Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

ЯМР томография процессов массопереноса и химических превращений в гетерогенных системах

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Необходимая скорость течения газа через образец устанавливалась с помощью регулируемого ротаметра (в случае ацетилена и водорода он был установлен после штатного редуктора баллона), который калибровался отдельно для каждого газа как с помощью барабанного газосчетчика ГСБ-400, так и по вытеснению жидкости из сосуда с делениями. Газ в экспериментах подавался в чувствительную область датчика снизу… Читать ещё >

Содержание

  • 1. Введение
    • 1. 1. Общие замечания
    • 1. 2. Получение изображения
    • 1. 3. Пространственное разрешение метода
    • 1. 4. Специфика, достоинства и недостатки метода
    • 1. 5. Механизмы контраста изображения и информативность метода
    • 1. 6. Содержание обзора
  • 2. Структура и свойства материалов, содержащих жидкости
    • 2. 1. Общие замечания
    • 2. 2. Модельные и синтетические пористые материалы
    • 2. 3. Горные породы
    • 2. 4. Полимеры, гели
    • 2. 5. Суспензии, эмульсии, компакты
    • 2. 6. Пищевые продукты и растения
    • 2. 7. Другие материалы
  • 3. ЯМР порометрия
    • 3. 1. Общие замечания
    • 3. 2. Релаксационная порометрия
    • 3. 3. Криопорометрия
  • 4. Процессы сорбции в пористых материалах
    • 4. 1. Общие замечания
    • 4. 2. Исследование процессов сорбции
  • 5. Набухание полимеров и угля при сорбции растворителей
    • 5. 1. Общие замечания
    • 5. 2. Процессы набухания
  • 6. Сушка
    • 6. 1. Общие замечания
    • 6. 2. Сушка материалов и пленок
  • 7. Диффузия
    • 7. 1. Общие замечания
    • 7. 2. Методы изучения диффузии
    • 7. 3. Применение градиента концентрации меток и меченых соединений
    • 7. 4. Исследования диффузии без использования меченых соединений
    • 7. 5. Эффект выделения краев
  • 8. Применение МРТ для изучения потоков
    • 8. 1. Общие замечания
    • 8. 2. Методы исследования потоков
    • 8. 3. Течение жидкостей в различных геометриях
    • 8. 4. Фильтрация
    • 8. 5. Движение твердых гранулированных материалов
    • 8. 6. Течение газов
  • 9. Химические реакции
    • 9. 1. Общие замечания
    • 9. 2. Термическая полимеризация
    • 9. 3. Полимеризация под действием света или ионизирующего излучения
    • 9. 4. Реакция Белоусова-Жаботинского
    • 9. 5. Другие реакции
  • 10. ЯМР термометрия
  • 11. Отображение плотности электрического тока
  • 12. ЯМР томография газов
    • 12. 1. Общие замечания
    • 12. 2. Газы с равновесной поляризацией
    • 12. 3. Гиперполяризованные газы
  • 13. ЯМР томография твердых материалов

ЯМР томография процессов массопереноса и химических превращений в гетерогенных системах (реферат, курсовая, диплом, контрольная)

16. Процессы течения и фильтрации179.

16.1. Общие замечания.179.

16.2. Течение жидкостей и газов в каналах.180.

16.3. Фильтрация жидкостей и газов.194.

16.4. Фильтрация твердых гранулированных материалов.212.

17. Процессы транспорта при сушке капиллярно-пористых тел220.

17.1. Общие замечания.220.

17.2. Удаление воды из капилляров.221.

17.3. Экспериментальные исследования сушки единичного зерна.225.

17.4. Моделирование процессов сушки единичного зерна.227.

17.5. Внешний массообмен при сушке блочных структур.231.

17.6. Адсорбционно-контактная сушка блочных структур.236.

17.7. Экспериментальные исследования сушки зернистого слоя.237.

17.8. Сушка древесины.238.

18. Процессы транспорта при адсорбции влаги пористыми материалами240.

18.1. Общие замечания.240.

18.2. Экспериментальные исследования адсорбции влаги единичной гранулой.244.

18.3. Моделирование процессов адсорбции единичной гранулой.248.

18.4. Экспериментальные исследования адсорбции влаги зернистым слоем.250.

18.5. Моделирование адсорбции зернистым слоем.253.

18.6. Экспериментальные исследования адсорбции консолидированным слоем в отсутствие воздуха.258.

18.7. Капиллярное впитывание воды блоками.264.

18.8 Перераспределение активного компонента при приготовлении нанесенных катализаторов.266.

19. Взаимодействие процессов транспорта и химического превращения270.

19.1. Общие замечания.270.

19.2. Реакция Белоусова-Жаботинского.272.

19.3. Каталитическое гидрирование.276.

19.4. Каталитическое разложение перекиси водорода.284.

20.

Заключение

287.

21. Экспериментальная часть288.

22. Список работ, опубликованных по теме диссертации301.

23.

Литература

307.

24. Благодарности362.

25. Приложение I364.

Часть I. Метод ЯМР томографии и его физико-химические приложения.

1.

Введение

.

1.1. Общие замечания.

Метод ЯМР томографии (МРТ) уже давно и рутинно используется в медицине и биологии, при этом применение метода вышло далеко за рамки диагностики многочисленных заболеваний и в настоящее время охватывает, в частности, такие области как оперативный контроль за неинвазивным и инвазивным лечением рада заболеваний и изучение функциональной активности головного мозга. В последние годы метод МРТ начинает приобретать популярность и при исследовании самых разнообразных неживых объектов. Существующий арсенал методик современного многоядерного магнитного резонанса позволяет получать изображения внутренней структуры различных объектов и исследовать широчайший спектр свойств материалов и процессов с пространственным разрешением в сотни и даже десятки микрон.

Метод МРТ [1−4] своим возникновением безусловно обязан созданию и развитию радиоспектроскопии как экспериментальной дисциплины, и прежде всего — первым успешным экспериментам Завойского по ЭПР [5] в 1944 году и работам групп Блоха [6] и Перселла [7] по наблюдению сигнала ЯМР в конденсированной среде в 1945 г. Большое значение для МРТ имели выполненные в 50-х годах работы Хана [8] по исследованию спинового эха, на регистрации которого основаны многие МРТ эксперименты. В 1966 году Эрнст и Андерсон показали [9] перспективность применения преобразования Фурье для извлечения спектральной информации, сделав важный шаг на пути к современному импульсному ЯМР [10−12], который составляет основу ЯМР томографии. Осознание необходимости использования компьютера для получения, обработки и представления данных привело к тому, что уже в начале 70-х годов серийные спектрометры ЯМР стали комплектоваться компьютерами. На сегодняшний день сложность экспериментов и объемы получаемой информации возросли настолько, что без компьютера обойтись невозможно. В 1971 году Джинер ввел в ЯМР идею двумерного преобразования Фурье, заложив основы многомерной ЯМР спектроскопии [13−16]. Фактически МРТ изображение также является многомерным «спектром» ЯМР, и во многих случаях конечное изображение в настоящее время восстанавливается именно с помощью многомерного преобразования Фурье [17]. Более того, ЯМР спектроскопия и МРТ могут рассматриваться как частные случаи многомерного ЯМР эксперимента в едином пространстве координат, частот и времени. В 1973 году Лаутербур опубликовал первое томографическое изображение [18], полученное по сигналу ЯМР! Н, а уже в начале 80-х начался серийный выпуск медицинских ЯМР томографов. Повышение пространственного разрешения на основе развития приборной базы и создания новых методик привело к возникновению ЯМР микротомографии в середине 80-х.

Отметим, что строгой границы между ЯМР томографией (МРТ) и микротомографией (МРМ) не существует. Как и в привычном понимании термина «микроскопия», формальной о границей может служить элемент объема (0.1 мм), представляющий собой предел разрешения для невооруженного глаза [19]. Тем не менее, даже такое условное разграничение не всегда однозначно, поскольку во многих экспериментах пространственное разрешение анизотропно и часто составляет десятки микрон в плоскости изображения при толщине слоя в несколько миллиметров. Термин МРТ в основном употребляется применительно к медицинским приложениям, но в то же время многие немедицинские приложения также нельзя назвать «микроскопией». Поскольку фактически речь идет об одном и том же методе, в тексте настоящего обзора во многих случаях предпочтение отдано более общему термину МРТ, а термин МРМ использован там, где необходимо подчеркнуть высокое пространственное разрешение или немедицинский характер приложений.

20.

Заключение

.

В работе впервые продемонстрирована и систематически исследована возможность применения метода ЯМР томографии для изучения широкого класса процессов транспорта вещества в модельных реакторах, зернистых слоях и отдельных пористых гранулах, в том числе в условиях протекания каталитической реакции in situ. При этом:

1. Впервые продемонстрировано, что метод ЯМР томографии применим для прямого получения наглядной количественной информации о течении газов в каналах и их фильтрации в пористой среде при нормальном давлении и без использования гиперполяризации ядерных спинов. Получены трехмерные пространственные распределения векторов скоростей течения жидкостей, газов и твердых частиц в модельных объектах сложной геометрии в комбинации с информацией о пространственной структуре, а также распределения по скоростям движения при их фильтрации в модельных зернистых слоях.

2. Исследованы процессы внутреннего транспорта и внешнего массообмена в ходе сушки капиллярно-пористых тел. Получены недоступные для традиционно применяемых методов данные о пространственном распределении влаги и величинах локальных влагосодержаний на разных стадиях процесса сушки. Измерены значения коэффициентов внешнего массообмена и зависимость эффективного коэффициента диффузии от влагосодержания. Продемонстрирована определяющая роль капиллярного транспорта влаги и установлена взаимосвязь величины эффективного коэффициента диффузии с распределением пор по размерам для исследуемого образца.

3. Впервые исследованы процессы транспорта адсорбированной влаги в ходе адсорбции водяного пара сорбентами типа «соль в пористой матрице», получены данные о пространственном распределении влаги в индивидуальных гранулах и зернистых слоях на разных стадиях процесса адсорбции. Показано, что для гранул размером несколько миллиметров и более лимитирующей стадией процесса может быть транспорт адсорбированной влаги в глубь пористого материала, а процесс распространения фронта адсорбции и время защитного действия абсорбера в значительной степени определяются характером транспорта адсорбированной влаги в индивидуальных гранулах сорбента. Получена зависимость коэффициента эффективной диффузии адсорбата от его содержания. На основе систематического исследования влияния химического состава, морфологии и способа приготовления адсорбентов на характер транспорта адсорбированной влаги при адсорбции в вакууме сформулированы практические рекомендации по оптимизации таких сорбентов.

4. Метод ЯМР томографии впервые применен для прямой визуализации пространственного распределения активного компонента в нанесенных катализаторах. Впервые выполнена визуализация перераспределения активных компонентов непосредственно в ходе приготовления нанесенного катализатора на основе платиновых металлов на подложке из оксидного материала, показана возможность контролируемого создания нанесенных катализаторов с заданным макрораспределением активного компонента.

5. Метод ЯМР томографии впервые применен для исследования in situ каталитических реакций в зернистом слое и в отдельной грануле катализатора, в том числе при повышенных температурах (до 170 °С). Впервые экспериментально зарегистрировано изменение пространственного распределения жидкой фазы внутри гранулы катализатора в модельном реакторе с орошаемым зернистым слоем непосредственно в условиях протекания гетерогенной каталитической реакции, сопровождающейся фазовым переходом жидкость-газ. Впервые прямым методом регистрации продемонстрировано влияние протекания каталитической реакции на процессы массопереноса, и в том числе на характер заполнения пористого катализатора жидкостью. Показано, что при протекании экзотермической многофазной реакции распределение жидкой фазы в пористом зерне катализатора определяется не только морфологией зерна, но и полем температур внутри зерна, что позволяет исследовать механизмы возникновения неустойчивых режимов протекания процесса.

21. Экспериментальная часть.

Все эксперименты, представленные в настоящей работе, выполнены с регистрацией сигнала ЯМР 'Н на частоте 300 или 299 МГЦ с использованием ЯМР спектрометров MSL-300 и Avance DRX (Bruker), оборудованных сверхпроводящими магнитами с вертикальным рабочим зазором, а также блоками, необходимыми для экспериментов по микротомографии (катушки для создания трех взаимно ортогональных градиентов магнитного поля, градиентные усилители, система охлаждения градиентных катушек). В зависимости от геометрии эксперимента использовались рч катушки с диаметром рабочей области 10 или 25 мм.

В экспериментах по исследованию течения и фильтрации газов использовался бытовой пропан-бутан (сжиженный в 5 л баллонах), ацетилен (для сварочных аппаратов) и бутан для зажигалок (Eurofill, Aerosols B.V., Голландия, 200 мл баллоны, вес нетто 116 г), приобретенный в табачном магазине. Информация о составе или чистоте газов производителями не предоставлялась. 'Н ЯМР спектр пропана выявил наличие примесей (не.

288 более нескольких процентов), сигналы ЯМР которых находились в более слабом поле по отношению к основным резонансам (СН2, СНз), в то время как для остальных газов ЯМР не выявил заметного количества примесей. С помощью ГХ-МС анализа бытового пропана-бутана было установлено, что смесь преимущественно содержит н-бутан и н-пропан, а также небольшие количества других газов. Однако состав смеси существенно различается для разных баллонов, и к тому же не оказывает принципиального влияния на результаты, полученные в настоящей работе.

Необходимая скорость течения газа через образец устанавливалась с помощью регулируемого ротаметра (в случае ацетилена и водорода он был установлен после штатного редуктора баллона), который калибровался отдельно для каждого газа как с помощью барабанного газосчетчика ГСБ-400, так и по вытеснению жидкости из сосуда с делениями. Газ в экспериментах подавался в чувствительную область датчика снизу вверх, а вытекание газа происходило через открытый выпускной конец шланга в вытяжной шкаф. Для бутана испарение сжиженного газа приводило к заметному охлаждению небольшого баллона, что вызывало заметное изменение скорости течения газа в ходе эксперимента. Поэтому баллоны с бутаном термостатировались путем погружения в воду, находившуюся в емкости термостата. Для остальных газов из-за значительно большего размера баллонов их заметного охлаждения не наблюдалось. В экспериментах по исследованию течения и фильтрации жидкости использовалась дистиллированная вода. Поток жидкости создавался с помощью насоса лабораторного жидкостного термостата (Lauda А100), а скорость определялась измерением объемного расхода жидкости. В работе не делалось попыток сократить времена спиновой релаксации воды путем допирования воды парамагнитными соединениями или ионами чтобы избежать загрязнения используемых катализаторов.

При исследовании течения жидкости или газа в трубке круглого сечения использовался отрезок пластиковой трубки длиной 5−6 м внутренним диаметром 7.6 мм, а все измерения выполнены на прямом участке трубки. При исследовании течений через блочные катализаторы использовался приблизительно цилиндрический фрагмент блока, который помещался в цилиндрическую фторопластовую ячейку с внутренним диаметром 21 мм. Нижний срез блока располагался на 2 см выше дна кюветы. К ячейке с обеих сторон подсоединялись отрезки полиэтиленовой трубки длиной 2−3 м с внутренним диаметром 4 мм (газ) или 5.5 мм (вода). Диаметр входного отверстия в нижней части ячейки составлял 4 или 5 мм. В экспериментах использованы фрагменты блочных катализаторов из у-АЬОз, имеющих прямые транспортные каналы различной геометрии. Основная часть экспериментов выполнена для блока с удельной поверхностью 62 м /г и средний диаметр пор 14 нм (XII, табл. 6). Его транспортные каналы имели квадратное сечение 4×4 мм и.

