Π”ΠΈΠΏΠ»ΠΎΠΌ, курсовая, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°
ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚

БиквСнс-спСцифичСская химичСская модификация Π΄Π²ΡƒΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ Π”ΠΠš Π°Π»ΠΊΠ°Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ²

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии ΠΈΠΎΠ½ΠΎΠ² магния ΠΏΡ€ΠΈ кислых рН ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹Π΅ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ‹ ΠΈ ΠΈΡ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΡΠΏΠΎΡΠΎΠ±Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ комплСксы с ΡƒΡ‡Π°ΡΡ‚ΠΊΠ°ΠΌΠΈ Π΄Ρ†Π”ΠΠš-мишСни, содСрТащими ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ с Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ. Показано, Ρ‡Ρ‚ΠΎ 1). ΠŸΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Π² ΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ†Π΅ΠΏΠΈ Π”ΠΠš ΠΎΠ΄ΠΈΠ½ΠΎΡ‡Π½Ρ‹Ρ… остатков Π’ ΠΈΠ»ΠΈ Π‘, ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ Π² ΡΡ‚ΠΎΠΌ мСстС Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ нСсколько Π²Ρ‹ΠΏΠ΅Ρ‚Π»ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ…ΡΡ оснований… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™ ГЛАВА
  • Π›Π˜Π’Π•Π ΠΠ’Π£Π ΠΠ«Π™ ΠžΠ‘Π—ΠžΠ  Π’Π Π•Π₯Π¦Π•ΠŸΠžΠ§Π•Π§ΠΠ«Π• ΠšΠžΠœΠŸΠ›Π•ΠšΠ‘Π« ΠΠ£ΠšΠ›Π•Π˜ΠΠžΠ’Π«Π₯ ΠšΠ˜Π‘Π›ΠžΠ’
    • 1. 1. ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ Ρ‚Ρ€ΠΎΠΉΠ½Ρ‹Ρ… комплСксов
    • 1. 2. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° триплСксов
      • 1. 2. 1. НуклСотидныС ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, способныС ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ триплСксы
      • 1. 2. 2. ΠžΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ Ρ†Π΅ΠΏΠΈ
      • 1. 2. 3. ΠšΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ триплСксов
    • 1. 3. ΠœΠ΅ΠΆΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΈ Π²Π½ΡƒΡ‚римолСкулярныС триплСксы
    • 1. 4. ГСомСтрия триплСксов
    • 1. 5. Π‘ΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ образования триплСксов
    • 1. 6. Бтабилизация триплСксов
      • 1. 6. 1. Бтабилизация триплСксов с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ отталкивания ΠΏΠΎΠ»ΠΈΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… Ρ†Π΅ΠΏΠ΅ΠΉ
      • 1. 6. 2. ВлияниС рН Π½Π° ΡΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ триплСксов
      • 1. 6. 3. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ триплСксов ΠΎΡ‚ Π΄Π»ΠΈΠ½Ρ‹ Π ΠΈΠ Ρƒ Ρ‚Ρ€Π°ΠΊΡ‚Π° ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ Ρ†Π΅ΠΏΠΈ
      • 1. 6. 4. ВлияниС Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½Ρ‹Ρ… замСститСлСй Π² ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΡ… Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ Ρ†Π΅ΠΏΠΈ Π½Π° ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ триплСксов
      • 1. 6. 5. Бтабилизация Ρ‚Ρ€ΠΎΠΉΠ½Ρ‹Ρ… комплСксов триплСкс-спСцифичными Π»ΠΈΠ³Π°Π½Π΄Π°ΠΌΠΈ
      • 1. 6. 6. НСкоторыС особСнности стабилизации мСТмолСкулярных ΠΈ Π²Π½ΡƒΡ‚римолСкулярных триплСксов
    • 1. 7. ВоздСйствиС Π½Π° ΠΎΡΠ½ΠΎΠ²Π½Ρ‹Π΅ гСнСтичСскиС процСссы с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ триплСкс ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ²
  • ГЛАВА. РЕЗУЛЬВАВЫ И Π˜Π₯ ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π•
    • 2. 1. ОписаниС Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠΉ модСльной систСмы ΠΈ ΡΡ‘ Ρ…арактсризация
    • 2. 2. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ мишСни I Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² 1 ΠΈ
    • 2. 3. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ мишСнСй II ΠΈ III Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² 3, 4,
    • 2. 4. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π΄Ρ†Π”ΠΠš ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ²
    • 2. 5. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° количСствСнной ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π΄Ρ†Π”ΠΠš Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌ ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°
    • 2. 6. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π΄Ρ†Π”ΠΠš Π² ΡΠΎΡΡ‚Π°Π²Π΅ Π½Π΅ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½Ρ‹Ρ… Ρ‚Ρ€ΠΎΠΉΠ½Ρ‹Ρ… комплСксов
    • 2. 7. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π΄Ρ†Π”ΠΠš [32Π ]-ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ΠΌ Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°
    • 2. 8. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π΄Ρ†Π”ΠΠš Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ², нСсущими рСакционноспособныС Π³Ρ€ΡƒΠΏΠΏΡ‹ Π½Π° Π—'-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΌ фосфатС, Π»ΠΈΠ±ΠΎ Π½Π° 5'- ΠΈ 3'ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Ρ… фосфатах ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ
    • 2. 9. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ структуры Π½Π΅ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½Ρ‹Ρ… комплСксов
    • 2. 10. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π΄Ρ†Π”ΠΠš Π² ΡΠΎΡΡ‚Π°Π²Π΅ Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠ³ΠΎ комплСкса Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ (15-ΠΌΠ΅Ρ€Π°) ΠΈ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ (6-ΠΌΠ΅Ρ€Π°) ΠΏΠΈΡ€ΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ²
    • 2. 11. ΠžΡ†Π΅Π½ΠΊΠ° скорости образования комплСкса 15-ΠΌΠ΅Ρ€Π° с Π”ΠΠš-мишСнью Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условиях с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ гСль-элСктрофорСза Π² Π½Π΅Π΄Π΅Π½Π°Ρ‚ΡƒΡ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… условиях
    • 2. 12. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ эффСктивности ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π”ΠΠš-мишСни Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌ 15-ΠΌΠ΅Ρ€Π° Π² ΡΠΎΡΡ‚Π°Π²Π΅ Π΄Π²ΡƒΡ… Ρ‚ΠΈΠΏΠΎΠ² комплСксов
    • 2. 13. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ зависимости стСпСни ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π”ΠΠš-мишСни ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ 6-ΠΌΠ΅Ρ€Π° ΠΈ 15-ΠΌΠ΅Ρ€Π° ΠΎΡ‚ Ρ€Π Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… солСвых условиях
  • ГЛАВА. ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
    • 3. 1. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹
    • 3. 2. ΠœΠ΅Ρ‚ΠΎΠ΄ΡŒΡ‚
      • 3. 2. 1. Π‘ΡƒΡ„Π΅Ρ€Π½Ρ‹Π΅ систСмы
      • 3. 2. 2. Врансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π•. coi
      • 3. 2. 3. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΄Ρ†Π”ΠΠš
      • 3. 2. 4. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ 5'-ΠΊΠΎΠ½Π΅Ρ†Π΅Π²ΠΎΠΉ 32Π  ΠΌΠ΅Ρ‚ΠΊΠΈ Π² ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΡŒΠ³
      • 3. 2. 5. Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ², нСсущих остатки
  • 4-(Н-2-хлорэтил-Н-ΠΌΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΈΠ½ΠΎ) Π±Π΅Π½Π·ΠΈΠ» Π°ΠΌΠΈΠ½Π° Π½Π° 5-ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Ρ… фосфатах
    • 3. 2. 6. Π‘ΠΈΠ½Ρ‚Π΅Π· Ρ„Π΅Π½Π°Π·ΠΈΠ½ΠΈΠ΅Π²ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ΄ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ΄Π΅ΠΎΡ‚ΠΈΠ΄Π° — эффСктора
    • 3. 2. 7. Π‘Π΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π”ΠΠš
    • 3. 2. 8. Π”ΠΎΡ‚-гибрвдиизация 32Π -ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² с Π΄Ρ†Π”ΠΠš
  • Π’Π«Π’ΠžΠ”Π«

