in vertebrait embryos. Neuron 21, 455−458.

191. Saxen, L. (1989). Neural induction. Int. J. Dev. Biol. 33, 21−48.

192. Saxen, L., and Toivonen, S. (1961). The two-gradient hypothesis in primaryinduction: The combined effect of two types of indusers mixed in different ratios.

194. Schier, A.F., and Shen, M. M. (2000). Nodal signaling in vertebratedevelopment. Nature 403, 385−389.

195. Schmidt, J.E., Suzuki, A., Ueno, N., and Kimelman, D. (1995). Localized.

196. BMP-4 mediates dorso/ventral pattering in the Qarly Xenopus embryo. Dev. Biol.169,37−50. 1. Π˜Π—.

197. Schuler-Metz А, Knochel S, Kaufmann E, Knochel W. (2000). Thehomeodomain transcription factor Xvent-2 mediates autocatalytic regulation of.

198. BMP-4 expression in Xenopus embryos. J. Biol. Chem. 275, 34 365−34 374.

199. Sive H.L., Grainger R. M., Harland R. M., 2000, Early development of.

200. Xenopus laevis., Cold spring harbor.

201. Shanmugalingam, S., Houart, C, Picker, A., Reifers, F., Macdonald, R.,.

202. Barth, K. A., Griff, K., Brand, M., and Wilson, S.W. (2000). Ace/fgf8 isrequired for forebrain commissure formation and pattering of the telencephalon.

204. Sharpe, C. R. (1991). Retinoic acid can mimic endogenous signals involvedin transformation oiihQ Xenopus nervous system. Neuron 1, 239−247.

205. Shimamura, K., Martinez, S., Puelles, L. and Rubenstein, J. L. R,(1997).

206. Pattems of gene expression in the neural plate and neural tube subdivide theembryonic forebrain into transverse and longitudinal domains. Dev. Neurosci. 19, 88−96.

207. Shimamura, K., Martinez, S., Puelles, L. and Rubenstein, J. L. R. (1997).1.ductive interactions direct early regionalization of the mouse forebrain.

209. Shimeld, S.M., Holland, P.W. (2000). Vertebrate innovations. Proc. Natl.1. Acad. Sci., 91, 4449−4452.

210. Smith, W. C, and Harland, R. M. (1992). Expression cloning of noggin, anew dorsalizing factor localized to the Spermann organizer in Xenopus embryos. 1. Cell 70, 829−840.

211. Schnapp E, Tamaka EM.(2005). Quantitative evaluation of morpholinomediated protein knockdown of GFP, MSXl, and PAX7 during tail regeneration in.

212. Ambystoma mexicanum. Dev Dyn. 2005 Jan-232(l): 162−70.

213. Spermann, H., and Mangold, H. (1924). Uber induction von Embryo.

214. Thisse, Π’., Wright, C.V.E., and Thisse, Π‘ (2000). Activin and Nodalrelated factors control anterior-posterior pattering of the zebrafish embryo. Nature 403, 425−428.

215. Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD.(2000)1.itiation of neural induction by FGF signalling before gastrulation. Nature. Jul 6−406(6791):74−8 425−428.

216. Thomas, P.Q., Johnson, B.V., Rathjen, J. and Rathjen, P.D. (1995).

217. Sequense, genomic organization, and expression of the novel homeobox gene.

218. Hesxl. J.Biol.Chem. 270, 3869−3875.

219. Torresson, H., Potter, S.S., and Campbell, K. (2000). Genetic control ofdorsal-ventral identity in the telencephalon: opposing roles for Pax 6 and Gsh2.

221. Tribulo C, Aybar MJ, Nguyen VH, Mullins MC, Mayor R.

222. Regulation of Msx genes by a Bmp gradient is essential for neural crestspecification. Development. 2003 Dec- 130(26):6441−52. Epub 2003 Nov 19.

223. Trindade, M., Tada, M. and Smith, J. C. (1999). DNA-binding specificityand embryological function of Xom (Xvent-2), Dev. Biol 216, 442−456.

224. Valerius, M. Π’., Li, H., Stok, J.L., Weistein, M., Kaur, S., Singh,.

225. G., Potter, S.S. (1995).Gsh-l: a nowel murine homeobox gene expressed in thecentral nervous system. Dev. Dyn. 203, 337−351.

226. Wang, J.C., Waltner-Law, M., Yamada, K., Osawa, H., Stifani, S.,.

227. Granner, D.K. (2000). Transducin-like enhancer of split proteins, the humanhomologs of Drosophila groucho, interact with hepatic nuclear factor 3beta. J.

229. Webb, J. F., and Noden, D. M. (1993). Ectodermal placodes: contributionsto the development of the vertebrate head. Amer. Zool. 33, АΠͺ^АА!

230. Weiss, J.B., Von Ohlen, Π’., Mellerick, D. M., Dressier, G., Doe, C.Q.,.

231. Scot, M.P.(1998). Dorsoventral pattering in the Drosophila central nervoussystem: the intermediate neuroblast defective homeobox gene specifies intermediate column identity. Genes Dev. 12. 3591−3602.

232. Wilson SI, Edlund T.(2001) Neural induction: toward a unifyingmechanism. A^a^ Neurosci^ov,^ Supphl 161−8.

233. Wilson S. W and Houart C.(2004) Early Steps in the Development of theorebrain. Developmental Cell, vol.6,167−181.

234. Wang MM, Reed RR.(1993) Molecular cloning of the olfactory neuronaltranscription factor Olf-l by genetic selection in yeast. .β€’ Nature. 1993 Jul 8−364(6433):121−6.

235. Zaraisky A. G., Ecochard V., Kazanskaya O. V., Lukyanov S. A.,.

236. Fesenko I. V. and Duprat A.-M., (1995). The homeobox-containing gene.

237. XANF-1 may control development of the Spemann organizer. Development 121,3839−3847.

238. Zaraisky A. G., Lukyanov S. A., Vasiliev O. L., Smirnov Y. V.,.

239. Belyavsky, A. V., and Kazanskaya, O. V., 1992. A novel homeobox geneexpressed in the anterior neural plate of the Xenopus embryo. Dev. Biol. 152, 373 382.

240. Zhang, J., Talbot, W.S., and Sehier, A.F. (1998). Positional cloningidentifies zebrafish one-eyed-pinhead as a permissive EGF-related ligand required during gastmlation. Cell 92, 241−251.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