Показать весь текст

Список литературы

  1. W. Kuhn, «NMR microscopy — fundamentals, limits and possible applications», Angew. Chem.1.t. Ed., 29 (1990) 1−19.
  2. S.L. Talagala, I.J. Lowe, «Introduction to magnetic resonance imaging», Concepts Magn. Reson., 3 (1991) 145−159.
  3. J.P. Hornak. The Basics о/МК/(Дж.П. Хорнак. Основы MPT). Интернет-издание на русскоми английском языке, http://www.cis.rit.edu/htbooks/mri/
  4. А. С. Kak, M. Slaney. Principles of Computerized Tomographic Imaging, IEEE Press, 1988.
  5. Интернет-издание, http ://www. slaney. org/pct/pct-toc. html
  6. E. Завойский, Ж. Физ. 9 (1945) 245, 447.
  7. F. Bloch, W.W. Hansen, M. Packard, Phys. Rev. 69 (1946) 127.
  8. E.M. Purcell, H.C. Torrey, R.V. Pound, Phys. Rev. 69 (1946) 37.
  9. E.L. Hahn, Phys. Rev. 80 (1950) 580−594.
  10. R.R. Ernst, W.A. Anderson. Rev. Sci. Instr., 37 (1966) 93.
  11. Т. Фаррар, Э. Беккер. Импульсная и Фурье-спектроскопия ЯМР, пер. с англ., М., Мир, 1973.
  12. Н.Э. Дероум, Современные методы ЯМР для химических исследований, пер. с англ., М., Мир, 1992.
  13. J.P. Hornak, The Basics of NMR. Интернет-издание: http://www.cis.rit.edu/htbooks/nmr/
  14. P. Эрнст, Дж. Боденхаузен, А. Вокаун, ЯМР в одном и двух измерениях, пер. с англ., М., Мир, 1990.
  15. Э. Бакс, Двумерный ядерный магнитный резонанс в жидкости, пер. с англ., Новосибирск, Наука, 1989. А. Вах, Two-dimensional nuclear magnetic resonance in liquids, Delft University Press, Delft, Holland, 1982.
  16. H. Kessler, M. Gehrke, C. Griesinger, «Two-dimensional NMR spectroscopy: background and overview of the experiments», Angew. Chem. Int. Ed., 27 (1988) 490−536.
  17. R.R. Ernst, «Nuclear magnetic resonance Fourier transform spectroscopy (Nobel lecture)», Angew. Chem. Int. Ed., 31 (1992) 805−930.
  18. A. Kumar, D. Welti, R.R. Ernst, «NMR Fourier zeugmatography» J. Magn. Res on. 18 (1975) 69−83.
  19. P.C. Lauterbur, «Image formation by induced local interactions: examples employing nuclear magnetic resonance», Nature, 242 (1973) 190−191.
  20. Y. Xia, P.T. Callaghan, K.R. Jeffrey, «Imaging velocity profiles: flow through an abrupt contraction and expansion», AIChE J., 38 (1992) 1408−1420.
  21. T. Hou, J. Smith, E. MacNamara, M. Macnaughtan, D. Raftery, «Analysis of multiple samples using multiplex sample NMR: selective excitation and chemical shift imaging approaches», Anal. Chem., 73 (2001) 2541−2546.
  22. Process tomography, special issue, Chem. Eng. Sci., Vol. 52 #13 (1997).
  23. J.-M. Nuzillard, R. Freeman, «Band-selective pulses designed to accommodate relaxation», J. Magn. Reson. A, 107 (1994) 113−118.
  24. E. Kupce, R. Freeman, «Band-selective correlation spectroscopy», J. Magn. Reson. A, 112 (1995) 134−137.
  25. S. McDonald, W.S. Warren, «Uses of shaped pulses in NMR: a primer», Concepts Magn. Reson., 3 (1991) 55−81.
  26. P.T. Callaghan. Principles of Nuclear Magnetic Resonance microscopy. Clarendon Press, Oxford, 1991.
  27. M.J.D. Mallett, S.L. Codd, M.R. Halse, T.A.P. Green, J.H. Strange, «Three-dimensional NMR imaging using large oscillating field gradients», J. Magn. Reson. A, 119 (1996) 105−110.
  28. J.M. Listerud, S.W. Sinton, G.P. Drobny, «NMR imaging of materials», Anal. Chem., 61 (1989) 23A-41A.
  29. G.T. Herman. Image reconstruction from projections. Implementation and applications. Springer, Berlin, 1979.
  30. J.C. Sharp, R.W. Bowtell, P. Mansfield, «Elimination of susceptibility distortions and reduction of diffusion attenuation in NMR microscopy by line-narrowed 2DFT», Magn. Reson. Med., 29 (1993) 407−411.
  31. J. Hennig, A. Nauerth, H. Friedburg, Magn. Reson. Med., 3 (1986) 823.
  32. J. Hennig, J. Magn. Reson., 78 (1988) 397.
  33. A. Haase, J. Frahm, D. Matthaei, W. Haenicke, K.-D. Merboldt, J. Magn. Reson., 67 (1986) 258.
  34. A. Haase, Magn. Reson. Med., 13 (1990) 77.
  35. M.T. Ylaardingerbroek, J.A. den Boer. Magnetic resonance imaging. Springer Yerlag, Berlin, 1996.
  36. P. Mansfield, A.M. Blamire, R. Coxon, P. Gibbs, D.N. Guilfoyle, P. Harvey, M. Symms, «Snapshot echo-planar imaging methods: current trends and future perspecives», Phil. Trans. R. Soc. bond. A, 333 (1990) 495−506.
  37. R. Mulkern, «In-plane spatial encoding in MRI and its central role in determining contrast and artifact with rf echo planar techniques», Concepts Magn. Reson., 4 (1992) 307−325.
  38. D. Yang, T. Kodama, S. Tamura, K. Watanabe, «Evaluation of the inner ear by 3D fast asymmetric spin echo (FASE) MR imaging: phantom and volunteer studies», Magn. Reson. Imaging, 17 (1999) 171−182.
  39. T. Scaeffter, V. Rasche, P. Bornert, G. Mens, «Interactive reduced FOV imaging for projection reconstruction and spiral acquisition», Magn. Reson. Imaging, J9 (2001) 677−684.
  40. N.G. Papadakis, A.A. Wilkinson, T.A. Carpenter, L.D. Hall, «A general method for emasurement of the time integral of variant magnetic field gradients: application to 2D spiral imaging», Magn. Reson. Imaging, 15 (1997) 567−578.
  41. А.А. Савелов, Р. З. Сагдеев, Мед. Физ. № 11 (2001) 108.
  42. F.O. Zelaya, W.U. Roffmann, S. Crozier, S. Teed, D. Gross, D.M. Doddrell, «Direct visualisation of B1 inhomogeneity by flip angle dependency», Magn. Reson. Imaging, 15 (1997) 497−504.
  43. A.A. Maudsley, H.E. Simon, S.K. Hilal, «Magnetic field measurement by NMR imaging», J. Phys. E: Sci. Instrum., 17 (1984) 216−220.
  44. D. Tomasi, H. Panepucci, E.L. Vidoto, E.R. Azevedo, «Use of a phase reference for field mapping with amplitude images at low field», J. Magn. Reson., 131 (1998) 310−314.
  45. D. Tomasi, H. Panepucci, «Magnetic field mapping with the phase reference method», Magn. Reson. Imaging, 17 (1999) 157−160.
  46. G.N. Chmurny, D.I. Hoult, «The ancient andhonourable art of shimming», Concepts Magn. Reson., 2(1990) 131−149.
  47. В J. Balcom, M. Bogdan, R.L. Armstrong, «Single-point imaging of gradient rise, stabilization, and decay», J. Magn. Reson. A, U8 (1996) 122−125.
  48. R.E. Wysong, I.J. Lowe, «A simple method of measuring gradient inducced eddy currents to set compensation networks», Magn. Reson. Med., 29 (1993) 119−121.
  49. M. Terpstra, P.M. Andersen, R. Gruetter, «Localized eddy current compensation using quantitative field mapping», J. Magn. Reson., 131 (1998) 139−143.
  50. P. Maffei, P. Mutzenhardt, A. Retournard, B. Diter, R. Raulet, J. Brondeau, D. Canet, «NMR microscopy by radiofrequency field gradients», J. Magn. Reson. A, 107 (1994) 40−49.
  51. K. Woelk, J.W. Rathke, R.J. Klinger, «The toroid cavity NMR detector», J. Magn. Reson. A, 109(1994) 137−146.
  52. R. Raulet, J.-M. Escanye, F. Humbert, D. Canet, «Quasi-immunity of B1 gradient NMR microscopy to magnetic susceptibility distortions», J. Magn. Reson. A, 119 (1996) 111−114.
  53. D.V. Trushkin, O.A. Shushakov, A.V. Legchenko, «Modulation effects in non-drilling NMR in Earth’s field», Appl. Magn. Reson. 5 (1993), 399−406.
  54. R. Kimmich, B. Simon, H. Kostler, «Magnetization-grid rotating-frame imaging technique for diffusion and flow measurements», J. Magn. Reson. A, 112 (1995) 7−12.
  55. K. Woelk, R.E. Gerald П, R.J. Klinger, J.W. Rathke, «Imaging diffusion in toroid cavity probes», J. Magn. Reson. A, 121 (1996) 74−77.
  56. S.-C. Lee, K. Kim, J. Kim, S. Lee, J.H. Yi, S.W. Kim, K.-S. Ha, C. Cheong, «One micrometer resolution NMR microscopy», J. Magn. Reson., 150 (2001) 207−213.
  57. R. Verhagen, A. Wittlin, C.W. Hilbers, H. van Kempen, A.P.M. Kentgens, «Spatially resolved spectroscopy and structurally encoded imaging by magnetic resonance force microscopy of quadrupolar spin systems», J. Amer. Chem. Soc., 124 (2002) 1588−1589.
  58. K. Wago, D. Botkin, C.S. Yannoni, D. Rugar, «Paramagnetic and ferromagnetic resonance imaging with a tip-on-cantilever magnetic resonance force microscope», Appl. Phys. Lett., 12 (1998) 2757.
  59. D. Rugar, C.S. Yannoni, J.A. Sidles, «Mechanical Detection of Magnetic Resonance», Nature, 360 (1992) 563.
  60. D. Rugar, O. Zueger, C.S. Hoen, S. Yannoni, H.-M. Vieth, R. Kendrick, «Force detection of nuclear magnetic resonance», Science, 264 (1994) 1560.
  61. S. Singh, R. Deslauriers, «Tailored selective NMR excitation by projection presaturation», Concepts Magn. Reson., 7 (1993) 1−27.
  62. Sersa, S. Macura, «Volume selective detection by weighted averaging of contrast tip angle scans», J. Magn. Reson., 143 (2000) 208−212.
  63. Sersa, S. Macura, «Excitation of arbitrary shapes in nuclear magnetic resonance by a random walk in discrete к space», J. Magn. Reson. В, Ш (1996) 186−188.
  64. I. Sersa, S. Macura, «Excitation of complicated shapes in three dimensions», J. Magn. Reson., 135 (1998) 466−477.
  65. I. Sersa, S. Macura, «Excitation of complex profiles by CARVE sequence: accounting for spectral dispersion and relaxation», Int. J. Imag. Syst. Technol., 10 (1999) 225−241.
  66. S.W. Gould, A. Darzi, «The interventional magnetic resonance unit the minimal access operating theatre of the future?», Brit. J. Radiol., 70 (1997) S89-S97.
  67. S. Gould, W. Gedroyc, A. Darzi, «The magnetic resonance operating theatre», Brit. J. Surgery, 84 (1997) 595−597.
  68. P.A. Osment, K.J. Packer, M.J. Taylor, J.J. Attard, T.A. Carpenter, L.D. Hall, N.J. Herrod, S.J. Doran, «NMR imaging of fluids in porous solids», Phil. Trans. R. Soc. Lond. A, 333 (1990) 441−452.
  69. S. Chen, X. Yao, J. Qiao, A.T. Watson, «Characterization of fractured permeable porous media using relaxation-weighted imaging techniques», Magn. Resort. Imaging, 13 (1995) 599−606.
  70. B. Issa, P. Mansfield, «Permeability estimation from Ti mapping», Magn. Reson. Imaging, 12 (1994)213−214.
  71. J.J. Howard, «Wettability and fluid saturations determined from NMR Ti distributions», Magn. Reson. Imaging, 12 (1994) 197−200.
  72. G. Guillot, C. Chardaire-Riviere, S. Bobroff, A. Le Roux, J.C. Roussel, L. Cuiec, «Characterization of wetting heterogeneities in a sandstone rocks by MRI», Magn. Reson. Imaging, 12 (1994) 365−368.
  73. L.D. Hall, S. Sukumar, S.L. Talagala, «Chemical-shift-resolved tomography using frequency-selective excitation and suppression of specific resonances», J. Magn. Reson., 56 (1984) 275 278.
  74. G.C. Borgia, A. Brancolini, A. Camanzi, G Maddinelli, «Capillary water determination in core plugs: a combined study based on imaging techniques and relaxation analysis», Magn. Reson. Imaging, 12 (1994) 221−224.
  75. L.D. Hall, S. Sukumar, «Three-dimensional Fourier transform NMR imaging. High-resolution chemical-shift-resolved planar imaging», J. Magn. Reson., 56 (1984) 314−317.
  76. J.M. Dereppe, C. Moreaux, K. Schenker, «2D spin echo and 3D chemical shift imaging techniques for analysis of oil-water replacement in limestone», J. Magn. Reson., 9! (1991) 596 603.
  77. L.D. Hall, V. Rajanayagam, C. Hall, «Chemical shift imaging of water and n-dodecane in sedimentary rocks», J. Magn. Reson., 68 (1986) 185−188.
  78. M.A. Horsfield, C. Hall, L.D. Hall, «Two-species chemical shift imaging using prior knowledge and estimation theory. Application to rock cores», J. Magn. Reson., 87 (1990) 319−330.
  79. B. Newling, S.J. Gibbs, L.D. Hall, D.E. Haycock, W.J. Frith, S. Ablett, «Chemically resolved NMR velocimetry», Chem. Engng Sci., 52 (1997) 2059−2072.
  80. M.R. Halse, H.J. Rahman, J.H. Strange, «A study of the diffusion of decane into lightly cross-linked natural rubber by broad-line NMR», Physica B, 203 (1994) 169−185.
  81. M.R. Halse, «Diffusion and molecular mobility in microporous media: applications to rubber and zeolite 4A powders», Magn. Reson. Imaging, 14 (1996) 745−750.
  82. L.D. Hall, V. Rajanayagam, «Thin-slice, chemical-shift imaging of oil and water in sandstone rock at 80 MHz», J. Magn. Reson., 74 (1987) 139−146.
  83. S. Davies, A. Hardwick, D. Roberts, K. Spowage, K.J. Packer, «Quantification of oil and water in preserved reservoir rock by NMR spectroscopy and imaging», Magn. Reson. Imaging, 12 (1994) 349−353.
  84. A.G. Webb, L.D. Hall, «Evaluation of the use of nuclear magfnetic resonance imaging in the study of Fickian diffusion in rubbery polymers. 2. Bicomponent solvent ingress», Polym. Commun., 31 (1990) 425−427.
  85. H.J. Vinegar, «X-ray CT and NMR imaging of rocks», J. Petr. Technol., 38 (1986) 257−259.
  86. S.N. Sarkar, J.J. Dechter, R.A. Komoroski, «Multinuclear NMR imaging, of fluid phases in berea sandstone», J. Magn. Reson. A, 102 (1993) 314−317.