БиквСнс-спСцифичСская химичСская модификация Π΄Π²ΡƒΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ Π”ΠΠš Π°Π»ΠΊΠ°Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π½Π΅ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌΠΎΠΉ ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΈ Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ экспрСссии ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ² являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… Π·Π°Π΄Π°Ρ‡ молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ. НаиболСС пСрспСктивным ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ этой Π·Π°Π΄Π°Ρ‡ΠΈ являСтся Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ΅ воздСйствиС Π½Π° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Π΅ гСнСтичСскиС ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² ΠΈ ΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, способных ΠΈΠ·Π±ΠΈΡ€Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ с Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌΠΈ для этих ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡΠΌΠΈ, модулируя ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΡ… Ρ„ункционирования.

ΠœΠ΅Ρ‚ΠΎΠ΄ рСгуляции экспрСссии Π³Π΅Π½ΠΎΠ² с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹ΠΌ РНК ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² (антисмысловых ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ²), Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ Н. Π“Ρ€ΠΈΠ½Π΅Π²ΠΎΠΉ (Π’Π΅Π˜ΠΊΠΎΡƒΠ° Π°1., 1967), ΠΎΠΊΠ°Π·Π°Π» большоС влияниС Π½Π° ΠΏΡƒΡ‚ΠΈ развития соврСмСнной мСдицинской Ρ…ΠΈΠΌΠΈΠΈ (Vickstrom, 1991). Π•Ρ‰Π΅ Π±ΠΎΠ»Π΅Π΅ пСрспСктивным прСдставляСтся созданиС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ воздСйствия Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ участки Π³Π΅Π½ΠΎΠΌΠ½ΠΎΠΉ Π”ΠΠš, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π² ΡΡ‚ΠΎΠΌ случаС Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π½Π΅ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ гСнСтичСских ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ ΠΈ Π΄ΠΎΡΡ‚ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π΄ΠΎΠ»Π³ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… эффСктов. ΠŸΡ€ΡΠΌΡ‹ΠΌ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ этой ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ являСтся использованиС Π³ΠΎΠΌΠΎΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΈ Π³ΠΎΠΌΠΎΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ², способных ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ комплСксы с ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ участками Π΄Π²ΡƒΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ Π”ΠΠš (Π΄Ρ†Π”ΠΠš) (Π—ΠΎΡƒΠ“Π΅Π³ & Π ΠΎ1ашап, 1996).

БвязываниС ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² с Π”ΠΠš ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ взаимодСйствия спСцифичСских рСгуляторных Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² с Π”ΠΠš, ΠΈΠ»ΠΈ ΠΊ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡŽ Ρ…ΠΎΠ΄Π° биологичСских процСссов Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ стабилизации дуплСксной структуры Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²ΠΎΠΉ кислоты. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ рСакционноспособных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π³ΠΎΠΌΠΎΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΈ Π³ΠΎΠΌΠΎΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ осущСствлСна направлСнная химичСская ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π΄Ρ†Π”ΠΠš ΠΈ Π½Π΅ΠΎΠ±Ρ€Π°Ρ‚имая инактивация ΠΈΠ»ΠΈ модуляция экспрСссии ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ². Одним ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивных классов рСакционноспособных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² для ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π”ΠΠš ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚Ρ‹ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² с Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π³Ρ€ΡƒΠΏΠΏΠΈΡ€ΠΎΠ²ΠΊΠ°ΠΌΠΈ. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ расщСплСния Π”ΠΠš ΠΏΠΎ Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ основаниям позволяСт Ρ‚ΠΎΡ‡Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΈ Π³Π»ΡƒΠ±ΠΈΠ½Ρƒ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ алкилирования ΠΎΠ΄Π½ΠΎΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ Π”ΠΠš ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π±Ρ‹Π» Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎ исслСдован, ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ свойства ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ (КпоггС Π΅* Π°1., 1989). ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ пространствСнная Π΄ΠΎΡΡ‚ΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ основных мишСнСй алкилирования, N7 Π°Ρ‚ΠΎΠΌΠΎΠ² Π³ΡƒΠ°Π½ΠΎΠ·ΠΈΠ½ΠΎΠ² для рСакционноспособной Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚ΠΎΠ², ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ…ΡΡ Π² Π±ΠΎΠ»ΡŒΡˆΠΎΠΉ Π±ΠΎΡ€ΠΎΠ·Π΄ΠΊΠ΅ Π΄Ρ†Π”ΠΠš, позволяСт Π½Π°Π΄Π΅ΡΡ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для эффСктивной ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π΄Ρ†Π”ΠΠš. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ осущСствлСния Ρ‚Π°ΠΊΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π΄Ρ†Π”ΠΠš Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΎΠ»ΠΈΠ³ΠΎΡ†ΠΈΡ‚ΠΈΠ΄ΠΈΠ»Π°Ρ‚ΠΎΠ² Π² ΡΠΎΡΡ‚Π°Π²Π΅ Ρ‚Ρ€Π΅Ρ…Ρ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ³ΠΎ комплСкса бьша Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ продСмонстрирована Π² Ρ€Π°Π±ΠΎΡ‚Π΅ (ΠšΠ½ΠΎΡ€Ρ€Π΅ ΠΈ Π΄Ρ€., 1988).

ЦСлью настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ являСтся ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ спСцифичности ΠΈ ΡΡ„фСктивности алкилирования Π΄Ρ†Π”ΠΠš рСакционноспособными ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΈ ΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ², нСсущих Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ Π½Π° 5- ΠΈ 3'- ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Ρ… фосфатахизучСниС закономСрностСй образования комплСксов ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² с Π΄Ρ†Π”ΠΠš Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условияхразработка ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ спСцифичности ΠΈ ΡΡ„фСктивности ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π΄Ρ†Π”ΠΠš-мишСни рСакционноспособными ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ².

БПИБОК Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™.

А DP — адСнозиндифосфат.

DMSO — Π΄ΠΈΠΌΠ΅Ρ‚ΡˆΡ‚ΡΡƒΠ»ΡŒΡ„ΠΎΠΊΡΠΈΠ΄.

DMF, А — Π΄ΠΈΠΌΠ΅Π³ΠΈΠ»Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈΠ΄.

DMS — Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚.

EDTA — этилСндиаминтСграуксусная кислота.

N-Melm — N-ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ».

Π Π¬Π·Π  — трифСнилфосфин.

PyS)2 — Π΄ΠΈΠΏΠΈΡ€ΠΈΠ΄ΠΈΠ»Π΄ΠΈΡΡƒΠ»ΡŒΡ„ΠΈΠ΄.

SDS — Π΄ΠΎΠ΄Π΅Ρ†ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚ натрия.

— ΠœΠ­ — ß—ΠΌΠ΅Ρ€ΠΊΠ°ΠΏΡ‚ΠΎΡΡ‚Π°Π½ΠΎΠ» Π΄Ρ†Π”ΠΠš — двуцСпочСчная Π”ΠΠš.

ВЀО — Ρ‚Ρ€ΠΈΠΏΠ»Π΅ΠΊΡΡ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ‹.

ВЭА — триэтиламин Π΅. Π°. — Π΅Π΄ΠΈΠ½ΠΈΡ†Π° активности o.e. — ΠΎΠΏΡ‚ичСская Π΅Π΄ΠΈΠ½ΠΈΡ†Π° ΠΏ.ΠΎ. — ΠΏΠ°Ρ€Π° оснований.

Π’Π«Π’ΠžΠ”Π«.

1. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π³Π΅Π½Π° чСловСчСского Ρƒ-ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€ΠΎΠ½Π° исслСдована Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π΄Ρ†Π”ΠΠš Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ², ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠΌΠΈ Ρ‚Ρ€Π΅Ρ…Ρ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹Π΅ комплСксы с ΠΏΠΎΠ»ΠΈΠΏΡƒΡ€ΠΈΠ½ΠΏΠΎΠ»ΠΈΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹ΠΌΠΈ Ρ‚Ρ€Π°ΠΊΡ‚Π°ΠΌΠΈ. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π° высокая ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ алкилирования. Показано, Ρ‡Ρ‚ΠΎ Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ Π³Ρ€ΡƒΠΏΠΏΠ°, присоСдинСнная ΠΊ Π—'-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΌΡƒ фосфату Ρ‚Ρ€ΠΈΠΏΠ»Π΅ΠΊΡΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°, Ρ€Π΅Π°Π³ΠΈΡ€ΡƒΠ΅Ρ‚ с Π³ΡƒΠ°Π½ΠΎΠ·ΠΈΠ½Π°ΠΌΠΈ, находящимися Π² ΠΎΠ±Π΅ΠΈΡ… цСпях Π΄Ρ†Π”ΠΠš, Π² Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΡ ΠΊΠ°ΠΊ 5-концСвая Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ Π³Ρ€ΡƒΠΏΠΏΠ° Ρ€Π΅Π°Π³ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ с Π³ΡƒΠ°Π½ΠΎΠ·ΠΈΠ½Π°ΠΌΠΈ ΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ†Π΅ΠΏΠΈ. Π‘ΠΈΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π°Π³Π΅Π½Ρ‚Ρ‹, нСсущиС рСакционноспособныС Π³Ρ€ΡƒΠΏΠΏΡ‹ Π½Π° 3'- ΠΈ 5'-ΠΊΠΎΠ½Ρ†Π°Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°, ΠΌΠΎΠ³ΡƒΡ‚ Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΎΠ±Π΅ Ρ†Π΅ΠΏΠΈ Π”ΠΠš, приводя ΠΊ ΠΊΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΠΉ сшивкС Π΄Π²ΡƒΡ… Ρ†Π΅ΠΏΠ΅ΠΉ, Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ возмоТности для расщСплСния ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ участка Π”ΠΠš ΠΏΠΎ ΠΎΠ±Π΅ΠΈΠΌ цСпям. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ алкилирования зависит ΠΎΡ‚ Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ рСакционноспособного Ρ†Π΅Π½Ρ‚Ρ€Π° мишСни ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ Π΄Π»ΠΈΠ½Ρ‹ Π»ΠΈΠ½ΠΊΠ΅Ρ€Π°, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ ΠΈ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ.

2. Π˜Π·ΡƒΡ‡Π΅Π½Π° ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ образования комплСксов ΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² с ΠΏΠΎΠ»ΠΈΠΏΡƒΡ€ΠΈΠ½-ΠΏΠΎΠ»ΠΈΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹ΠΌΠΈ участками Π΄Ρ†Π”ΠΠš. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ рСакционноспособных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΡ… ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΠ΅ происходит Π² Π°Π½Ρ‚ΠΈΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ†Π΅ΠΏΠΈ дуплСкса ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ.

3. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ количСствСнной ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π΄Ρ†Π”ΠΠš Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ², Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΉΡΡ Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ°Ρ… Π”ΠΠš Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠΌ Π² Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΡ… концСнтрациях Π±Π΅Π· удалСния ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ ΠΏΠΎΡ€Ρ†ΠΈΠΈ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Ρ€Π΅Π°Π³Π΅Π½Ρ‚Π°.

4. Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии ΠΈΠΎΠ½ΠΎΠ² магния ΠΏΡ€ΠΈ кислых рН ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹Π΅ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ‹ ΠΈ ΠΈΡ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΡΠΏΠΎΡΠΎΠ±Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ комплСксы с ΡƒΡ‡Π°ΡΡ‚ΠΊΠ°ΠΌΠΈ Π΄Ρ†Π”ΠΠš-мишСни, содСрТащими ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ с Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ. Показано, Ρ‡Ρ‚ΠΎ 1). ΠŸΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Π² ΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ†Π΅ΠΏΠΈ Π”ΠΠš ΠΎΠ΄ΠΈΠ½ΠΎΡ‡Π½Ρ‹Ρ… остатков Π’ ΠΈΠ»ΠΈ Π‘, ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ Π² ΡΡ‚ΠΎΠΌ мСстС Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ нСсколько Π²Ρ‹ΠΏΠ΅Ρ‚Π»ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ…ΡΡ оснований, ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‚ΠΈΠΌΠΈΠ΄ΠΈΠ½. 2). Π“ΡƒΠ°Π½ΠΎΠ·ΠΈΠ½ Π² ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠΌ I ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π΅, Π²Π²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ² Ρ‚ΠΈΠΌΠΈΠ΄ΠΈΠ½Π° Π² ΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ†Π΅ΠΏΠΈ Π”ΠΠš, Π½Π΅ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΠ΅Ρ‚ Π² ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠ³ΠΎ комплСкса. 3). ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Ρ‚ΡŒ эффСктивно Π΄Π°ΠΆΠ΅ Π² ΡΠΎΡΡ‚Π°Π²Π΅ слабых комплСксов, Π½Π΅ Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π² Π΄Π°Π½Π½Ρ‹Ρ… условиях. 4). РСакция ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π΄Ρ†Π”ΠΠš ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ с Π±ΠΎΠ»ΡŒΡˆΠ΅ΠΉ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Π² ΡΠΎΡΡ‚Π°Π²Π΅ структур, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… 5'-концСвая ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π° ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½Ρ‹ΠΉ комплСкс с Π”ΠΠš-мишСнью, Π² Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΡ ΠΊΠ°ΠΊ 3'-концСвая ΠΎΠ±Π»Π°ΡΡ‚ΡŒ с Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ вслСдствиС Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠΉ комплСмСнтарности ΠΈΠΌΠ΅Π΅Ρ‚ Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΡƒΡŽ свободу.

5. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΈΡ… рН Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии ΠΈΠΎΠ½ΠΎΠ² магния ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹Π΅ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ‹ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ с Π΄Ρ†Π”ΠΠš Π΄Π²Π° Ρ‚ΠΈΠΏΠ° Ρ‚Ρ€ΠΎΠΉΠ½Ρ‹Ρ… комплСксов, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π΅Ρ‚ с Π²Ρ‹ΡΠΎΠΊΠΎΠΉ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² ΡΠΎΡΡ‚Π°Π²Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ… (каноничСского Π₯угстСновского).