  87. S.N. Sarkar, E.W. Wooten, R.A. Komoroski, «NMR imaging of water in model porous materials», Appl. Spectr., 45 (1991) 619−625.
  88. H. Van As, D. van Dusschoten, «NMR methods for imaging of transport processes in micro-porous systems», Geoderma, 80 (1997) 389−403.
  89. M.E. Smith, S.N. Stuart, «A magnetic characterization of the texture of simple porous media», J. Phys. D: Appl. Phys., 28 (1995) 229−238.
  90. L. Garrido, J.L. Ackerman, W.A. Ellingson, «Polymeric binder distribution maps in green ceramics by 'H NMR imaging», J. Magn. Reson., 88 (1990) 340−353.
  91. H.T. Edzes, D. van Dusschoten, H. Van As, «Quantitative T2 imaging of plant tissues by means of multi-echo MRI microscopy», Magn. Reson. Imaging, 16 (1998) 185−196.
  92. S. Rigby, «A hierarchical structural model for the interpretation of mercury porosimetry and nitrogen sorption», J. Colloid Interface Sci., 224 (2000) 382−396.
  93. A. Timonen, L. Alvila, P. Hirva, T.T. Pakkanen, D. Gross, V. Lehmann, «NMRimaging of aluminum oxide catalyst spheres», Appl. Catal. A: General, 129 (1995) 117−123.
  94. J.J. Attard, T.A. Carpenter, L.D. Hall, S. Davies, M.J. Taylor, K.J. Packer, «Spatially resolved Ti relaxation measurements in reservoir cores», Magn. Reson. Imaging, 9 (1991) 815−819.
  95. M.P. Hollewand, L.F. Gladden, «heterogeneities in structure and diffusion within porous catalyst support pellets observed by NMR imaging», J. Catal., 144 (1993) 254−272.
  96. M.P. Hollewand, L.F. Gladden, «Transport heterogeneity in porous pellets II. NMR imaging studies under transient and steady-state conditions», Chem. EngngSci., 50 (1995) 327−344.
  97. S.P. Rigby, K.-Y. Cheah, L.F. Gladden, «NMR imaging studies of transport heterogeneity and anisotropic diffusion in porous alumina pellets», Appl. Catal. A: General, 144 (1996) 377−388.
  98. S.P. Rigby, L.F. Gladden, «The use of magnetic resonance images in the simulation of diffusion in porous catalyst support pellets», J. Catal., 173 (1998) 484−489.
  99. S.P. Rigby, L.F. Gladden, «The prediction of trsnsport properties of porous media using fractal models and NMR experimental techniques», Chem. Engng Sci., 54 (1999) 3503−3512.
  100. L. Tremblay, S. Lacelle, C.G. Fry, «Characterization of macroscopic disorder in a porous glass with NMR microimaging and scanning electron microscopy», Can. J. Chem., 76 (1998) 16 331 641.
  101. B. Manz, P. S. Chow, L.F. Gladden, «Echo-planar imaging of porous media with spatial resolution below 100 um», J. Magn. Reson., 136 (1999) 226−230.
  102. S. Sharma, M.D. Mantle, L.F. Gladden, J.M. Winterbottom, «Determination of bed voidage using water substitution and 3D magnetic resonance imaging, bed density and pressure drop in packed-bed reactors», Chem. Engng Sci., 56 (2001) 587−595.
  103. A. Klemm, H.-P. Muller, R. Kimmich, «Evaluation of fractal parameters of percolation model objects and natural porous media by means of NMR microscopy», Physica A, 266 (1999) 242 246.
  104. K.Y. Cheah, N. Chiaranussati, M.P. Hollewand, L.F. Gladden, «Coke profiles in deactivated alumina pellets studied by NMR imaging», Appl. Catal. A: General, П5 (1994) 147−155.
  105. J.-L. Bonardet, T. Domeniconi, P. N’Gokoli-Kekele, M.-A. Springuel-Huet, J. Fraissard, «Hydrocarbon diffusion measurements and coke distribution in zeolite pellets: a study by 'Н NMR imaging and 129Xe spectroscopy», Langmuir, 15 (1999) 5836−5840.
  106. B. Boddenberg, B. Beerwerth, «Proton and deuteron magnetic resonance relaxation of benzene adsorbed on alumina and on a platinum/alumina catalyst»,/. Phys. Chem., 9 3 (1989) 14 401 447.
  107. И.В. Коптюг, Л. Ю. Ильина, А. В. Матвеев, В. Н. Пармон, Р. З. Сагдеев, «Применение ЯМР-микротомографии для решения актуальных задач катализа», Хим. физика, 21 (2002) 68−78.
  108. I.V. Koptyug, L.Yu. Khitrina, V.N. Parmon, R.Z. Sagdeev, «NMR imaging of mass transport and related phenomena in porous catalysts and sorbents», Magn. Reson. Imaging, 1 9 (2001) 531−534.
  109. W.P. Rothwell, HJ. Vinegar, «Petrophysical applications of NMR imaging», Appl. Opt., 24 (1985) 3969−3972.
  110. D.N. Guilfoyle, B. Issa, P. Mansfield, «Rapid volumetric NMR imaging of fluids in porous solids using a 3D pi-EPI (PEPI) hybrid», J. Magn. Reson. A, U9 (1996) 151−156.
  111. A.V Legchenko, O.A. Shushakov, «Inversion of surface NMR data», Geophys. 63 (1998), 7584.
  112. O.A. Шушаков, А. В. Легченко, «Протонный магнитный резонанс от подземной воды в горизонтально-слоистых средах различной электропроводности», Геология и геофизика, 35 (1994), 140−145.
  113. S.R. Smith, J.L. Koenig, «Observation of cross-link density dispersion in sulfur donor-vulcanized polybutadiene using NMR imaging», Macromol., 24 (1991) 3496−3504.
  114. M.A. Rana, J.L. Koenig, «Observation of spatial inhomogeneities in N-tert-butylbenzothiazolesulfenamide-sulfur cured high-vinyl polybutadiene using NMR imaging», Macromol., 27 (1994) 3727−3734.
  115. P. Jackson, J.A. Barnes, N.J. Clayden, T.A. Carpenter, L.D. Hall, P. Jezzard, «Defect detection in carbon fibre composite structures by magnetic resonance imaging», J. Mater. Sci. Lett., 9 (1990) 1165−1168.
  116. S.J. Oh, J.L. Koenig, «Proton spin-spin relaxation and NMR imaging of peroxide/coagent crosslinked cis-1,4-polyisoprene», Polymer, 40 (1999) 4703−4708.
  117. S. Ganapathy, P.R. Rajamohanan, M.V. Badiger, A.B. Mandhare, R.A. Mashelkar, «Proton magnetic resonance imaging in hydrogels: volume phase transition in poly (N-isopropylacrylamide)», Polymer, 41 (2000) 4543−4547.
  118. H. Yasunaga, H. Kurosu, I. Ando, «Spatial information on a polymer gel as studied by 1H NMR imaging. Image analysis of stress-strain», Macromol., 25 (1992) 6505−6509.
  119. T. Shibuya, H. Yasunaga, H. Kurosu, I. Ando, «Spatial information on a polymer gel as studied by 1H NMR imaging. 2. Shrinkage by the application of an electric field to a polymer gel», Macromol., 28 (1995) 4377−4382.
  120. A. Yamazaki, Y. Hotta, H. Kurosu, I. Ando, «Spatial distribution of paramagnetic Mn ions m a composite PMAA gel with the application of an electric field as studied by 'H NMR imaging method», J. Molec. Struct., 554 (2000) 47−53.
  121. A. Degrassi, R. Toffanin, S. Paoletti, L.D. Hall, «A better understanding of the properties of alginate solutions and gels by quantitative magnetic resonance imaging (MRI)», Carbohydr. Res., 306 (1998) 19−26.
  122. P. S. Belton, B.P. Hills, E.R. Raimbaud, «The effects of morphology and exchange on proton NMR relaxation in agarose gels», Mol. Phys., 63 (1988) 825−842.
  123. S.D. Beyea, В J. Balcom, P.J. Prado, A.R. Cross, C.B. Kennedy, R.L. Armstrong, T.W. Bremner, «Relaxation time mapping of short Т2* nuclei with single-point imaging (SPI) methods», J. Magn. Reson., 135 (1998) 156−164.
  124. K. Hayashi, K. Kawashima, K. Kose, T. Inouye, «NMR imaging of advanced ceramics during the slip casting process», J. Phys. D: Appl. Phys., 21 (1988) 1037−1039.
  125. W.A. Ellingson, P. S. Wong, S.L. Dieckman, J.L. Ackerman, L. Gaxrido, «Magnetic resonance imaging: a new characterization technique for advanced ceramics», Ceram. Bull, 68 (1989) 1180−1186.
  126. E.N. Coker, P. S. Hees, C.H. Sotak, A.G. Dixon, R.W. Thompson, A. Sacco, «Zeolite synthesis in unstirred batch reactors. I. Nuclear magnetic resonance imaging of non-uniform pre-mixing», Microporous Mater., 3 (1995) 623−636.
  127. V.M. Rao, P.K. Ghosh, «Void size measurement in emulsion explosives: a noninvasive approach using NMR imaging», Langmuir, 16 (2000) 2985−2986.
  128. B. Newling, P.M. Glover, J.L. Keddie, D.M. Lane, P.J. McDonald, «Concentration profiles in creaming oil-in-water emulsion layers determined with stray field magnetic resonance imaging», Langmuir, 13 (1997) 3621−3626.
  129. P. Cornillon, L.C. Salim, «Characterization of water mobility and distribution in low- and intermediate-moisture food systems», Magn. Reson. Imaging, 18 (2000) 335−341.
  130. J. Lian, D.S. Williams, I.J. Lowe, «Magnetic resonance imaging of diffusion in the presence of background gradients and imaging of background gradients», J. Magn. Reson., 106 (1994) 6574.
  131. P. Barreiro, C. Ortiz, M. Ruiz-Alisent, J. Ruiz-Cabello, M.E. Fernandez-Valle, I. Recasens, M. Asensio, «Mealiness assessment in apples and peaches using MRI techniques», Magn. Reson. Imaging, 18 (2000) 1175−1181.
  132. Y. Iwahashi, A.K. Horigane, K. Yoza, T. Nagata, H. Hosoda, «The study of heat stress in tomato fruits by NMR microimaging», Magn. Reson. Imaging, 17 (1999) 767−772.
  133. D.E. Axelson, J.B. Wooten, «Bulk analysis of tobacco and sigarettes by magnetic resonance imaging», J. Agric. Food Chem., 48 (2000) 2199−2207.
  134. S.J. Chang, J.R. Olson, P.C. Wang, «NMR imaging of internal features in wood», Forest Prod. J., 39 (1989) 43−49.
  135. P.A. Bottomley, H.H. Rogers, Т.Н. Forster, «NMR imaging shows water distribution and transport in plant root systems in situ», Proc. Natl. Acad. Sci. USA, 83 (1986) 87−89.
  136. D.P. Brown, T.P. Pratum, C. Bledsoe, E.D. Ford, J.S. Cothern, D. Perry, «Noninvasive studies of conifer roots: NMR imaging of Douglas-fir seedlings», Can. J. For. Res., 21 (1991) 15 591 566.
  137. L.A. Stern, S.H. Kirby, W.B. Durham, «Comment to the Moudrakovski at al. letter, „Hydrate layers on ice particles and superheated ice: a 'H NMR microimaging study“», J. Phys. Chem. A, 105 (2001) 1223−1224.
  138. T. Pietrass, H.C. Gaede, A. Bifone, A. Pines, J.A. Ripmeester, «Monitoring xenon clathrate hydrate formation on ice surfaces with optically enhanced Xe NMR», J. Amer. Chem. Soc., 117 (1995) 7520−7525.
  139. M.J. McCarthy, «Interpretation of the magnetic resonance imaging signal from a foam», AIChE J., 36 (1990) 287−290.
  140. R.A. Assink, A. Caprihan, E. Fukushima, «Density profiles of a draining foam by nuclear magnetic resonance imaging», AIChE J., 34 (1988) 2077−2079.
  141. M.-A. Springuel-Huet, J.-L. Bonardet, J. Fraissard, «129Xe-NMR of physisorbed xenon used as a probe for the study of microporous solids», Appl. Magn. Reson., 8 (1995) 427−456.
  142. J.A. Ripmeester, C.I. Ratcliffe, «129Xe NMR spectroscopy in microporous solids: the effect of bulk properties», Anal. Chim. Acta, 283 (1993) 1103−1112.
  143. PJ. Barrie, J. Klinowski, «129XeNMRas a probe for the study of microporous solids: a critical review», Progr. NMR Spectr., 24 (1992) 91−108.
  144. D. Raftery, L. Reven, H. Long, A. Pines, P. Tang, J.A. Reimer, «Spin-polarized 129Xe NMR study of a polymer surface», J. Phys. Chem., 97 (1993) 1649−1655.19Q
  145. J. Demarquay, J. Fraissard, «Xe NMR of xenon adsorbed on zeolites. Relationship between the chemical shift and the void space», Chem. Phys. Lett., 136 (1987) 314−318.
  146. R. Holly, H. Peemoeller, C. Choi, M.M. Pintar, «Proton rotating frame spin-lattice relaxation study of slow motion of pore water», J. Chem. Phys., 108 (1998) 4183−4188.
  147. K.J. Packer, «Nuclear spin relaxation studies of molecules adsorbed on surfaces», Progr. NMR Spectr., 3 (1967) 87−128.
  148. E.W. Hansen, R. Schmidt, M. Stocker, D. Akporiaye, «Water-saturated mesoporous MCM-41 systems с haracterized by *H NMR spin-lattice relaxation times», J. Phys. Chem., 99 (1995) 4148−4154.
  149. R.L. Kleinberg, W.E. Kenyon, P.P. Mitra, «Mechanism of NMR relaxation of fluids in rock», J. Magn. Reson. A, 108 (1994) 206−214.
  150. W.E. Kenyon, J.A. Kolleeny, «NMR surface relaxivity of calcite with adsorbed Mn2+», J. Colloid Interface Sci., 170 (1995) 502−514.
  151. I. Foley, S.A. Farooqui, R.L. Kleinberg, «Effect of paramagnetic ions on NMR relaxation of fluids at solid surfaces», J. Magn. Reson. A, 123 (1996) 95−104.
  152. R.L. Kleinberg, «Well logging», Encyclopedia of nuclear magnetic resonance, vol. 8, pp. 49 604 969. D.M. Grant and R.K. Harris, eds. Wiley, Chichester, 1996.
  153. K.R. Brownstein, C.E. Tarr, «Spin-lattice relaxation in a system governed by diffusion», J. Magn. Reson., 26 (1977) 17−24.
  154. K.R. Brownstein, C.E. Tarr, «Importance of classical diffusion in NMR studies of water in biological cells», Phys. Rev. A, 19 (1979) 2446.
  155. S. Chen, H.-K. Liaw, A.T. Watson, «Fluid saturation-dependent nuclear magnetic resonance spin-lattice relaxation in porous media and pore structure analysis», J. Appl. Phys., 74 (1993) 1473−1479.