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. A., Dagneaux C., Liquier J. & Taillandier E. (1992) Triple helical polynucleotide strutures: an FT1. study of the C’GC triplet. J. Biomol. Struct. Dyn. 10, 577−588.
  2. V.P., Gray D.M. & Ratliff R.L. (1988) CD of six conformational rearrangements of polyd (A-G)'d (C-T). induced by low pH. Nucleic Acids Res. 16, 719−738.
  3. S. & Seising E. (1974) Structures for the polynucleotide complexes poly (dA) poly (dT) and poly (dT)poIy (dA)po!y (dT). J. Mol. Biol. 88, 509−521.
  4. Arnott S.> Bond P.J., Seising E. & C. Smith PJ. (1976) Models of triple-stranded polynucleotides with optimized stereochemistry. Nucleic Acids Res. 3, 2459−2470.
  5. M.M. & Wang Z. (1989) B→A transitions within a 5S ribosomal RNA gene are highly sequence-specific. J.Biol. Chem. 264,4163−4167.
  6. P.A. & Dervan P.B. (1991) Second structural motif for recognition of DNA by oligonucleotide directed triple-helix formation. Science 251,1360−1363.
  7. P.A. & Dervan P.B. (1992a) The influence of single base triplet changes on the stability of a Pur Pur-Pyr triple helix determined by affinity cleaving. Nucleic Acids Res. 20, 27 732 776.
  8. P.A. & Dervan P.B. (1992b) Recognition of double helical DNA by alternate strand triple helix formation. J. Am. Chem. Soc. 114, 4976−4982.
  9. A.M., Zarytova V.F. & Grineva N.I., (1967) Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloroethylamine and nitrogen mustard residues. Tetrahedron Lett., 37, 3557−3562.
  10. B.P., Krasilnikova M.M., Veselkov AG. & Frank-Kamenetskii M.D.1992) Kinetic trapping ofH-DNAby oligonucleotide binding. Nucleic Acids Res. 20,1903−1908.
  11. Belotserkovskii B.P., Veselkov A G., Fillppov S.A., Dobrynin V.N. M. Mirkin S. & Frank-Kamenetskii M.D. (1990) Formation of intramolecular triplex in homopurine- homopyrimidine mirror repeats with point substitutions. Nucleic Acids Res. 18, 6621−6624.
  12. Beitran R., Martinez-Balbas A., Bernues J., Bowater R. & Azorin F. (1993) Characterization of the zinc-induced structural transition at a d (GA'CT)22 sequence. J. Mol. Biol. 230, 966−978.
  13. J., Beitran R., Casasnovas J.M. & Azorin F. (1990) DNA-sequence and metal-ion specificity of the formation of *H-DNA. Nucleic Acids Res. 18, 4067−4073.
  14. Birg F., Praseuth D., Zerial A., Asseline U., Le Doan T.& Helene C. (1990) Inhibition of simian virus 40 DNA replication in CV-1 cells by an oligodeoxynucleotide covalently linked to an intercalating agent. Nucleic Acids Res. 18, 2901−2908.
  15. S.W., Guarcello V., Zacharias W. & Miller D.M. (1997) Divalent transition metal counteract potassium-induced quadruplex assembly of oligo (dG) sequences. Nucleic Acids Res. 25, 617−625.
  16. M.A., Wang S. & Kool E.T. (1994) Base pairing and steric interactions between pyrimidine strand bridging loops and the purine strand in DNA pyrimidine.purine.pyrimidine triplexes. Biochemistry 33, 4645−4651.
  17. O.F., Shchyolkina A.K., Timofeev E.N., Tsybenko S.Yu., Mirzabekov A.D. & Florentiev V.L. (1995) Stabilization of parallel (recombinant) triplex with propidium iodide. J. Biomol. Struct. Dyn. 13, 15−27.
  18. Broitman S.L., Im D.D. & Fresco J.R. (1987) Formation of the triple-stranded polynucleotide helix, poly (AAU). Proc. Natl. Acad. Sei. USA 84, 5120−5124.
  19. Cantor C R. & Schimmel P.R. (1980) Biophysical Chemistry. Part III: The Behavior of
  20. Biological Macromolecules. Freeman, New York.
  21. G.R. & Bollum F.J. (1969) 01igodeoxythymidilate: polydeoxyadenylate and oligodeoxyadenylate: polydeoxythyrnidilate interactions. Biochemistry 8, 3928−3936.
  22. Cheng A. J.& Van Dyke M.W. (1997) Oligodeoxyribonucleotide length and sequence effects on intramolecular and intermolecular G-quartet formation. Gene 197, 253−260.
  23. D.A. & Wells R.D. (1990) Effect of length, supercoiling and pH on intramolecular triplex formation. Multiple conformers at Pur-Pyr mirror repeats. J. Biol. Chem. 265, 10 652- 10 658.
  24. N., Distefano M.D. & Dervan P.B. (1993) Cooperative oligonucleotide-directed triple helix formation at adjacent DNA sites. J. Am. Chem. Soc. 115, 4468−4473.
  25. M., Czernuszewicz G., Postel E.H., Flint S.J. & M.E.Hogan (1988) Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vivo. Science 241, 456 459.
  26. T.L., Firulli A.B. & Kinniburgh A.J. (1989) Ribonucleoprotein and protein factors bind to an H-DNA-fbrming c-myc DNA element: possible regulators of the c-myc gene. Proc. Natl. Acad. Sei. USA 86, 9682−9686.
  27. A., Samadashwily G.M. & Mirkin S.M. (1992) Intramolecular DNA triplexes: unusual sequence requirements and influence on DNA polymerization. Proc. Natl. Acad. Sei. USA 89,11 406−11 410.
  28. Duval-Valentin G" Thuong N.T. & Helene C. (1992) Specific inhibition of transcription by triple helix-forming oligonucleotides. Proc. Natl. Acad. Sei. USA 89, 504−508.
  29. Escude C, Francois J.C., Sun J.S., Ott G., Sprinzl M., Garestier T. & Helene C. (1993) Stability of triple helices containing RNA and DNA strands: experimental and molecular modeling studies. Nucleic Acids Res. 21, 5547−5553.
  30. G., Davies D.R. & Rich A. (1957) Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc. 79,2023−2024.
  31. Fossella J.A., Kim Y.J., Shih H., Richards E.G. & Fresco J.R. (1993) Relative specificitiesin binding of Watson-Crick base pairs by third strand residues in a DNA pyrimidine triplex motif. Nucleic Acids Res. 21, 4511−4515.
  32. Fox K.R. (1990) Long (dA)n.(dT)n tracts can form intramolecular triplexes under superhelical stress. Nucleic Acids Res. 18, 5387−5391.
  33. Fox K.R., Polucci P., Jenkins T.C. & Neidle S. (1995) A molecular anchor for stabilizing triple-helical DNA. Proc. Natl. Acad. Sei. USA 92, 7887−7891.
  34. Francois J.C., Saison-Behmoaras T. & Helene C. (1988) Sequence-specific recognition of the major groove of DNA by oligodeoxynucleotides via triple helix formation. Footprinting studies. Nucleic Acids Res. 16, 11 431−11 440.
  35. Frank-Kamenetskii M. (1992) Protonated DNA structures. Methods Enzymol. 211, 180−191.
  36. Frank-Kamenetskii M.D. & Mirkin S.M. (1995) Triplex DNA structures. Annu. Rev. Biochem. 64, 65−95.
  37. Frank-Kamenetskii M.D., Malkov V.A., Voloshin O.N. & Soyfer V.N. (1991) Stabilization of PyPuPu triplexes with bivalent cations. Nucleic Acids Res. Symp. Ser. 24, 159−162.
  38. B.C. & Ricca D J. (1992) Triple-helix formation by oligonucleotides containing the carbocyclic analogs of thymidine and 5-methyl-2'-deoxycytidine. J. Am. Chem. Soc. 114, 83 208 322.
  39. Gamper H.B., Jr, Kutyavin I.V., Rhinehart R.L., Lokhov S.G., Reed M.W. & Meyer R.B. (1997) Modulation of Cm/T, G/A, and G/T triplex stability by conjugate groups in the presence and absence of KCl. Biochemistry 36, 14 816−14 826.
  40. Gee J.E., Blume S., Snyder R.C., Ray R. & Miller D.M. (1992) Triplex formation prevents Spl binding to the dihydrofolate reductase promoter. J. Biol. Chem. 267, 11 163−11 167.
  41. Giovannangeli C., Montenay-Garestier T., Rougee M., Chassignol M., Thuong N.T. & Helene C. (1991) Single-stranded DNA as a target for triple-helix formation. J. Am. Chem. Soc. 113, 7775- 7777.
  42. C., Thuong N.T. & Helene C. (1993) Oligonucleotide clamps arrest DNAsynthesis on a single-stranded DNA target. Proc. Natl. Acad. Sci. USA 90, 10 013−10 017.
  43. R. & Gabbay E.J. (1968) Topography of nucleic acid helices in solutions. III. Interactions of spermine and spermidine derivatives with polyadenylic-polyuridylic and polyinosinic-polycytidylic acid helices. Biopolymers 6,243−254.
  44. D.M. & Fox K.R. (1997) DNA triple helix formation at oligopurine sites containing multiple contiguous pyrimidines. Nucleic Acids Res. 25, 3787−3794.
  45. L.C. & Dervan P.B. (1989) Recognition of thymine-adenine base pairs by guanine in a pyrimidine triple helix motif. Science 245, 967−971.
  46. M., Praseuth D., Guyesse A.L., Robin P., Thuong N.T., Helene C. & Harrel-Bellan A. (1993a) Inhibition of gene expression by triple helix-directed DNA cross-linking at specific genes. Proc. Natl. Acad. Sci. USA 90, 3501−3505.
  47. B.L. & Guschlbauer W. (1976) Protonated polynucleotide structures. 18. Interaction of oligocytidylates with poly (G). Nucleic Acids Res. 3, 205−218.
  48. J.G., Dervan P.B. & Wold B.J. (1994) Inhibition of Klenow fragment DNA polymerase on double-helical templates by oligonucleotide-directed triple-helix formation. Biochemistry 33, 6192−6200.
  49. K.J., Ashley C. & Lee J.S. (1994) Kilobase-range communication between polypurine. polypyrimidine tracts in linear plasmids mediated by triplex formation: a braided knotbetween two linear duplexes. Biochemistry 33, 5674−5681.
  50. K.J., Burkholder G.D. & Lee J.S. (1993) Plasmid dimerization mediated by triplex formation between polypyrimidine-polypurine repeats. Biochemistry 32, 1072−1077.
  51. K.J., Crosson P. & Lee J.S. (1991) Polyamines favor DNA triplex formation at neutral pH. Biochemistry 30, 4455−4459.
  52. Han H. & Dervan P.B. (1993) Sequence-specific recognition of double helical RNA and RNA-DNA by triple helix formation. Proc. Natl. Acad. Sei. USA 90, 3806−3810.
  53. R. & Dervan P.B. (1990) Single-strand DNA triplex formation. Biochemistry 29, 9761−9765.
  54. J.C., Shimizu M. & Wells R.D. (1990) Site-specific inhibition of EcoRI restriction/modification enzymes by a DNA triple helix. Nucleic Acids Res. 18, 157−161.
  55. J.C., Williams E.M. & Besterman J.M. (1991) DNA triple-helix formation at physiologic pH and temperature. Antisense Res. Dev. 1, 307−317.
  56. Hartman D.A., Kuo S.R., Broker T.R., Chow L.T. & Wells R.D. (1992) Intermolecular triplex formation distorts the DNA duplex in the regulatory region of human papillomavirus type-11. J. Biol. Chem. 267, 5488−5494.
  57. M., Frazier J. & Miles H.T. (1975) Poly (8-aminoguanylic acid): formation of ordered self-structures and interaction with poly (cytidylic acid). Biochemistry 18, 5033−5045.
  58. C. (1991) The antigene strategy: control of gene expression by triplex-helix-forming oligonucleotides. Anticancer Drug Des. 6, 569−584.
  59. W. & Gassen H.G. (1979) Physical and coding properties of poly (5-methoxyuridylic) acid. Biochim. Biophys. Acta 562, 207−213.
  60. K. (1959) The structure of crystals containing a hydrogen-bonded complex of 1 -methylthymine and 9-methyladenine. Acta Crystallogr. 12, 822−823.
  61. K. (1963) The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallogr. 16,907−916.
  62. D.A. & Dervan P.B. (1990) Recognition of mixed-sequence duplex DNA by alternate-strand triple-helix formation. .J. Am. Chem. Soc. 112, 2435−2437.
  63. F.B., Limn W. & Miles H.T. (1985) Poly (2-amino-8-methyladenylic acid). Competing structural and energetic effects of substituents. Biochemistry 24, 5033−5039.
  64. Howard F.B., Miles H.T., Liu K., Frazier, Raghunathan G. & Saslsekharan V. (1992) Structure of d (T)n (A)nd (T)n: the DNA triple helix has B-form geometry with C2'-endo sugar pucker. Biochemistry 31,10 671−10 677.
  65. , H. & Dahlberg J.E. (1988) Single strands, triple strands, and kinks in H-DNA. Science 241, 1791−1796.
  66. , H. & Dahlberg J.E. (1989) Topology and formation of triple-stranded H-DNA. Science 243, 1571−1576.
  67. , R.B. (1964) Multistranded DNA homopolymer interactions. J. Mol. Biol. 10, 137 146.
  68. , S.D. & Johnston B.H. (1992a) Intramolecular triple-helix formation at (PunPy")(PunPyn) tracts: recognition of alternate strands via PuPuPy and Py PuPy base triplets. Biochemistry 31, 320−327.
  69. , S.D. & Johnston B.H. (1992b) Oligonucleotide-directed triple helix formation at adjacent oligopurine and oligopyrimidine DNA tracts by alternate strand recognition. Nucleic Acids Res. 20, 5279−5288.
  70. , S.D. & Johnston B.H. (1993) Sequence limitations of triplex formation by alternate-strand recognition. Biochemistry 32, 2800−2807.
  71. , M.C. & Hobbs F.W. (1993) 7,8-dihydro-8-oxoadenine as a replacement for cytosine in the third strand of triple helices. Triplex formation without hypochromicity. Biochemistry 32,3249−3254,
  72. , K.H., Durland R.H. & Hogan M.E. (1992) The vacuum UV CD spectra of GGC triplexes. Nucleic Acids Res. 20, 3859−3864.
  73. , E.N., Howard F.B., Frazier J. & Miles H.T. (1987) Poly (2-amino-8-methyldeoxyadenylic acid): contrasting effects in deoxy- and ribopolynucleotides of 2-amino and 8-methyl substituents. Biochemistry 26, 7159−7165.
  74. , S. & Wells R.D. (1992) Central non-PurPyr sequences in oligo (dGdC) tracts and metal ions influence on the formation of intramolecular DNA triplex isomers. J. Biol. Chem. 267, 20 887−20 891.