  156. S. Davies, K.J. Packer, «Pore size distributions from nuclear magnetic resonance spin-lattice relaxation measurements of fluid-saturated porous solids. I. Theory and simulation», J. Appl. Phys., 67 (1990) 3163−3170.
  157. S.G. Allen, P.C.L. Stephenson, J.H. Strange, «Morphology of porous media studied by nuclear magnetic resonance», J. Chem. Phys., 106 (1997) 7802−7809.
  158. E.J. Fordham, A. Sezginer, L.D. Hall, «Imaging multiexponential relaxation in the (y, In Ti) palne, with application to clay filtration in rock cores», J. Magn. Reson. A, 113 (1995) 139−150.
  159. R.L. Kleinberg, «Pore size distribution, pore coupling, and transverse relaxation spectra of porous rocks», Magn. Reson. Imaging, 12 (1994) 271−274.
  160. J. Godward, P. Gunning, B.P. Hills, «An NMR protocol for determining ice crystal size distributions during freezing and pore size distributions during freeze-drying», Appl. Magn. Reson., 17 (1999) 537−556.
  161. M.D. Hurlimann, K.G. Helmer, L.L. Latour, C.H. Sotak, «Restricted diffusion in sedimentary rocks. Determination of surface-area-to-volume ratio and surface relaxivity», J. Magn. Reson. A. Ill (1994) 169−178.
  162. S.P. Roberts, P.J. McDonald, T. Pritchard, «A bulk and spatially resolved NMR relaxation study of sandstone rock plugs», J. Magn. Reson. А, П6 (1995) 189−195.
  163. H.-K. Liaw, R. Kulkarni, S. Shen, A.A. Watson, «Characterization of fluid distributions in porous media by NMR techniques», AIChE J., 42 (1996) 538−546.
  164. K.R. McCall, D.L. Johnson, R.A. Guyer, «Magnetization evolution in connected pore system», Phys. Rev. B, 44 (1991) 7344−7355.
  165. M. Peyron, G.K. Pierens, A.J. Lucas, L.D. Hall, R.C. Stewart, «The modified stretched-exponential model for characterization of NMR relaxation in porous media», J. Magn. Reson. А, П8 (1996) 214−220.
  166. P. Fantazzini, C. Garavaglia, G. Guglielmi, «Continuous distribution analysis of marrow 'H magnetic resonance relaxation in bone», Magn. Reson. Imaging, 19 (2001) 227−231.
  167. G.C. Borgia, RJ.S. Brown, P. Fantazzini, «Uniform-penalty inversion of multiexponential decay data», J. Magn. Reson., 132 (1998) 65−77.
  168. G.C. Borgia, RJ.S. Brown, P. Fantazzini, «Uniform-penalty inversion of multiexponential decay data II. Data spacing, T2 data, systematic data errors, and diagnostics», J. Magn. Reson., 147 (2000) 273−285.
  169. E. Almagor, G. Belfort, «Relaxation studies of adsorbed warter on porous glass», J. Colloid Interface Sci., 66 (1978) 146−152.
  170. R.K. Cooper, J. A. Jackson, «Remote (inside-out) NMR. I. Remote production of a region of homogeneous magnetic field», J. Magn. Reson., 41 (1980) 400−405.
  171. L.J. Burnett, J.A. Jackson, «Remote (inside-out) NMR. II. Sensitivity of NMR detection for external samples», J. Magn. Reson., 41 (1980) 406−410.
  172. J.A. Jackson, L.J. Burnett, J.F. Harmon, «Remote (inside-out) NMR. III. Detection of nuclear magnetic resonance in a remotely produced region of homogeneous magnetic field», J. Magn. Reson., 41 (1980) 411−421.
  173. R.L. Kleinberg, A. Sezginer, D.D. Griffin, M. Fukuhara, «Novel NMR apparatus for investigating an external sample», J. Magn. Reson., 97 (1992) 466−485.
  174. K. Overloop, L. Van Gerven, «Freezing phenomena in adsorbed water as studied by NMR», J. Magn. Reson. A, 101 (1993) 179−187.
  175. E.W. Hansen, E. Tangstad, E. Myrvold, T. Myrstad, «Pore structure characterization of mesoporous/microporous materials by 'H NMR using water as a probe molecule», J. Phys. Chem. В, Ж (1997) 10 709−10 714.
  176. J.H. Strange, J.B.W. Webber, «Spatially resolved pore size distributions by NMR», Meas. Sci. Technol, 8 (1997) 555−561.
  177. J.H. Strange, J.B.W. Webber, «Multidimensionally resolved pore size distributions», Appl. Magn. Reson., 12 (1997) 231−245.
  178. R. Schmidt, E.W. Hansen, M. Stocker, D. Akporiaye, O.H. Ellestad, «Pore size determination of MCM-41 mesoporous materials by means of 'H NMR spectroscopy, N2 adsorption, and HREM. A preliminary study», J. Amer. Chem. Soc., 1Г7 (1995) 4049−4056.
  179. E.W. Hansen, R. Schmidt, M. Stocker, «Pore structure characterization of porous silica by *H NMR using water, benzene, and cyclohexane as probe molecules», J. Phys. Chem., 100 (1996) 11 396−11 401.
  180. S.G. Allen, P.C.L. Stephenson, J.H. Strange, «Internal surfaces of porous media studied by nuclear magnetic resonance cryoporometry», J. Chem. Phys., 108 (1998) 8195−8198.
  181. E.W. Hansen, M. Stocker, R. Schmidt, «Low-temperature phase transition of water confined in mesopores probed by NMR. Influence on pore size distribution», J. Phys. Chem., 100 (1996) 2195−2200.
  182. D. Akporiaye, E.W. Hansen, R. Schmidt, M. Stocker, «Water-saturated mesoporous MCM-41 systems characterized by 'H NMR», J. Phys. Chem., 98 (1994) 1926−1928.
  183. H.F. Booth, J.H. Strange, «Organic nanocrystals: an NMR study of cyclohexane in porous silica», Mol. Phys., 93 (1998) 263−269.
  184. C. Choi, В, J. Balcom, S.D. Beyea, T.W. Bremner, P.E. Grattan-Bellew, R.L. Armstrong, «Spatially resolved pore-size distribution of drying concrete with magnetic resonance imaging», J. Appl. Phys., 88 (2000) 3578−3581.
  185. P.J. Prado, B.J. Balcom, S.D. Beyea, T.W. Bremner, R.L. Armstrong, P.E. Grattan-Bellew, «Concrete freeze/thaw as studied by magnetic resonance imaging», Cem. Conor. Res., 28 (1998) 261−270.
  186. L. Pel, K. Kopinga, H. Brocken, «Determination of moisture profiles in porous building materials by NMR», Magn. Reson. Imaging, 14 (1996) 931−932.
  187. K. Kopinga, L. Pel, «One-dimensional scanning of moisture in porous materials with NMR», Rev. Sci. Instr., 65 (1994) 3673−3681.
  188. L. Pel, K. Kopinga, G. Bertram, G. Lang, «Water absorption in a fired-clay brick observed by NMR scanning», J. Phys. D: Appl. Phys., 28 (1995) 675−680.
  189. J. Kaufmann, W. Studer, J. Link, K. Schenker, «Study of water suction of concrete with magnetic resonance imaging methods», Mag. Concr. Res., 49 (1997) 157−165.
  190. I.V. Koptyug, R.Z. Sagdeev, L.Yu. Khitrina, V.N. Parmon, «A nuclear magnetic resonance microscopy study of mass transport in porous materials», Appl. Magn. Reson., 18 (2000) 13−28.
  191. R.J. Gummerson, C. Hall, W.D. Hoff, R. Hawkes, G.N. Holland, W.S. Moore, «Unsaturated water flow within porous materials observed by NMR imaging», Nature, 281 (1979) 56−57.
  192. T.A. Carpenter, E.S. Davies, C. Hall, L.D. Hall, W.D. Hoff, M.A. Wilson, «Capillary water migration in rock: process and material properties examined by NMR imaging», Mater. Struct., 26 (1993) 286−292.
  193. L. Pel, K. Hazrati, K. Kopinga, J. Marchand, «Water absorption in mortar determined by NMRMagn. Reson. Imaging, 16 (1998) 525−528.
  194. L. Pel, K. Kopinga, E.F. Kaasschieter, „Saline absorption in calcium-silicate brick observed by NMR scanning“, J. Phys. D: Appl. Phys., 33 (2000) 1380−1385.
  195. G. Papavassiliou, F. Milia, M. Fardis, R. Rumm, E. Laganas, 0. Jarh, A. Sepe, R. Blinc, M.M. Pintar, „'Н nuclear magnetic resonance imaging of water diffusion in hardened cement pastes“, J. Amer. Ceram. Soc., 76 (1993) 2109−2111.
  196. P.J. McDonald, T. Pritchard, S.P. Roberts, „Diffusion of water at low saturation levels into sandstone rock plugs measured by broad line magnetic resonance profiling“, J. Colloid Interface Sci., 177 (1996) 439−445.
  197. Yu.I., Restuccia G., Tokarev M.M., Cacciola G., „Selective water sorbents for multiple applications, 10. Energy storage ability“, React. Kinet. Catal. Lett. 69 (2000) 345−353.
  198. M.M. Токарев, С. Г. Козлова, С. П. Габуда, Ю. И. Аристов, „ЯМР 'Н в нанокристаллах СаС1г • хНгО и изобары сорбции воды в системе СаС12 силикагель“, Ж. Структ. Химии 39, № 2 (1998) 259−264.
  199. S.I. Kabanikhin, I.V. Koptyug, K.T. Iskakov, R.Z. Sagdeev, „Inverse problem for the diffusional transport of water upon single pellet moisture sorption“, Int. J. Nonlinear Sci. Num. Simul., 1 (2000) 29−41.
  200. P.J. Prado, B.J. Balcom, M. Jama, „Single-point magnetic resonance imaging study of water adsorption in pellets of zeolite 4A“, J. Magn. Reson., 137 (1999) 59−66.
  201. P.D.M. Hughes, P.J. McDonald, E.G. Smith, „Long-range water transport and self-diffusion in zeolite 4A powder beds“, J. Magn. Reson. A, 121 (1996) 147−153.
  202. J. Karger, G. Seiffert, F. Stallmach, „Space-and time-resolved PFG NMR self-diffusion measurements in zeolites“, J. Magn. Reson. A, 102 (1993) 327−331.
  203. W. Heink, J. Karger, H. Pfeifer, „Application of zeugmatography to study kinetics of physical adsorption“, Chem. EngngSci., 33 (1978) 1019−1023.
  204. J, К arger, H. P feifer, „PFG N MR s elf-diffusion m easurements i n m icroporous adsorbents“, Magn. Reson. Imaging, 12 (1994) 235−239.
  205. S.M. Belliveau, T.L. Henselwood, C.H. Langford, „Soli wetting processes studied by magnetic resonance imaging: correlated study of contaminant uptake“, Environ. Sci. Technol, 34 (2000) 2439−2445.
  206. R.S. Drago, D.C. Ferris, D.S. Bums, „Pore-resolved NMR porosimetry“, J. Amer. Chem. Soc., 117 (1995) 6914−6920.
  207. P.Y. Ghi, D.J.T. Hill, A.K. Whittaker, „NMR imaging of water sorption into poly (hydroxyethyl mathacrylate-co-tetrahydrofurfuryl methacrylate)“, Biomacromol., 2 (2001) 504−510.
  208. A.G. Webb, L.D. Hall, „Evaluation of the use of nuclear magfhetic resonance imaging in the study of Fickian diffusion in rubbery polymers. 1. Unicomponent solvent ingress“, Polym. Commun., 31 (1990) 422−425.
  209. S. Blackband, P. Mansfield, „Diffusion in liquid-solid systems by NMR imaging“, J. Phys. C: Solid State Phys., 19 (1986) L49-L52.
  210. P. Mansfield, R. Bowtell, S. Blackband, „Ingress of water into solid nylon 6.6“, J. Magn. Reson., 99 (1992) 507−524.
  211. M. Ercken, P. Adriaensens, D. Vanderzande, J. Gelan, „Study of solvent diffusion in polymeric materials using magnetic resonance imaging“, Macromol., 28 (1995) 8541−8547.
  212. G.D. Cody, R.E. Botto, „In-situ analysis and quantification of swelling kinetics in glassy and rubbery networks using 'H and 19 °F magnetic resonance microscopies“, Macromol., 27 (1994) 2607−2614.
  213. G.D. Cody, R.E. Botto, „Proton NMR imaging of pyridine transport in coal“, Energy Fuels, 7 (1993) 561−562.
  214. L.A. Weisenberger, J.L. Koenig, „NMR imaging of case II diffusion in glassy polymers“, J. Polym. Sci. C: Polym. Lett., 27 (1989) 55−57.
  215. L.A. Weisenberger, J.L. Koenig, „NMR imaging of diffusion processes in polymers: measurement of the spatial dependence of solvent mobility in partially swollen PMMA rods“, Macromol., 23 (1990) 2445−2453.
  216. R.A. Grinsted, L. Clark, J.L. Koenig, „Study of cyclic sorption-desorption into poly (methyl metacrylate) rods using NMR imaging“, Macromol., 25 (1992) 1235−1241.
  217. M. Valtier, P. Tekely, L. Kiene, D. Canet, „Visualization of solvent diffusion in polymers by NMR microscopy with radio-frequency field gradients“, Macromol., 28 (1995) 4075−4079.
  218. P. Maffei, L. Kiene, D. Canet, „Application of NMR microimaging by radio-frequency field gradients to the observation of solvent penetration in polymeric materials“, Macromol., 25 (1992) 7114−7118.
  219. L.A. Weisenberger, J.L. Koenig, „NMR imaging of solvent diffusion in polymers“, Appl. Spectr., 43 (1989) 1117−1126.
  220. M. Ercken, P. Adriaensens, G. Reggers, R. Carleer, D. Vanderzande, J. Gelan, „Use of magnetic resonance inmaging to study transport of methanol in poly (methyl methacrylate) at variable temperature“, Macromol., 29 (1996) 5671−5677.
  221. M. Ilg, B. Pfleiderer, K. Albert, W. Rapp, E. Bayer, „Investigation of the diffusion process in cross-linked polystyrenes by means of NMR imaging and solid-state NMR spectroscopy“, Macromol, 27 (1994) 2778−2783.
  222. M. Knorgen, K.-F. Arndt, S. Richter, D. Kuckling, H. Schneider, „Investigation of swelling and diffusion in polymers by 'H NMR imaging: LCP networks and hydrogels“, J. Molec. Struct., 554 (2000) 69−79.
  223. R.A. Grinsted, J.L. Koenig, „Study of multicomponent diffusion into polycarbonate rods using NMR imaging“, Macromol., 25 (1992) 1229−1234.
  224. M. Ilg, K. Albert, W. Rapp, E. Bayer, „First applications of nonmedical 19 °F NMR imaging“, J. Magn. Reson., 90 (1990) 370−376.
  225. T.M. Hyde, L.F. Gladden, „Simultaneous measurement of water and polymer concentration profiles during swelling of poly (ethylene oxide) using magnetic resonance imaging“, Polymer, 39 (1998) 811−819.
  226. T.G. Nunes, G. Guillot, J.M. Bordado, „Low-, stray-field imaging and spectroscopic studies of the sodium polyacrylate water uptake“, Polymer, 41 (2000) 4643−4649.
  227. A. Lauenstein, J. Tegenfeldt, W. Kuhn, „Water absorption by polymer electrolytes studied by NMR imaging“, Macromol., 31 (1998) 3886−3894.
  228. K.L. Perry, P.J. McDonald, E.W. Randall, K. Zick, „Stray field magnetic resonance imaging of the diffusion of acetone into polyvinyl chloride)“, Polymer, 35 (1994) 2744−2748.
  229. F. Tabak, M. Corti, „Spatially resolved nuclear magnetic resonance study of polymer chains mobility during the swelling process“, J. Chem. Phys., 92 (1990) 2673−2675.
  230. I. Hopkinson, R.A.L. Jones, S. Black, D.M. Lane, P.J. McDonald, „Fickian and Case II diffusion of water into amylose: a stray field NMR study“, Carbohyd. Polym., 34 (1997) 39−47.
  231. Z. Ma, P. Zhang, G. Ding, L. Li, C. Ye, „Proton NMR imaging studies of coal using deuterated solvents“, Fuel Sci. Technol. Int., 14 (1996) 1391−1403.
  232. W .P. Rothwell, D .R. Holecek, J. A. Kershaw, „NMR imaging: study of fluid absorption by polymer composites“, J. Polym. Sci. Polym. Lett. Ed., 22 (1984) 241−247.
  233. R.S. Clough, J.L. Koenig, „Observation of polybutadiene rubber structure using NMR imaging“, J. Polym. Sci. C: Polym. Lett, 27 (1989) 451−454.
  234. A.G. Webb, P. Jezzard, L.D. Hall, S. Ng, „Detection of inhomogeneities in rubber samples using NMR imaging“, Polym. Commun., 30 (1989) 363−366.
  235. A.G. Webb, K. Motsegood, R.B. Clarkson, „NMR imaging studies of coal samples using solvent permeation“, Fuel, 72(1993) 1235−1237.
  236. D.C. French, S.L. Dieckman, R.E. Botto, „Three-dimensional NMR microscopic imaging of coal swelling in pyridine“, Energy Fuels, 7 (1993) 90−96.
  237. L.A. Weisenberger, J.L. Koenig, „An NMR imaging study of methanol desorption from partially swollen PMMA rods“, Macromol, 23 (1990) 2454−2459.
  238. B. Narasimhan, J.E.M. Snaar, RW. Bowtell, S. Morgan, C.D. Melia, N.A. Peppas, „Magnetic resonance imaging analysis of molecular mobility during dissolution of poly (vinyl alcohol) in water“, Macromol, 32 (1999) 704−710.
  239. C.A. Fyfe, A.I. Blazek, „Investigation of hydrogel formation from hydroxypropylmethylcellulose (HPMC) by NMR spectroscopy and NMR imaging techniques“, Macromol., 30 (1997) 6230−6237.
  240. P.D. Riggs, P. Kinchesh, M. Braden, M.P. Patel, „Nuclear magnetic imaging of an osmotic water uptake and delivery process“, Biomater., 22 (2001) 419−427.
  241. M. Bogdan, В.J. Balcom, T.W. Bremner, R.L. Armstrong, „Single-point imaging of partially dried, hydrated white Portland cement“, J. Magn. Reson. A, 116 (1995) 266−269.
  242. T. Nunes, E.W. Randall, A.A. Samoilenko, P. Bodart, G. Feio, „The hardening of Portland cement studied by NMR stray-field imaging“, J. Phys. D: Appl. Phys., 29 (1996) 805−808.
  243. S.D. Beyea, BJ. Balcom, T.W. Bremner, PJ. Prado, D.P. Green, R.L. Armstrong, P.E. Grattan-Bellew, „Magnetic resonance imaging and moisture content profiles of drying concrete“, Cem. Conor. Res., 28 (1998) 453−463.
  244. P.M. Glover, P. S. Aptaker, J.R. Bowler, E. Ciampi, P.J. McDonald, „A novel high-gradient permanent magnet for the profiling of planar films and coatings“, J. Magn. Reson., 139 (1999) 90−97.
  245. J.-P. Gorce, J.L. Keddie, P.J. McDonald, „MR profiling of drying in alkyd emulsions: origins of skin formation“, NATO Advanced Studies Institute, St Petersburg, Russia, 2001.
  246. P.D.M. Hughes, P.J. McDonald, N.P. Rhodes, J.W. Rockliffe, E.G. Smith, J. Wills, „A stray field magnetic resonance imaging study of the drying of sodium silicate films“, J. Colloid Interface Sci., 177 (1996) 208−213.
  247. L. Pel, H. Brocken, K. Kopinga, „Determination of moisture diffusivity in porous media using moisture concentration profiles“, Int. J. Heat Mass Transfer, 39 (1996) 1273−1280.
  248. G. Guillot, A. Trokiner, L. Darrasse, H. Saint-Jalmes, „Drying of a porous rock monitored by NMR imaging“, J. Phys. D: Appl. Phys., 22 (1989) 1646−1649.
  249. I.V. Koptyug, S.I. Kabanikhin, K.T. Iskakov, V.B. Fenelonov, L.Yu. Khitrina, R.Z. Sagdeev, V.N. Parmon, „A quantitative NMR imaging study of mass transport in porous solids during drying“, Chem. EngngSci., 55 (2000) 1559−1571.
  250. S.I. Kabanikhin, I.V. Koptyug, K.T. Iskakov, R.Z. Sagdeev, „Inverse problem for a quasi-linear equation of diffusion“, J. Inv. Ill-Posed Problems, 6 (1998) 335−351.
  251. I.V. Koptyug, L.Yu. Ilyina, A.V. Matveev, R.Z. Sagdeev, V.N. Parmon, S.A. Altobelli, „Liquid and gas flow and related phenomena in monolithic catalysts studied by .H NMR microimaging“, Catal. Today, 69 (2001) 385−392.
  252. B.P. Hills, K.M. Wright, J.J. Wright, T.A. Carpenter, L.D. Hall, „An MRI study of drying in granular beds of nonporous particles“, Magn. Reson. Imaging, 12 (1994) 1053−1063.
  253. И.В. Коптюг, Л. Ю. Ильина, В. Б. Фенелонов, А. Ю. Деревянкин, Р. З. Сагдеев, В. Н. Пармон, „Использование метода 1Н ЯМР микротомографии для in situ исследования испарения жидкости из объектов, моделирующих пористое тело“, ДАН, 376 (2001) 1−5.
  254. J.M. Salamanca, Е. Ciampi, D.A. Faux, Р.М. Glover, P.J. McDonald, A.F. Routh, A.C.I.A. Peters, R. Satguru, J.L. Keddie, „Lateral drying in thick films of waterborne colloidal particles“, Langmuir, 17 (2001) 3202−3207.
  255. E. Ciampi, U. Goerke, J.L. Keddie, P.J. McDonald, „Lateral transport of water during drying of alkyd emulsions“, Langmuir, 16 (2000) 1057−1065.
  256. M. Wallin, P.M. Glover, A.-C. Hellgren, J.L. Keddie, P.J. McDonald, „Depth profiles of polymer mobility during the film formation of a latex dispersion undergoing photoinitiated cross-linking“, Macromol., 33 (2000) 8443−8452.
  257. S.G. Harding, D. Wessman, S. Stenstrom, L. Kenne, „Water transport during the drying о f cardboard studied by NMR imaging and diffusion techniques“, Chem. Engng Sci., 56 (2001) 5269−5281.
  258. J.R. Olson, S.J. Chang, P.C. Wang, „Nuclear magnetic resonance imaging: a noninvasive analysis of moisture distribution in white oak lumber“, Can. J. For. Res., 20 (1990) 586−591.
  259. R.S. Menon, A.L. Mackay, J.R.T. Hailey, M. Bloom, A.E. Burgess, J.S. Swanson, „An NMR determination of the physiological water distribution in wood during drying.“, J. Appl. Polym. Sci., 33 (1987) 1141−1155.
  260. В.Н. Глазнев, И. В. Коптюг, Ю. Г. Коробейников, „Физические особенности акустической сушки древесины“, ИФЖ, 72 (1999) 437−439.
  261. V.N. Glaznev, I.V. Koptyug, Yu.G. Korobeinikov, „Physical Features of Acoustic Drying of Wood“, J. Engng Phys. Thermophys., 72 (1999) 409−411.
  262. H. Song, J.R.Litchfield, „Nondestructive measurement of transient moisture profiles i n e ar corn during drying using NMR imaging“, Trans. ASAE, 33 (1990) 1286−1290.
  263. A.J. Ко vacs, M. Nemenyi, „Moisture gradient vector calculation as a new method for evaluating NMR images of corn (Zea Mays L.) kernels during drying“, Magn. Reson. Imaging, 17 (1999) 1077−1082.
  264. E.O. Stejskal, J.E. Tanner, „Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient“, J. Chem. Phys., 42 (1965) 288−292.
  265. C.S. Johnson, „Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications“, Progr. NMR Spectr. 34 (1999) 203−256.
  266. K.F. Morris, C.S. Johnson, „Resolution of discrete and continuous molecular size distributions by means of diffusion-ordered 2D NMR spectroscopy“, J. Amer. Chem. Soc., 115 (1993) 42 914 299.
  267. D. Wu, A. Chen, C.S. Johnson, „An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses“, J. Magn. Reson. A, 115 (1995) 260−264.
  268. H. Baijat, G.A. Morris, S. Smart, A. Swanson, S.C.R. Williams, „High-resolution diffusion-ordered 2D spectroscopy (HR-DOSY) a new tool or the analysis of complex mixtures“, J. Magn. Reson. В, Ж (1995) 170−172.
  269. D.P. Hinton, C.P. Johnson, „Diffusion ordered 2D NMR spectroscopy of phospholipid vesicles: determination of vesicle size distribution“, J. Phys. Chem., 97 (1993) 9064−9072.
  270. J. Karger, D.M. Ruthven. Diffusion in zeolites and other microporous solids, Wiley, New York, 1992.
  271. P.P. Mitra, P.N. Sen, L.M. Scwartz, „Short-time behavior of the diffusion coefficient as a geometrical probe of porous media“, Phys. Rev. B, 47 (1993) 8565−8574.
  272. L.L. Latour, P.P. Mitra, R.L. Kleinberg, C.H. Sotak, „Time-dependent diffusion coefficient of fluids in porous media as a probe of surface to volume ratio“, J. Magn. Reson. A, 101 (1993) 342.
  273. L.L. Latour, R.L. Kleinberg, P.P. Mitra, C.H. Sotak, „Pore-size distributions and tortuosity in heterogeneous porous media“, J. Magn. Reson. A, 112 (1995) 83−91.
  274. A. Caprihan, С .F.M. Clewett, D.O. Kuethe, E. Fukushima, SJ. Glass, „Characterization of partially sintered ceramic powder compacts using fluorinated gas NMR imaging“, Magn. Reson. Imaging, 19 (2001) 311−317.
  275. S. Peled, C.-H. Tseng, A.A. Sodickson, R.W. Mair, R.L. Walsworth, D.G. Cory, „Single-shot diffusion measurement in laser-polarized gas“, J. Magn. Reson., 140 (1999) 320−324.
  276. P.L. McDaniel, C.G. Сое, J. Karger, J.D. Moyer, „Direct observation of N2 self-diffusion in zeolitic adsorbents using 15N PFG NMR“, J. Phys. Chem., 100 (1996) 16 263−16 267.
  277. J.D. Seymour, P.T. Callaghan, „„Flow-diffraction“ structural characterization and measurement of hydrodynamic dispersion in porous media“, J. Magn. Reson. A, 122 (1996) 9093.
  278. X. Gong, A. Bandis, A. Tao, G. Meresi, Y. Wang, P.T. Inglefield, A.A. Jones, W.-Y. Wen, „Self-diffusion of water, ethanol and decafluoropentane in perfluorosulfonate ionomer by pulse field gradient NMR“, Polymer, 42 (2001) 6485−6492.
  279. P. Mutzenhardt, D. С anet, „Behavior of longitudinal spin orders in NMR measurements о f self-diffusion с oefficients u sing r adiofrequency field gradients“, J. Chem. Phys., 105 (1996) 4405−4411.
  280. L. van Dam, B. Andreasson, L. Nordenskiold, „Multiple-quantum pulsed gradient NMR diffusion experiments on quadrupolar (I>l/2) spins“, Chem. Phys. Lett., 262 (1996) 737−743.
  281. I. Ardelean, R. Kimmich, „Diffusion measurments using the nonlinear stimulated echo“, J. Magn. Reson., 143 (2000) 101−105.
  282. J. Zhong, Z. Chen, E. Kwok, S. Kennedy, „Enhanced sensitivity to molecular diffusion with intermolecular double quantum coherences: implications and potential applications“, Magn. Reson. Imaging, 9 (2001) 33−39.
  283. P.T. Callaghan, D. MacGowan, KJ. Packer, F.O. Zelaya, „High-resoluion q-space imaging in porous structures“, J. Magn. Reson., 90 (1990) 177−182.
  284. B.J. Balcom, A.E. Fischer, T.A. Carpenter, L.D. Hall, „Diffusion in aqueous gels. Mutual diffusion coefficients measured by one-dimensional nuclear magnetic resonance imaging“, J. Amer. Chem. Soc., U5 (1993) 3300−3305.
  285. B, J, Balcom, T.J. Lees, A.R. Sharp, N.S. Kulkarni, G.S. Wagner, „Diffusion in Fe (II/III) radiation dosimetry gels measured by magnetic resonance imaging“, Phys. Med. Biol., 40 (1995) 1665−1676.
  286. A.E. Fischer, B.J. Balcom, EJ. Fordham, T.A. Carpenter, L.D. Hall, „A fast inversion recovery NMR imaging technique for mapping two-dimensional tracer diffusion and dispersion in heterogeneous media“, J. Phys. D: Appl. Phys., 28 (1995) 384−397.
  287. N.-K. Bar, J. Karger, H. Pfeifer, H. Schafer, W. Schmitz, „Diffusion anisotropy in natural chabazite“, Microporous Mesoporous Mater., 22 (1998) 289−295.
  288. W. Heink, J. Karger, G. Seiffert, G. Fleischer, J. Rauchfuss, „PFG NMR self-diffusion measurements with large magnetic field gradients“, J. Magn. Reson. A, 114 (1995) 101−104.
  289. I. Furo, H. Johannesson, „Accurate anisotropic water-diffusion measurements in liquid crystals“, J. Magn. Reson. А, П9 (1996) 15−21.
  290. P.T. Callaghan, Y. Xia, „Velocity and diffusion imaging in dynamic NMR microscopy“, J. Magn. Reson., 9 (1991) 326−352.
  291. M.H. Blees, „The effect of finite duration of gradient pulses on the pulsed-field-gradient NMR method for studying restricted diffusion“, J. Magn. Reson. A, 109 (1994) 203−209.
  292. L.Z. Wang, A. Caprihan, E. Fukushima, „The narrow-pulse criterion for pulsed-gradient spin-echo diffusion measurements“,/. Magn. Reson. А, П7 (1995) 209−219.