  75. , L.L., Griffm L.C. & Dervan P.B. (1992) Flanking sequence effects within the pyrimidine triple-helix motif characterized by affinity cleaving. Biochemistry 31, 2829−2834.
  76. , D.G., Vlassov V.V., Zarytova V.F. & Lebedev A.V. (1989) Reactive oligonucleotide derivatives as tools for site specific modification of biopolymers. Soviet Scientific Reviews 15, 271−339.
  77. Koh, J.S. & Dervan P.B. (1992) Design of a nonnatural deoxyribonucleoside for recognition of GC base pairs by oligonucleotide-directed triple helix formation. J. Am. Chem. Soc. 114, 14 701 478.
  78. , Y. & Kohwi-Shigematsu T. (1988) Magnesium ion-dependent triple-helix structure formed by homo-purine-homopyrimidine sequences in supercoiled plasmid DNA. Proc. Natl.Acad.Sci. USA 85, 3781−85.
  79. , Y. & Kohwi-Shigematsu T. (1993) Structural polymorphism of homopurine-homopyrimidine sequences at neutral pH. J. Mol. Biol. 231, 1090−1101.
  80. Kohwi-Shigematsu, T. & Kohwi, Y. (1991) Detection of triple-helix related structures adopted by poly (dG)-poly (dC) sequences in supercoiled plasmid DNA. Nucleic Acids Res. 19, 4267−4271.
  81. , R., Torrey T.A. & Kinniburgh A.J. (1992) A CT promoter element binding protein: definition of a double-strand and a novel single-strand DNA-binding motif. Nucleic Acids Res. 20, 111−116.
  82. , E.T. (1991) Molecular recognition by circular oligonucleotides: increasing the selectivity of DNA binding. J. Am. Chem. Soc. 113, 6265−6266.
  83. Koshlap K. M, Schultze P., Brunar H., Dervan P.B., Feigon J. (1997) Solution structure of an intramolecular DNA triplex containing an N7-glycosylated guanine which mimics a protonated cytosine. Biochemistry 36, 2659−2668.
  84. Krasilnikov A.S., Panyutin I.G., Samadashwily G.M., Cox R. & Mirkin S.M. (1997) Mechanisms of triplex-caused polimerization arrest. Nucleic Acids Res. 25, 1339−1346.
  85. I.V., Gamper H.B., Gall A.A. & Meyer R.B., Jr. (1993) Efficient, specific interstrand cross-linking of double-stranded DNA by a chlorambucil-modified, triplex-forming oligonucleotide. J. Am. Chem. Soc. 115, 9303−9304.
  86. J.N., Kutyavin I.V., Rhinehart R., Reed M.W., Meyer R.B. & Gamper H.B., Jr (1997) Factors influencing the extent and selectivity of alkylation within triplexes by reactive G/A motif oligonucleotides. Nucleic Acids Res. 25, 4123−4131.
  87. Latimer, L.J.P., Hampel K. & Lee J.S. (1989) Synthetic repeating sequence DNAs containing phosphorothioates: nuclease sensitivity and triplex formation. Nucleic Acids Res. 17, 1549−1561.
  88. , C.A. & Neidle S. (1992) Prediction of the structure of the Y+.R-.R (+)-type DNA triple helix by molecular modelling. Nucleic Acids Res. 20, 6535−6541.
  89. , C.A. & Neidle S. (1992a) Molecular dynamics simulation of the DNA triplex d (TC)5 d (GA)5 d (C+T)5. J. Mol. Biol. 223, 519−529.
  90. Lee, J.S., Johnson D.A. & Morgan A.R. (1979) Complexes formed by (pyrimidine)n (purine)" DNAs on lowering the pH are three-stranded. Nucleic Acids Res. 6, 30 733 091.
  91. Lee, J.S., Woodsworth ML., Latimer L.J. & Morgan A.R. (1984) Poly (pyrimidine)-poly (purine) synthetic DNAs containing 5-methylcytosine form stable triplexes at neutral pH. Nucleic Acids Res. 12, 6603−6614.
  92. Letai, A.G., Palladino M.A., From ?., Rizzo V. &.Fresco J. R (1988) Specificity in formation of triple-stranded nucleic acid helical complexes: studies with agarose-linked polyribonucleotide affinity columns. Biochemistry 27, 9108−9112.
  93. Limn, W., Uesugi S" Ikehara M. & Miles H.T. (1983) Poly (8-methyladenylic acid): a single- stranded regular structure with alternating syn-anti conformations. Biochemistry 22, 42 174 222.
  94. , M.N. (1964) Complex formation between polycytidylic acid and guanine oligonucleotides. J. Biol. Chem. 239,1256−1260.
  95. , M.N., Heppel L.A. & Bradley D.F. (1960) Complex formation between adenine oligonucleondes and polyuridylic acid. Biochim. Biophys. Acta 41, 175−177.
  96. , J., Coffinier P., Firon M. & Taillandier E. (1991) Triple helical polynucleotide structures: sugar conformations determined by FTIR spectroscopy. J. Biomol. Struct. Dyn. 9, 437 435.
  97. Liu, K., Miles H.T., Parris K.D. & Sasisekharan V. (1994) Fibre-type X-ray diffraction patterns from single crystals of triple helical DNA. Nature Struct. Biol. 1, 11−12.
  98. Lyamichev, V.I., Frank-Kamenetskii M.D. & Soyfer V.N. (1990) Protection against UVinduced pyrimidine dimerization in DNA by triplex formation. Nature 344, 568−570.
  99. , V.I., Mirkin S.M. & Frank-Kamenetskii M.D. (1985) A pH-dependent structural transition in the homopurine-homopyrimidine tract in superhelical DNA. J. Biomol. Struct. Dyn. 3, 327−338.
  100. , V.I., Mirkin S.M. & Frank-Kamenetskii (M.D. 1986) Structures of homopurine-homopyrimidine tract in superhelical DNA. J. Biomol. Struct. Dyn. 3, 667−669.
  101. Lyamichev, V.I., Mirkin S.M., Frank-Kamenetskii M.D. Cantor & C.R. (1988) A stable complex between homopyrimidine oligomers and homologous regions of duplex DNAs. Nucleic Acids Res. 16, 2165−2178.
  102. Lyamichev, V.I., Voloshin O.N., Frank-Kamenetskii M.D. & Soyfer V.N. (1991) Photofootprinting of DNA triplexes. Nucleic Acids Res. 19, 1633−1638.
  103. Macaya, R, Gilbert D.E., Malek S., Sinsheimer J.S. & Feigon J. (1991) Structure and stability ofX G C mismatches in the third strand of intramolecular triplexes. Science 254, 270−274.
  104. , R., Schultze P., & Feigon J. (1992a) Sugar conformations in intramolecular DNA triplexes determined by coupling constants obtained by automated simulation of P. COSY cross peaks. J. Am. Chem. Soc. 114, 781−783.
  105. , R., Wang E., Schultze P., Sklenar V. & Feigon J. (1992b) Proton nuclear magnetic resonance assignments and structural characterization of an intramolecular DNA triplex. J. Mol. Biol. 225, 755−773.
  106. Maher L.J.III, Wold B. & Dervan P.B. (1991) Oligonucleotide-directed DNA triple-helix formation: an approach to artificial repressors? Antisense Res. Dev. 1,277−281.
  107. Maher, L.J., in (1992) Inhibition of T7 RNA polymerase initiation by triple-helical DNA complexes: a model for artificial gene repression. Biochemistry 31, 7587−7594.