  293. P.P. Mitra, B.I. Halperin, „Effects of finite gradient-pulse widths in pulsed-field gradient diffusion measurements“, J. Magn. Reson. А, ДЗ (1995) 94−101.
  294. S.J. Gibbs, C.S. Johnson, „A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents“, J. Magn. Reson., 93 (1991) 395−402.
  295. G. Wider, V. D otsch, К. Wuthrich, „S elf-compensating p ulsed magnetic field gradients for short recovery times“, J. Magn. Reson. A, 108 (1994) 255−258.
  296. S.J. Gibbs, A. Carpenter, L.D. Hall, „Diffusion imaging with unshielded gradients“, J. Magn. Reson., 98 (1992) 183−191.
  297. W.S. Price, P. Stilbs, B. Jonsson, O. Soderman, „Macroscopic background gradient and radiation damping effects on high-field PGSE NMR diffusion measurements“, J. Magn. Reson., 150 (2001) 49−56.
  298. J.G. Seland, G.H. Sorland, K. Zick, B. Hafskjold, „Diffusion measurements at long observation times in the presence of spatially variable internal magnetic field gradients“, J. Magn. Reson., 146 (2000) 14−19.
  299. R.M. Cotts, M.J.R. Hoch, T. Sun, J.T. Markert, „Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems“, J. Magn. Reson., 83 (1989) 252−266.
  300. L.L. Latour, L. Li, C.H. Sotak, „Improved PFG stimulated-echo method for the measurement of diffusion in inhomogeneous magnetic fields“, J. Magn. Reson. B, 101 (1993) 72−77.
  301. J. Mattiello, P.J. Basser, D. LeBihan, „Analytical expressions for the b matrix in NMR diffusion imaging and spectroscopy“, J. Magn. Reson. A, 108 (1994) 131−141.
  302. P.J. Basser, J. Mattiello, D. LeBihan, „Estimation of the effective self-diffusion tensor from the NMR spin echo“, J. Magn. Reson. B, 103 (1994) 247−254.
  303. R.I. Shrager, P.J. Basser, „Anisotropically weighted MRP, Magn. Reson. Med., 40 (1998) 160 165.
  304. M.D. Hurlimann, K.G. Helmer, T.M. de Swiet, P.N. Sen, C.H. Sotak, „Spin echoes in a constant gradient and in the presence of simple restriction“, J. Magn. Reson. A, 113 (1995) 260 264.
  305. P. Callaghan, D. MacGowan, K.J. Packer, F.O. Zelaya, „Influence of field gradient strength in NMR studies of diffusion in porous media“, Magn. Reson. Imaging, 9 (1991) 663−671.
  306. P.T. Callaghan, S.L. Codd, J.D. Seymour, „Spatial coherence phenomena arising from translational motion in gradient spin echo experiments“, Concepts Magn. Reson., Ц (1999) 181−202.
  307. О. Soderman, В. Jonsson, „Restricted diffusion in cylindrical geometry“, J. Magn. Reson. A, 117 (1995) 94−97.
  308. Y. Cheng, D. Cory, „Multiple scattering by NMR“, J. Amer. Chem. Soc., 121 (1999) 79 357 936.
  309. M.H.G. Amin, S.J. Gibbs, RJ. Chorley, K.S. Richards, T.A. Carpenter, L.D. Hall, „Study of flow and hydrodynamic dispersion in a porous medium using pulsed-field-gradient magnetic resonance“, Proc. R. Soc. London A, 453 (1997) 489−513.
  310. P.P. Mitra, L.L. Latour, R.L. Kleinberg, C.H. Sotak, „Pulsed-field-gradient NMR measurements of restricted diffusion and the retutn-to-the-origin probability“, J. Magn. Reson. A, Д4 (1995) 47−58.
  311. T.-Q. Li, M Haggkvist, L. Odberg, „Porous structure of cellulose fibers studied by q-space NMR imaging“, Langmuir, 13 (1997) 3570−3574.
  312. P.T. Callaghan, J. Stepisnik, „Frequency-domain analysis of spin motion using modulated-gradient NMR“, J. Magn. Reson. A, П7 (1995) 118−122.
  313. D. Xing, SJ. Gibbs, J.A. Derbyshire, E.J. Fordham, T.A. Carpenter, L.D. Hall, „Bayesian analysis for quantitative NMR flow and diffusion imaging“, J. Magn. Reson. B, 106 (1995) 1−9.
  314. K. Raghavan, J.C. Park, G.E. Pavlovskaya, S.J. Gibbs, „Rapid analysis of non-uniformly sampled pulsed field gradient data for velocity estimation“, Magn. Reson. Imaging, 19 (2001) 697−701.
  315. J. Stepisnik, „Spin echo attenuation of restricted diffusion as a discord of spin phase structure“, J. Magn. Reson., 131 (1998) 339−346.
  316. M.J.D. Mallett, J.H. Strange, „Diffusion measurements using oscillating gradients“, Appl. Magn. Reson., 2 (1997) 193−198.
  317. P. Robyr, R. Bowtell, „Measuring diffusion in liquids with a single gradient pulse“, J. Magn. Reson. A, 121 (1996) 206−208.
  318. E. Mischler, F. Humbert, B. Diter, D. Canet, „Measurement of one-dimensional spatially resolved self-diffusion coefficients and longitudinal relaxation times with a single B1 gradient“, J. Magn. Reson. B, 106 (1995) 32−39.
  319. Y.-Q. Song, „Determining pore sizes using an internal magnetic field“, J. Magn. Reson., 143 (2000) 397−401.
  320. Y.-Q. Song, „Pore size and pore connectivity in rocks using the effect of internal field“, Magn. Reson. Imaging, 19 (2001) 417−421.
  321. P.D. Majors, D.M. Smith, P.J. Davis, „Efefctive diffusivity measurement in porous media via NMR radial imaging“, Chem. Engng Sci., 46 (1991) 3037−3043.
  322. F.P. Duval, P. Porion, H. Van Damme, „Microscale and macroscale diffusion of water in colloidal gels. A pulsed field gradient and NMR imaging investigation“, J. Phys. Chem. B, 103 (1999) 5730−5735.
  323. N.P. Bidault, B.E. Hammer, A. Hubel, „Water content in an engineered dermal replacement during permeation of Me2SO solutions using rapid MR imaging“, Biotechnol. Prog., 17 (2001) 530−536.
  324. T. Asakura, M. Demura, H. Ogawa, K. Matsushita, M. Imanari, „NMR imaging of diffusion of small organic molecules in silk fibroin gel“, Macromol., 24 (1991) 620−622.
  325. Z. Pearl, M. Magaritz, P. Bendel, „Measuring diffusion coefficients of solutes in porous media by NMR imaging“, J. Magn. Reson., 95 (1991) 597−602.
  326. U. Tallarek, D. van Dusschoten, H. Van As, E. Bayer, G. Guiochon, „Study of transport phenomena in chromatographic columns by pulsed field gradient NMR“, J. Phys. Chem. B, 102 (1998) 3486−3497.
  327. M.P. Hollewand, L.F. Gladden, „Transport heterogeneity in porous pellets I. PGSE NMR studies“, Chem. EngngSci., 50 (1995) 309−326.
  328. F. Junker, W.S. Veeman, „Time-dependent xenon diffusion measurements in microporous silicon imidonitriles by pulsed gradient NMR spectroscopy“, Chem. Phys. Lett., 305 (1999) 3943.
  329. A. Noda, K. Hayamizu, M. Watanabe, „Pulsed-gradient spin-echo !H and 19 °F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids“, J. Phys. Chem. B, 105 (2001) 4603−4610.
  330. S. Vasenkov, P. Galvosas, O. Geier, N. Nestle, F. Stallmach, J Karger, „Determination of genuine diffusivities in heterogeneous media using stimulated echo pulsed field gradient NMR“, J. Magn. Reson., 149 (2001) 228−233.
  331. J.J. Tessier, K.J. Packer, J.-F. Thovert, P.M. Adler, „NMR measurements and numerical simulation of fluid transport in porous solids“, AIChE J., 43 (1997) 1653−1661.
  332. C.F. Jenner, Y. Xia, C.D. Eccles, P.T. Callaghan, „Circulation of water within wheat grain revealed by nuclear magnetic resonance micro-imaging“, Nature, 336 (1988) 399−402.
  333. J.H. Gillard, N.G. Papadakis, K. Martin, C.J.S. Price, E.A. Warburton, N.M. Antoun, C.L.-H. Huang, T.A. Carpenter, J.D. Pickard, „MR diffusion tensor imaging of white matter tract disruption in stroke at 3 T“, Brit. J. Radiol., 74 (2001) 642−647.
  334. M.L. Johns, L.F. Gladden, „Sizing of emulsion droplets under flow using flow-compensating NMR-PFG techniques“, J. Magn. Reson., 154 (2002) 142−145.
  335. P.T. Callaghan, A. Coy, D. MacGowan, K.J. Packer, F.O. Zelaya, „Diffraction-like effects in NMR diffusion studies of fluids in porous solids“, Nature, 351 (1991) 467−469.
  336. P.W. Kuchel, A. Coy, P. Stilbs, „NMR „diffusion-diffraction“ of water revealing alignment of erythrocytes in a magnetic field and their dimensions and membrane transport characteristics“, Magn. Reson. Med., 37 (1997) 637−643.
  337. J.E.M. Snaar, B.P. Hills, „Constant gradient stimulated echo studies of diffusion in porous materials at high spectrometer fields“, Magn. Reson. Imaging, 15 (1997) 983−992.
  338. D. van Dusschoten, C.T.W. Moonen, P.A. de Jager, H. Van As, „Unraveling diffusion constants in biological tissue by combining Carr-Purcell-Meiboom-Gill imaging and pulsed field gradient NMR“, Magn. Reson. Med., 36 (1996) 907−913.
  339. D. van Dusschoten, P.A. de Jager, H. Van As, „Extracting diffusion constants from echo-time-dependent PFG NMR data using relaxation-time information“, J. Magn. Reson. A, 116 (1995) 22−28.
  340. M. Pfeffer, O. Lutz, „Observation of diffusion in xenon gas by NMR“, J. Magn. Reson. A, 113 (1995) 108−113.
  341. I.E. Dimitrov, S.R. Charagundla, R. Rizi, R. Reddy, J.S. Leigh, „An MR imaging method for simultaneous measurement of gaseous diffusion constant and longitudinal relaxation time“, Magn. Reson. Imaging, 17 (1999) 267−273.
  342. D.M. Schmidt, J.S. George, S.I. Penttila, A. Caprihan, E. Fukushima, „Diffusion imaging with hyperpolarized 3He gas“, J. Magn. Reson., 129 (1997) 184−187.
  343. D.M. Gregory, R.E. Gerald II, R.E. Botto, „Pore-structure determinations of silica aerogels by 129 Xe NMR spectroscopy and imaging“, J. Magn. Reson., Ш (1998) 327−335.
  344. M.J. Lizak, M.S. Conradi, C.G. Fry, „NMR imaging of gas imbibed into porous ceramic“, J. Magn. Reson., 95 (1991) 548−557.
  345. R.W. Mair, D.G. Cory, S. Peled, C.-H. Tseng, S. Patz, R.L. Walsworth, „Pulsed-field-gradient measurements of time-dependent gas diffusion“, J. Magn. Reson., 135 (1998) 478−486.
  346. H.B. Schwarz, H. Ernst, S. Ernst, J. Karger, T. Roser, R.Q. Snurr, J. Weitkamp, „NMR study of intrinsic diffusion and reaction in CsNaX type zeolites“, Appl. Catal. A: General, 130 (1995) 227−241.
  347. J. Karger, W. Heink, „The propagator representation of molecular transport in microporous crystallites“, J. Magn. Reson., 51 (1983) 1−7.
  348. G.H. Sorland, D. Aksnes, L. Gjerdaker, „A pulsed field gradient spin-echo method for diffusion measurements in the presence of internal gradients“, J. Magn. Reson., J37 (1999) 397−401.
  349. S. Vasenkov, W. Bohlmann, P. Galvosas, O. Geier, H. Liu, J. Karger, „PFG NMR study of diffusion in MFI-type zeolites: evidence of the existence of intracrystalline transport barriers“, J. Phys. Chem. B, 105 (2001) 5922−5927.
  350. U. Hong, J. Karger, H. Pfeifer, „Selective two-component self-diffusion measurement of adsorbed molecules by pulsed field gradient Fourier tansform NMR“, J. Amer. Chem. Soc., 113 (1991)4812−4815.
  351. U. Hong, J. Karger, B. Hunger, N.N. Feoktistova, S.P. Zhdanov, „In situ measurement of molecular diffusion during catalytic reaction by pulsed-field gradient NMR spectroscopy“, J. Catal., 137 (1992) 243−251.
  352. R.Q. Snurr, A. Hagen, H. Ernst, H.B. Schwarz, S. Ernst, J. Weitkamp, J. Karger, „In situ PFG NMR study of intracrystalline diffusion during ethene conversion inZSM-5“, J. Catal., 163 (1996) 130−137.
  353. V. Gupta, S.S. Nivarthi, A.V. McCormick, H.T. Davis, „Evidence for single file diffusion of ethane in the molecular sieve A1P04−5“, Chem. Phys. Lett., 247 (1995) 596−600.
  354. V. Kukla, J. Kornatowski, D. Demuth, I. Girnus, H. Pfeifer, L.V.C. Rees, S. Schunk, K.K. Unger, J. Karger, „NMR studies of single-file diffusion in unidimensional channel zeolites“, Science, 272 (1996) 702−703.
  355. T. Meersmann, J.W. Logan, R. Simonutti, S. Caldarelli, A. Comotti, P. Sozzani, L.G. Kaiser, A. Pines, „Exploring single-file diffusion in one-dimensional nanochaimels by laser-polarized 129Xe NMR spectroscopy“, J. Phys. Chem. А, Ш (2000) 11 665−11 670.
  356. F. Humbert, M. Valtier, D. Canet, „Restricted molecular diffusion in the vicinity of a reflective wall as probed by NMR measurements using radio-frequency field gradients“, Chem. Phys. Lett., 302 (1999) 1−6.
  357. D. Barsky, B. Putz, K. Schulten, J. Schoeniger, E.W. Hsu, S. Blackband, „Diffusional edge enhancement observed by NMR in thin glass capillaries“, Chem. Phys. Lett., 200 (1992) 88−96.
  358. J. Stepisnik, A. Duh, A. Mohoric, I. Sersa, „MRI edge enhancement as a diffusive discord of spin phase structure“, J. Magn. Reson., 137 (1999) 154−160.
  359. L.G. Kaiser, J.W. Logan, T. Meersmann, A. Pines, „Dynamic NMR microscopy of gas phase Poiseuille flow“,/. Magn. Reson., 149 (2001) 144−148.
  360. Y.-Q. Song, B.M. Goodson, B. Sheridan, T.M. de Swiet, A. Pines, „Effects of diffusion on magnetic resonance imaging of laser-polarized xenon gas“, J. Chem. Phys., 108 (1998) 62 336 239.
  361. В. S aam, N. D rukker, W. H apper, „Edge enhancement оbserved w ith hyperpolarized He“, Chem. Phys. Lett., 263 (1996) 481−487.
  362. B. Putz, D. Barsky, K. Schulten, „Edge enhancement by diffusion in microscopic magnetic resonance imaging“, J. Magn. Reson., 97 (1992) 27−53.
  363. E. Fukushima, „Nuclear magnetic resonance as a tool to study flow“, Annu, Rev. Fluid Mech., 31 (1999) 95−123.
  364. J.M. Pope, S. Yao, „Quantitative NMR imaging of flow“, Concepts Magn. Reson., 5 (1993) 281−302.
  365. A. Caprihan, E. Fukushima, „Flow measurements by NMR“, Phys. Rep., 198 (1990) 195−235.
  366. M. Paley, R. Hose, I. Marzouqa, J. Fenner, I. Wilkinson, Y. Noguchi, P. Griffiths, „Stable periodic vortex shedding studied using computational fluid dynamics, laser sheet flow visualization, and MR imaging“, Magn. Reson. Imaging, J8 (2000) 473−478.
  367. K.W. Moser, L.G. Raguin, A. Harris, H.D. Morris, J. Georgiadis, M. Shannon, M. Philpott, „Visualization of Taylor-Couette and spiral Poiseuille flows using a snapshot FLASH spatial tagging sequence“, Magn. Reson. Imaging, 18 (2000) 199−207.
  368. Y. Xia, P.T. Callaghan, „„One-shot“ velocity microscopy: NMR imaging of motion using a single phase-encoding step“, Magn. Reson. Med., 23 (1992) 138−153.
  369. D.N. Firmin, G.L. Nayler, P J. Kilner, D.B. Longmore, „The application of phase shifts in NMR for flow measurement“, Magn. Reson. Med., 14 (1990) 230−241.
  370. J. Ding, R.W. Lyczkowski, W.T. Sha, S.A. Altobelli, E. Fukushima, „Numerical analysis of liquid-solids suspension velocities and concentrations obtained by NMR imaging“, Powder Technol, 77 (1993) 301−312.
  371. C.K. Agemura, R.J. Kauten, K.L. McCarthy, „Flow fields in straight and tapered screw extruders using magnetic resonance imaging“,./ FoodEngng, 25 (1995) 55−72.
  372. С .A. Heath, G. Belfort, B.E. Hammer, S.D. Mirer, J.M. Pimbley, „Magnetic resonance imaging and modeling of flow in hollow-fiber bioreactors“, AIChE J., 36 (1990) 547−558.
  373. K.W. Moser, J.G. Georgiadis, R.O. Buckius, „On the accuracy of EPI-based phase с ontrast velocimetry“, Magn. Reson. Imaging, 18 (2000) 1115−1123.
  374. R. Botnar, G. Rappitsch, M.B. Scheidegger, D. Liepsch, K. Perktold, P. Boesiger, „Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements“, J. Biomech., 33 (2000) 137−144.
  375. B.R. Locke, M. Acton, S.J. Gibbs, „Electro-osmotic flow in porous media using magnetic resonance imaging“, Langmuir, 17 (2001) 6771−6781.
  376. A. Franck, L.-D. Jou, R. van Tyen, D. Saloner, „Four dimensional bolus tagging imaging of pulsatile flow“, Magn. Reson. Imaging, 18 (2000) 1097−1107.
  377. A.L. Corbett, R.J. Philips, R.J. Kauten, K.L. McCarthy, „Magnetic resonance imaging of concentration and velocity profiles of pure fluids and solid suspensions in rotating geometries“, J. Rheol., 39 (1995) 907−924.
  378. P.T. Callaghan, B. Manz, „Velocity exchange spectroscopy“, J. Magn. Reson. A, 106 (1994) 260−265.
  379. S J. Weston, N.B. Wood, G. Tabor, A.D. Gosman, D.N. Firmin, „Combined MRI and CFD analysis of fully developed steady arid pulsatile laminar flow through a bend“, J. Magn. Reson. Imaging, 8 (1998) 1158−1171.
  380. M.B. Robertson, U. Kohler, P.R. Hoskins, I. Marshall, „Quantitative analysis of PC MRI velocity maps: pulsatile flow in cylindrical vessels“, Magn. Reson. Imaging, 19 (2001) 685 695.
  381. M.J. Graves, „Magnetic resonance angiography“, Brit. J. Radiol, 70 (1997) 6−28.
  382. J.R. Singer, „Blood flow rates by nuclear magnetic resonance measurements“, Science, 130 (1959) 1652−1653.
  383. J.R. Singer, L.E. Crooks, „Nuclear magnetic resonance blood flow measurements in the human brain“, Science, 221 (1983) 654−656.
  384. H.M. Gach, I.J. Lowe, „Characterization of flow emerging from a stenosis using MRI“, Magn. Reson. Med., 40 (1998) 559−570.
  385. K.S. Nayak, J.M. Pauly, A.B. Kerr, B.S. Hu, D.G. Nishimura, „Real-time color flow MRI“, Magn. Reson. Med., 43 (2000) 251−258.
  386. D.N. Firmin, G.L. Nayler, R.H. Klipstein, S.R. Underwood, R.S. Rees, D.B. Longmore, „In vivo validation of MR velocity imaging“, J. Comput. Assist. Tomogr., Ц (1987) 751−756.
  387. M.F. Walker, S.P. Souza, C.P. Dumoulin, „Qualitative flow measurements in phase contrast MR angiography“, J. Comput. Assist. Tomogr., 12 (1988) 304−313.
  388. K. Ogawa, M. Tobo, N. Iriguchi, S. Hirai, K. Okazaki, „Simultaneous measurement of temperature and velocity maps by inversion recovery tagging method“, Magn. Reson. Imaging, 18(2000) 209−216.
  389. M. Tyszka, R.C. Hawkes, L.D. Hall, „Automatic analysis of tagged images of laminar fluid flow“, J. Magn. Reson., 97 (1992) 391−397.
  390. K. Kose, „Visualization of turbulent motion using echo-planar imaging with a spatial tagging sequence“, J. Magn. Reson., 98 (1992) 599−603.
  391. U. Gorke, R. Kimmich, J. Weis, „Detection of anisotropic pulsating flow and its velocity-fluctuation rate in fertilized bird eggs by NMR microimaging“, J. Magn. Reson. В, 1Ц (1996) 236−242.
  392. M. Nakagawa, S.A. Altobelli, A. Caprihan, E. Fukushima, E.-K. Jeong, „Non-invasive measurements of granular flows by magnetic resonance imaging“, Exp. Fluids, 16 (1993) 5460.
  393. К. Yamane, М. Nakagawa, S.A. Altobelli, Т. Tanaka, Y. Tsuji, „Steady particulate flows in a horizontal rotating cylinder“, Exp. Fluids, 10 (1993) 1419−1427.
  394. J. Stepisnik, „Measuring and imaging of flow by NMR“, Progr. NMR Spectr., 17 (1985) 187 209.
  395. A. Caprihan, S.A. Altobelli, E. Benitez-Read, „Flow-velocity imaging from linear regression of phase images with techniques for reducing eddy-currebt effects“, J. Magn. Reson., 90 (1990) 71−89.
  396. N.J. Pelc, R.J. Herfkens, A. Shimakawa, D.R. Enzmann, „Phase contrast magnetic resonance imaging“, Magn. Reson. Q., 7 (1991) 229−254.
  397. P. Moran, „A flow velocity zeugmatographic interlace for NMR imaging in humans“, Magn. Reson. Imaging, I (1982) 197−203.
  398. A. Caprihan, M.V. Icenogle, „A weighted least-squares method for nuclear magnetic resonance velocity imaging“, Magn. Reson. Med., 29 (1993) 512−520.
  399. D.F. Arola, G. Barrall, R.L. Powell, MJ. McCarthy, „Measurement time reducing methods for NMR flow profile imagig: Hankel transforms, velosity aliasing and rapid repetition times“, J. Magn. Reson. A, 123 (1997) 26−32.
  400. D. Bourgeois, M. Decorps, „Qiantitative imaging of slow coherent motion by stimulated echoes with suppression of stationary water signal“, J. Magn. Reson., 94 (1991) 20−33.
  401. A. Jerschow, „Thermal convection currents in NMR: flow profiles and implications for coherence pathway selection“, J. Magn. Reson., 145 (2000) 125−131.
  402. H.M. Gach, IJ. Lowe, „Observing curved flow using RUFIS“, Magn. Reson. Med., 41 (1999) 1258−1263.
  403. J.C. Gatenby, J.C. Gore, „Echo-planar-imaging studies of turbulent flow“, J. Magn. Reson. A, 121 (1996) 193−200.
  404. A. Caprihan, J.D. Seymour, „Correlation time and diffusion coefficient imaging: application to a granular flow system“, J. Magn. Reson., 144 (2000) 96−107.
  405. M.V. Icenogle, A. Caprihan, E. Fukushima, „Mapping flow streamlines by multistripe tagging“, J. Magn. Reson., 100 (1992) 376−381.
  406. L. Wigstrom, T. Ebbers, A. Fyrenius, M. Karlsson, J. Engvall, B. Wranne, A.F. Bolger, „Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI“, Magn. Reson. Med., 41 (1999) 793−799.
  407. C.L. Dumoulin, H. R Hart, „Magnetic resonance angiography“, Radiology, 161 (1986) 717 720.
  408. H. Bosnians, G. W ilms, S. D ymarkowski, G. M archal,“ Basic p rinciples о f M RA», Eur. J. Radiol., 38 (2001) 2−9.
  409. T.W.J. Scheenen, D. van Dusschoten, P.A. de Jager, H. Van As, «Microscopic displacement imaging with pulsed gradient turbo spin-echo NMR», J. Magn. Reson., 142 (2000) 207−215.
  410. R.A. Damion, K.J. Packer, K.S. Sorbie, S.R. McDougall, «Pore-scale network modelling of flow propagators derived from pulsed magnetic field gradient spin echo NMR measurements in porous media», Chem. Engng Sci., 55 (2000) 5981−5998.
  411. S.-I. Han, O. Marseille, C. Gehlen, B. Blumich, «Rheology of blood by NMR», J. Magn. Reson., 152 (2001) 87−94.
  412. P.T. Callaghan, W. Kockenberger, J.M. Pope, «Use of difference propagators for imaging of capillary flow in the presence of stationary fluid», J. Magn. Reson. B, 104 (1994) 183−188.
  413. T.W. Redpath, D.G. Norris, R.A. Jones, J.M.S. Hutchison, «A new method of NMR flow imaging», Phys. Med. Biol., 29 (1984) 891−895.
  414. D.O. Kuethe, J.-H. Gao, «NMR signal loss from turbulence: models of time dependence copmared with data», Phys. Rev. E, 51 (1995) 3252−3262.
  415. K. Kose, «Visualizaion of local shearing motion in turbulent fluids using echo-planar imaging», J. Magn. Reson., 96 (1992) 596−603.
  416. J.C. Gatenby, J.C. Gore, «Characterization of turbulent flows by NMR measurements with pulsed gradients», J. Magn. Reson. А, П0 (1994) 26−32.
  417. J.C. Gatenby, J.C. Gore, «Mapping of turbulent intensity by magnetic resonance imaging», J. Magn. Reson. B, 104 (1994) 119−126.
  418. J.D. Seymour, A. Caprihan, S.A. Altobelli, E. Fukushima, «Pulsed gradient spin echo nuclear magnetic resonance imaging of diffusion in granular flow», Phys. Rev. Lett., 84 (2000) 266 269.
  419. S.-I. Han, B. Blumich, «Two-dimensional representation of position, velocity and acceleration byPFG-NMR», Appl. Magn. Reson., 18 (2000) 101−114.
  420. S.-I Han, S. Stapf, B. Blumich, «Two-dimensional PFG NMR for encoding correlation of position, velocity, and acceleration in fluid transport», J. Magn. Reson., 146 (2000) 169−180.
  421. S.A. Riley, M.P. Augustine, «Magnetic resonance imaging of electroconvection in a polar organic solvent», J. Magn. Reson., 144 (2000) 288−296.
  422. S. Stapf, R.A. Damion, K.J. Packer, «Time correlations in fluid transport obtained by sequential rephasing gradient pulses», J. Magn. Reson., 137 (1999) 316−323.
  423. B. Blumich, P.T. Callaghan, R.A. Damion, S. Han, A.A. Khrapitchev, K.J. Packer, S. Stapf, «Two-dimensional NMR of velocity exchange: VEXSY and SERPENT», J. Magn. Reson., 152 (2001) 162−167.
  424. A. Haase, M. Brandl, E. Kuchenbrod, A. link, «Magnetization-prepared NMR microscopy», J. Magn. Reson. A, 105 (1993) 230−233.
  425. S.-I. Han, P.T. Callaghan, «One-shot velocimetry using echo planar imaging microscopy», J. Magn. Reson., 148 (2001) 349−354.
  426. S. Laukemper-Ostendorf, H.D. Lemke, P. Blumler, B. Blumich, «NMR imaging of flow in hollow fiber hemodialyzers», J. Membr. Sci, 138 (1998) 287−295.
  427. A.K. Heibel, T.W.J. Scheenen, J.J. Heiszwolf, H. Van As, F. Kapteijn, J.A. Moulijn, «Gas and liquid phase distribution and their effect on reactor performance in the monolith film flow reactor», Chem. Engng Sci., 56 (2001) 5935−5944.
  428. C. Heine, K. Kupferschlager, S. Stapf, B. Blumich, «NMR velocimetry of falling liquid films», J. Magn. Reson., 154 (2002) 311−316.
  429. T.W.J. Scheenen, F.J. Vergeldt, C.W. Windt, P.A. de Jager, H. Van As, «Microscopic imaging of slow flow and difusion: a pulsed field gradient stimuolated echo sequence combimed with turbo spin echo imaging», J. Magn. Reson., 151 (2001) 94−100.
  430. C.-M. Tsai, E.W. Olcott, D.G. Nishimura, «Flow quantification using low-spatial-resolution and low-velocity-resolution velocity images», Magn. Reson. Med., 42 (1999) 682−690.
  431. J. A. Polzin, M.T. Alley, F.R. Korosec, T.M. Grist, Y. Wang, C.A. Mistretta, «A complex-difference phase-contrast technique for measurement of volume flow rates», J. Magn. Reson. Imaging, 5 (1995) 129−137.
  432. B. Blumich, P. Blumler, L. Gasper, A. Guthausen, V. Gobbels, S. Laukemper-Ostendorf, K. Unseld, G. Zimmer, «NMR imaging in polymer science», Macromol. Symp., 141 (1999) 83.
  433. N.M. Loening, J. Keeler, «Measurement of convection and temperature profiles in liquid samples», J. Magn. Reson., 139 (1999) 334−341.
  434. S.J. Gibbs, T.A. Carpenter, L.D. Hall, «Magnetic resonance imaging of thermal convection», J. Magn. Reson. A, 105 (1993) 209−214.
  435. B. Manz, J.D. Seymour, P.T. Callaghan, «PGSE NMR measurements of convection in a capillary», J. Magn. Reson., 125 (1997) 153−158.
  436. S.-I. Han, S. Stapf, B. Blumich, «NMR imaging of falling water drops», Phys. Rev. Lett., 87 (2001) 144 501.
  437. B. Manz, P. Stilbs, B. Jonsson, O. Soderman, P.T. Callaghan, «NMR imaging of the time evolution of electroosmotic flow in a capillary», J. Phys. Chem., 99(1995) 11 297−11 301.