  108. Maher, L.J., IE, Dervan P.B. & Wold B. (1990) Kinetic analysis of oligodeoxy-ribonucleotide-directed triple-helix formation on DNA. Biochemistry 29, 8820−8826.
  109. Maher, L.J., ID, Dervan P.B. & Wold B. (1992) Analysis of promoter-specific represssion by triple-helical DNA complexes in a eukaryotic cell-free transcription system. Biochemistry 31, 70−81.
  110. Maher, L.J., in, Wold B. &.Dervan P. B (1989) Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science 245, 725−730.
  111. , V.A., Voloshin O.N., Rostapshov V.M., Jansen I., Soyfer V.N. & Frank-Kamenetskii M.D. (1993a) Protonated pyrimidine-purine-purine triplex. Nucleic Acids Res. 21, 105−111.
  112. , V.A., Voloshin O.N., Soyfer V.N. & Frank-Kamenetskii M.D. (1993b) Cation and sequence effects on stability of intermolecular pyrimidine-purine-purine triplex. Nucleic Acids Res. 21, 585−591.
  113. , G., Xodo L.E. & Gasparotto D. (1990) Triple helix formation by oligopurine-oligopyrimidine DNA fragments electrophoretic and thermodynamic behaviour. J. Mol. Biol. 213, 833−843.
  114. , C. & Thiele D. (1978) Poly (dG) poly (dC) at neutral and alkaline pH: the formation of triple stranded poly (dG) poly (dG) poly (dC). Nucleic Acids Res. 5,1017−1028.
  115. Martinez-Balbas, A. & Azorin F. (1993) The effect of zinc on the secondary structure of d (GA TC) n DNA sequences of different length: a model for the formation *H-DNA. Nucleic Acids Res. 21, 2557−2562.
  116. , J., Michelson A.M. & Pochon F. (1966) Polynucleotide analogues. VI. Physical studies on 5-substituted pyrimidine polynucleotides. Biochim. Biophys. Acta 114, 16−26.
  117. Mayfield C., Ebbinghaus S" Gee J., Jones D" Rodu B., Squibb M. & Miller D. (1994) Triplex formation by the human Ha-ras promoter inhibits Spl binding and in vitro transcription. J. Biol. Chem. 269, 18 232−18 238.
  118. Mergny, J.L., Duval-Valentin G.,.Nguyen C. H, Perrouault L., Faucon B., Rougee M., Montenay-Garestier T, Bisagni E. & Helene C. (1992) Triple-helix specific ligands. Science 256, 1681−1684.
  119. , S.M. & Frank-Kamenetskii M.D. (1994) H-DNA and related structures. Annu. Rev. Biophys. Biomol. Struct. 23, 541−576.
  120. , S.M., Lyamichev V.l., Drushlyak K.N., Dobrynin V.M. & Frank-Kamenetskii M.D. (1987) DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature 330, 495−497.
  121. , A.R. & Wells R.D. (1968) Specificity of the tree-stranded complex formation between double-stranded DNA and single-stranded RNA containing repeating nucleotide sequences. J. Mol. Biol. 37, 63−80.
  122. , H. & Dervan P.B. (1987) Sequence-specific cleavage of double helical DNA by triplex helix formation. Science 238, 645−650.
  123. Mouscadet, J.-F., Ketterle C, Goulaouic H., Carteau S., Subra F., Le Bret M. & Auclair C. (1994) Triple helix formation with short oligonucleotide-intercalator conjugates matching the HIV-l U3 LTR end sequence. Biochemistry 33,4187−4196.
  124. Mundt, A.A., Crouch G. J .& Eaton B.E. (1997) Bimolecular DNA triplexes: duplex extensions show implications for H-form DNA stability. Biochemistry 36, 13 004−13 009.
  125. Ono, A., Ts’o P.O.P. & Kan L.-S. (1991) Triplex formation of oligonucleotides containing 2-O-methyl-pseudoisocytidine in substitution for 2-deoxycytidine. J. Am. Chem. Soc. 113, 40 324 033.
  126. , F.M., Kinsey B.M. & McShan W.M. (1994) Linkage structures strongly influence the binding cooperativity of DNA intercalators conjugated to triplex forming oligonucleotides. Nucleic Acid Res. 22, 479−484.
  127. Orson, F.M., Thomas D.W., McShan W.M., Kessler DJ. & Hogan M.E. (1991) Oligonucleotide inhibition of EL2Ra mRNA transcription by promoter region collinear triplex formation in lymphocytes. Nucleic Acids Res. 19, 3435−3441.
  128. Ouali, M., Letellier R., Sun J.S., Ahkebat A., Adnet F., Liquier J. & Taillandier E. (1993) Determination of G*GC triple-helix structure by molecular modeling and vibrational spectroscopy. J. Am. Chem. Soc. 115, 4264−4270.
  129. , I.G. & Wells R.D. (1992) Nodule DNA in the (GA)37(CT)37 insert in superheiical plasmids. J. Biol. Chem. 267, 5495−5501.
  130. , G.E., Park Y.W., Singleton S.F., Dervan P.B. & Breslauer K.J. (1990) Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Proc. Natl. Acad. Sci. USA 87, 9436−9440.
  131. , F. & Michelson A.M. (1965) Polynucleotides. VI. Interaction between polyguanylic acid and polycytidylic acid. Proc. Natl. Acad. Sci USA 53, 1425−1430.
  132. , E.H., Berberich S.J., Flint S.J., Ferrone C.A. (1993) Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate supressor of tumor metastasis. Science 261,478−483.
  133. , E.H., Flint S.J., Kessler D.J. & Hogan M.E. (1991) Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels. Proc. Natl. Acad. Sci. USA 88, 8227−8231.
  134. , E.H., Mango S.E. & Flint S.J. (1989) A nuclease-hypersensitive element of the human c-myc promoter interacts with a transcription initiation factor. Mol. Cell. Biol. 9, 5123−5133.
  135. , G. & Kool E.T. (1992) Structural effects in the recognition of DNA by circular oligonucleotides. J. Am. Chem. Soc. 114, 3523−3527.
  136. , I. & Patel D.J. (1993) Solution structure of an intramolecular purine purine pyrimidine DNA triplex. J. Am. Chem. Soc. 115,1615−1617.
  137. , I. & Patel D.J. (1994) Solution structure of a pyrimidine purine pyrimidine DNA triplex containing T. AT, C+ GC and GTA triples. Structure 2,17−32.
  138. Radhakrishnan, I., Gao X., de los Santos C., Live D. & Patel D.J. (1991b) NMR amino proton and nitrogen markers of GTA base triple formation. Biochemistry 30, 9022−9030.
  139. , A. (1958) Formation of two- and three-stranded helical molecules by polyinosinic acid and polyadenylic acid. Nature 181, 521−525.
  140. , A. (1960) A hybrid helix containing both deoxyribose and ribose polynucleotides and its relation to the transfer of information between the nucleic acids. Proc. Natl. Acad. Sci. USA 46, 1044−1053.
  141. , R.W. & Crothers D.M. (1991) Specificity and stringency in DNA triplex formation. Proc. Natl. Acad. Sci. USA 88, 9397−9401.
  142. , R.W. & Crothers D.M. (1992) Stability and properties of double and triple helices: dramatic effects of RNA and DNA backbone composition. Science 258,1463−1466.
  143. Roy, C. (1993) Inhibition of gene transcription by purine rich triplex forming oligodeoxyribonucleotides. Nucleic Acids Res. 21, 2845−2852.
  144. G.M. & Mirkin S.M. (1994) Trapping DNA polymerases using triplex-forming oligodeoxyribonucleotides. Gene 149, 127−136.
  145. , G.M., Dayn A. & Mirkin S.M. (1993) Suicidal nucleotide sequences for DNA polymerization. EMBO J. 12, 4975−4983,
  146. N. (1986) Sustained high-level production of recombinant human gamma interferon using a bovin papillomavirus vector. European patent 0 198 386.
  147. Sekharudu, C.Y., Yathindra N.& Sundaralingam M. (1993) Molecular dynamics investigations of DNA triple helical models: unique features of the Watson-Crick duplex. J. Biomol. Struct. Dyn. 11,225−244.
  148. , S.F. & Dervan P.B. (1992a) Thermodynamics of oligodeoxyribonucleotide-directed triple-helix formation: an analysis using quantitative affinity cleavage titration. J. Am. Chem. Soc. 114, 6957−6965.
  149. , S.F. & Dervan P.B. (1992b) Influence of pH on the equilibrium association constants for oligo-deoxyribonucleotide-directed triple helix formation at single DNA sites. Biochemistry 31, 10 995−11 003.
  150. , S.F. & Dervan P.B. (1993) Equilibrium association constants for oligonucleotide-direeted triple helix formation at single DNA sites: linkage to cation valence and concentration. Biochemistry 32, 13 171−13 179,
  151. , V. & Feigon J. (1990) Formation of a stable triplex from a single DNA strand. Nature 345, 836−838.
  152. , V.N. & Potaman V.N. (1996) Triple Helical Nucleic Acids. Springer Verlag.
  153. Soyfer, V.N., Voloshln O.N., Malkov V.A.& Frank-Kamenetskii M.D. (1992) Photofootprinting of inter- and intramolecular DNA triplexes. In (R.H.Sarma & M.H.Sarma eds.) Structure and Function, Vol. 1: Nucleic Acids, Adenine Press, New York, 29−41.
  154. Steiner, R.F.& Beers R.F. (1959) Polynucleotides. VI. The influence of various factors upon the structural transition of polyriboadenylic acid at acid pH. Biochim. Biophys. Acta 32, 166−176.
  155. , H.U. & Dervan P.B. (1993) Specific recognition of CG base pairs by 2deoxynebularine within the purine purine pyrimidine triple-helix motif. Biochemistry 32, 21 772 185.
  156. , S.A. & Dervan P.B. (1990) Site-specific cleavage of a yeast chromosome by oligonucleotide-directed triple-helix formation. Science 249, 73−75.
  157. , S.A. & Dervan P.B. (1991) Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation. Nature 350,172−174.
  158. Strobel, S.A., Doucette-Stamm L.A., Riba L., Housman D.E.& Dervan P.B. (1991) Site-specific cleavage of human chromosome 4 mediated by triple helix formation. Science 254, 16 391 642.
  159. Sugimoto, N, Shintani Y. & Sasaki M. (1991) Effect of the third-strand length on the formation of DNA triple helix. Nucleic Acids Res. Symp. Ser. 25, 183−184.
  160. Sun J.S., Mergny J.L., Lavery R., Montenay-Garestier T., Helene C. (1991a) Triple helix structures: sequence dependence, flexibility and mismatch effects. J. Biomol. Struct. Dyn. 9, 411 424.
  161. F., Cherny D., Debin A., Delain E., Malvy C. (1996) A new approach to overcome potassium-mediated inhibition of triplex formation. Nucleic Acids Res. 24, 3858−3865.
  162. , C.W. & Tabor, H. (1984) Polyamines. Annu. Rev. Biochem. 53, 749−790.
  163. , T. & Thomas T.J. (1993) Selectivity of polyamines in triplex DNA stabilization. Biochemistry 32, 14 068−14 074.
  164. Thomas, T.J., Kulkami G.D., Greenfield N.J., Shirahata A, Thomas T (1996) Structural specificity effects of trivalent polyamine analogues on the stabilization and conformational plasticity of triplex DNA. Biochem J 319(Pt 2), 591−599.
  165. , N.T. & Helene C. (1993) Sequence-specific recognition and modification of double-helical DNA by oligonucleotides. Angew. Chem. Int. Ed. Engl. 32, 666−690.
  166. E. & Norden B. (1995) Intercalative interactions of ethidium dyes with triplex structures. Bioorg. Med. Chem. 3, 701−711.
  167. Wang, E., Malek S.& Feigon J. (1992) Structure of a G T A triplet in an intramolecular DNA triplex. Biochemistry 31, 4838−4846.
  168. , S., Booher M.A. & Kool E.T. (1994) Stabilities of nucleotide loops bridging the pyrimidine strands in DNA pyrimidine-purine-pyrimidine triplexes: special stability of the CTTTG loop. Biochemistry 33, 4639−4644.
  169. , E. (1991) Prospects for antisense nucleic acid therapy of cancer and AIDS. Wiley-Liss, New York, NY.
  170. , W.D., Hopkins H.P., Mizan S., Hamilton D.D. & Zon G. (1994) Thermodynamics of DNA triplex formation in oligomers with and without cytosine bases: influence of buffer species, pH, and sequence. J. Am. Chem. Soc. 116, 3607−3608.
  171. Xodo L" Alunni-Fabbroni M., Manzini G., Quadrifoglio F. (1994b) Fyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition. Nucleic Acids Res. 22, 3322−3330.
  172. Xodo, L.E., Alunni-Fabbroni M., Manzini G. (1994a) Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides. J. Biomol. Struct. Dyn, 11, 703−720.
  173. Xodo, L.E., Manzini G., Quadrifoglio F., van der Marel G. & van Boom J. (1991) Effect of 5-methylcytosine on the stability of triple-stranded DNA a thermodynamic study. Nucleic Acids Res. 19, 5625−5631.
  174. Xu Z., Pilch D.S., Srinivasan A.R., Olson W.K., Geacinton N.E. & Breeslauer K.J. (1997) Modulation of nucleic acid structure by ligand binding: induction of a DNA.RNA.DNA hybrid triplex by DAPI intercalation. Bioorg. Med. Chem. 5, 1137−1147.
  175. , S.L., Krawczyk S.H., Matteucci M.D. & Toole J.J. (1991) Triple helix formation inhibits transcription elongation in vitro, Proc. Natl. Acad. Sci. USA 88, 10 023−10 026.
  176. , Π’.Π€., Иванова E.M., ΠšΡƒΡ‚ΡΠ²ΠΈΠ½ Π™. Π’. (1982) Π‘ΠΈΠ½Ρ‚Π΅Π· олигодСзоксирибонуклСотидов GGCCTGTTTGGC ΠΈ Π’(Ρ€Π’)Ρ‹ триэфирным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ 5'-ΠΏ-Ρ…Π»ΠΎΡ€Ρ„Π΅Π½ΠΈΠ»ΠΎΠ²Ρ‹Ρ… эфиров ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… Π±Π»ΠΎΠΊΠΎΠ². Π‘ΠΈΠΎΠΎΡ€Π³Π°Π½, химия, 8,224−230.
  177. Π”.Π“., Π—Π°Ρ€Ρ‹Ρ‚ΠΎΠ²Π° Π’. Π€., ΠŸΠΎΠ΄ΡƒΡΡ‚ JI.M., Π€Π΅Π΄ΠΎΡ€ΠΎΠ²Π° О Π‘. (1988) ΠšΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΎ адрСсованная модификация Π΄Π²ΡƒΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡ΠΊΠΎΠΉ Π”ΠΠš Π² ΡΠΎΡΡ‚Π°Π²Π΅ Ρ‚Ρ€Π΅Ρ…Ρ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ³ΠΎ комплСкса. Π”ΠΎΠΊΠ». АН Π‘Π‘Π‘Π , 300, 1006−1009.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