  438. K.Y. Chung, G. Belfort, W.A. Edelstein, X. Li, «Dean vortices in curved tube flow: 5. 3D MRI and numerical analysis of the velocity field „, AIChEJ., 39 (1993) 1592−1602.
  439. K. Kose, „One-shot velocity mapping using multiple spin-echo EPI and its application to turbulent flow“, J. Magn. Reson., 92 (1991) 631−635.
  440. D.P. Madio, H.M. Gach, I.J. Lowe, „Ultra-fast velocity imaging in stenotically produced turbulent jets using RUFIS“, Magn. Reson. Med., 39 (1998) 574−580.
  441. D.O. Kuethe, „Measuring distributions of diffusivity in turbulent fluids with magnetic-resonance imaging“, Phys. Rev. A, 40 (1989) 4542−4551.
  442. A.D.Hanlon, S.J. Gibbs, L.D. Hall, D.E. Haycock, W.J. Frith, S. Ablett, „Rapid MRI and velocimetry of cylindrical Couette flow“, Magn. Reson. Imaging, 16 (1998) 953−961.
  443. J.A. Hopkins, R.E. Santini, J.B. Grutzner, „NMR velocity mapping of Couette flow using oscillating magnetic field gradients“, J. Magn. Reson. A, 117 (1995) 150−163.
  444. S. Yao, A.G. Fane, J.M. Pope, „An investigation of the fluidity of concentration polarisation layers in crossflow membrane filtration of an oil-water emulsion using chemical shift selective flow imaging“, Magn. Reson. Imaging, 15 (1997) 235−242.
  445. D.F. Arola, G.A. Barrall, R.L. Powell, K.L. McCarthy, M.J. McCarthy, „Use of nuclear magnetic resonance imaging as a viscometer for process monitoring“, Chem. Engng Sci., 521 997) 2049−2057.
  446. Y. Uludag, M.J. McCarthy, G.A. Barrall, R.L. Powell, „Polymer melt rheology by magnetic resonance imaging“, Macromol., 34 (2001) 5520−5524.
  447. M.M. Britton, P.T. Callaghan, M.L. Kilfoil, R.W. Mair, K.M. Owens, „NMR velocimetry and spectroscopy at microscopic resolution in small rheometric devices“, Appl. Magn. Reson., 151 998) 287−301.
  448. P.T. Callaghan, U. Fischer, „Rheo-NMR: a new application for NMR microscopy and NMR spectroscopy“, BrukerRep., 149 (2001) 34−38.
  449. L. Jossic, A. Briguet, A. Magnin, „Segregation under flow of objects suspended in a yield stress fluid and NMR imaging visualisation“, Chem. Engng Sci., 57 (2002) 409−418.
  450. S.A. Altobelli, E. Fukushima, L.A. Mondy, „Nuclear magnetic resonance imaging of particle migration in suspensions undergoing extrusion“, J. Rheol, 41 (1997) 1105−1115.
  451. T.L. Chenevert, A.R. Skovoroda, M. O’Donnell, S.Y. Emelianov, „Elasticity reconstructive imaging by means of stimulated echo MRI“, Magn. Reson. Med., 39 (1998) 482−490.
  452. J. Braun, G. Buntkowsky, J. Bemarding, T. Tolxdorff, I. Sack, „Simulation and analysis of magnetic resonance elastography wave images using coupled harmonic oscillators and Gaussian local frequency estimation“, Magn. Reson. Imaging, 19 (2001) 703−713.
  453. R. Muthupillai, D.J. Lomas, P.J. Rossman, J.F. Greenleaf, A. Manduca, R.L. Ehman, „Magnetic resonance elastography by direct visualization of acoustic strain waves“, Science, 269 (1995) 1854−1857.
  454. R. Muthupillai, P.J. Rossman, D.J. Lomas, J.F. Greenleaf, S.J. Reiderer, R.L. Ehman, „Magnetic resonance imaging of transverse acoustic strain waves“, Magn. Reson. Med., 36 (1996) 266−274.
  455. C.J. Lewa, J.D. de Certaines, „MR imaging of viscoelastic properties“, J. Magn. Reson. Imaging, 5 (1995) 242−244.
  456. J. Bishop, G. Poole, M. Leitch, D.B. Plewes, „Magnetic resonance imaging of shear wave propagation in excised tissue“, J. Magn. Reson. Imaging, 8 (1998) 1257−1265.
  457. J.D. Seymour, P.T. Callaghan, „Generalized approach to NMR analysis of flow and dispersion in porous media“, AIChE J., 43 (1997) 2096−2111.
  458. R. Kulkarni, A.T. Watson, J.-E. Nordtvedt, „Estimation of porous media flow functions using NMR imaging data“, Magn. Reson. Imaging, 16 (1998) 707−709.
  459. M.D. Mantle, A.J. Sederman, L. Gladden, „Single- and two-phase flow in fixed-bed reactors: MRI flow visualization and lattice-Boltzmann simulations“, Chem. Engng Sci., 56 (2001) 523 529.
  460. A.J. Sederman, M.L. Johns, A.S. Bramley, P. Alexander, L.F. Gladden, „Magnetic resonance imaging of fluid flow and pore structure within packed beds“, Chem. Engng Sci., 52 (1997) 2239−2250.
  461. S. Chen, F. Qin, A.T. Watson, „Determining fluid saturations during multiphase flow experiments by NMR imaging techniques“, AIChE J., 40 (1994) 1238−1245.
  462. S. Chen, F. Qin, K.-H. Kim, A.T. Watson, „NMR imaging of multiphase flow in porous media“, AIChE J., 39 (1993) 925−934.
  463. E.J. Fordham, L.D. Hall, T.S. Ramakrishnan, M.R. Sharpe, C. Hall, „Saturation gradients in drainage of porous media: NMR imaging measurements“, AIChE J., 39 (1993) 1431−1443.
  464. R.A. Waggoner, E. Fukushima, „Velocity distribution of slow fluid flows in bentheimer sandstone: an NMRI and propagator study“, Magn. Reson. Imaging, 14(1996) 1085−1091.
  465. D.N. Guilfoyle, P. Mansfield, K.J. Packer, „Fluid flow measurement in porous media by echo-planar imaging“, J. Magn. Reson., 97 (1992) 342−358.
  466. J.E.M. Snaar, H. Van As, „Discrimination of different types of motion by modified stimulated-echo NMR“, J. Magn. Reson., 87 (1990) 132−140.
  467. A. Feinauer, S.A. Altobelli, E. Fukushima, „NMR measurements of flow profiles in a coarse bed of packed spheres“, Magn. Reson. Imaging, 15 (1997) 479−487.
  468. P. Mansfield, B. Issa, „Fluid transport in porous rocks. I. EPI studies and stochastic model of flow“, J. Magn. Reson. A, 122 (1996) 137−148.
  469. M.R. Merrill, „Local velocity and porosity measurements inside Casper sandstone using MRI“, AIChE J., 40 (1994) 1262−1267.
  470. H. Van As, W. Palstra, U. Tallarek, D. Van Dusschoten, „Flow and transport studies in (non)consolidated porous (bio)systems consisting of solid or porous beads by PFG NMR“, Magn. Reson. Imaging, 16 (1998) 569−573.
  471. T.J. Schaafsma, H. Van As, W.D. Palstra, J.E.M. Snaar, P.A. de Jager, „Quantitative measurement and imaging of transport processes in plants and porous media by! H NMR“, Magn. Reson. Imaging, Ш (1992) 827−836.
  472. K.J. Packer, J.J. Tessier, „The characterization of fluid transport in a porous solid by pulsed gradient stimulated echo NMR“, Mol. Phys., 87 (1996) 267−272.
  473. K.J. Packer, S. Stapf, J.J. Tessier, R.A. Damion, „The characterization of fluid transport in porous solids by means of pulsed magnetic field gradient NMR“, Magn. Reson. Imaging, 16 (1998) 463−469.
  474. D. Candela, A. Ding, X. Yang, „Applications of NMR to transport in random systems“, Physica B, 279 (2000) 120−124.
  475. J. Stepisnik, P.T. Callaghan, „The long time tail of molecular velocity correlation in a confined fluid: observation by modulated gradient spin-echo NMR“, Physica B, 292 (2000) 296−301.
  476. N.C. Irwin, S.A. Altobelli, R.A. Greenkorn, „Concentration and velocity field measurements by magnetic resonance imaging in aperiodic heterogeneous porous media“, Magn. Reson. Imaging, 17 (1999) 909−917.
  477. S. Oswald, W. Kinzelbach, A. Greiner, G. Brix, „Observation of flow and transport processes in artificial porous media via magnetic resonance imaging in three dimensions“, Geoderma, 80 (1997)417−429.
  478. Y.E. Kutsovsky, V. Alvarado, H.T. Davis, L.E. Scriven, B.E. Hammer, „Dispersion of paramagnetic tracers in bead packs by Ti mapping: experiments and simulations“, Magn. Reson. Imaging, 14 (1996) 833−839.
  479. M. Ilg, J. Maier-Rosenkranz, W. Muller, K. Albert, E. Bayer, D. Hopfel, „Imaging of the chromatographic process“, J. Magn. Reson., 96 (1992) 335−344.
  480. U. Tallarek, T.W.J. Scheenen, H. Van As, „Macroscopic Heterogeneities in electroosmotic and pressure-driven flow through fixed beds at low column-to particle diameter ratio“, J. Phys. Chem. B, 105 (2001) 8591−8599.
  481. U. Tallarek, D. van Dusschoten, H. Van As, G. Guiochon, E. Bayer, „Mass transfer in chromatographic columns studied by PFG NMR“, Magn. Reson. Imaging, 16 (1998) 699−702.
  482. P. Mansfield, M. Bencsik, „Fluid flow in porous systems“, Magn. Reson. Imaging, 16 (1998) 451−454.
  483. G. Guillot, G. Kassab, J.P. Hulin, P. Rigord, „Monitoring of tracer dispersion in porous media by NMR imaging“, J. Phys. D: Appl. Phys., 24 (1991) 763−773.
  484. U. Tallarek, D. van Dusschoten, H. Van As, G. Guiochon, E. Bayer, „Direct observation of fluid mass transfer resistance in porous media by NMR spectroscopy“, Angew. Chem. Int. Ed., 37 (1998) 1882−1885.
  485. U. Tallarek, F.J. Vergeldt, H. Van As, J. Phys. Chem. B, 103 (1999) 7654.
  486. S. Stapf, K.J. Packer, „Two-dimensional propagators and spatio-temporal correlations for flow in porous media: a comparative study“, Appl. Magn. Reson., 15 (1998) 303−322.
  487. EJ. Fordham, M.A. Horsfield, L.D. Hall, G.C. Maitland, „Depth filtration of clay in rock cores observed by one-dimensional 'H NMR imaging“, J. Colloid Interface Sci., 156 (1993) 253−255.
  488. EJ. Fordham, T.P.L. Roberts, T.A. Carpenter, L.D. Hall, C. Hall, „Dynamic NMR imaging of rapid depth filtration of clay in porous media“, AIChE J., 37 (1991) 1900−1903.
  489. M.A. Horsfield, E.J. Fordham, C. Hall, L.D. Hall, „'H NMR imaging studies of filtration in colloidal suspensions“, J. Magn. Reson., 81 (1989) 593−596.
  490. J.J. Dechter, R.A. Komoroski, S. Ramaprasad, „Use of presaturation for chemical-shift-selective imaging of individual fluids in sandstone and carbonate cores“, J. Magn. Reson., 93 (1991) 142−150.
  491. P.D. Majors, J.L. Smith, F.S. Kovarik, E. Fukushima, „NMR spectroscopic imaging of oil displacement in dolomite“, J. Magn. Reson., 89 (1990) 470−478.
  492. S.S. Mandava, A.T. Watson, C.M. Edwards, „NMR imaging of saturation during immiscible displacements“, AIChE J., 36 (1990) 1680−1686.
  493. J.-D. Chen, M.M. Dias, S. Patz, L.M. Schwartz, „Magnetic resonance imaging of immiscible-fluid displacement in porous media“, Phys. Rev. Lett., 61 (1988) 1489−1492.
  494. A.T. Watson, R. Kulkarni, J.-E. Nordtvedt, A. Sylte, H. Urkedal, „Estimation of porous media flow functions“, Meas. Sci. Techno!., 9 (1998) 898−905.
  495. J.J. Tessier, K.J. Packer, „The characterization of multiphase fluid transport in a porous solid by pulsed gradient stimulated echo NMR“, Phys. Fluids, 10 (1998) 75−85.
  496. C.A. Baldwin, L.F. Gladden, „NMR imaging of nonaqueous-phase liquid dissolution in a porous medium“, AIChE J., 42 (1996) 1341−1349.
  497. M.L. Johns, L.F. Gladden, „Magnetic resonance imaging study of the dissolution kinetics of octanol in porous media“, J. Colloid Interface Sci., 210 (1999) 261−270.
  498. A J. Sederman, L.F. Gladden, „Magnetic resonance imaging as a quantitative probe of g as-liquid distribution and wetting efficiency in trickle-bed reactors“, Chem. Engng Sci., 56 (2001) 2615−2628.
  499. E. Bayer, W. Muller, M. Ilg, K. Albert, „Visualization of chromatographic separations by NMR imaging“, Angew. Chem. Int. Ed., 28 (1989) 1029−1032.
  500. L .D. Hall, R. V asanthan, „Visualization о f с hromatography columns b у NMR i maging“, J. Chem. Soc., Chem. Commun., (1985) 499−501.
  501. M. Nakagawa, S.A. Altobelli, A. Caprihan, E. Fukushima, „NMRI study: axial migration of radially segregated core of granular mixtures in a horizontal rotating cylinder“, Chem. Engng Sci., 52 (1997) 4423−4428.
  502. G. Metcalf, M. Shattuck, „Pattern formation during mixing and segregation of flowing granular materials“, Physica A, 233 (1996) 709−717.
  503. A. Caprihan, Е. Fukushima, A.D. Rosato, M. Kos, „Magnetic resonance imaging of vibrating granular beds by spatial scanning“, Rev. Sci. Instr., 68 (1997) 4217−4220.
  504. E.E. Ehrichs, H.M. Jaeger, G.S. Karczmar, J.B. Knight, V.Yu. Kuperman, S.R. Nagel, „Granular convection о bserved b у m agnetic r esonance i maging“, S cience, 2 67 (1995) 16 321 634.
  505. I.V. Koptyug, S.A. Altobelli, E. Fukushima, A.V. Matveev, R.Z. Sagdeev, „Thermally polarized 1H NMR microimaging studies of liquid and gas flow in monolithic catalysts“, J. Magn. Reson., 147 (2000) 36−42.
  506. E. Brunner, M. Haake, L. Kaiser, A. Pines, J. A. Reimer, „Gas flow MRI using circulating laser-polarized 129Xe“, J. Magn. Reson., 138 (1999) 155−159.
  507. M. Bencsik, C. Ramanathan, „direct measurement of porous media local hydrodynamical permeability using gas MRI“, Magn. Reson. Imaging, 19 (2001) 379−383.
  508. Колебания и бегущие волны в химических системах. Редакторы Р. Филд и М. Бургер. Пер. с англ. под ред. A.M. Жаботинского. Москва, МИР, 1988.
  509. Magnetic Resonance Microscopy. В. Blumich and W. Kuhn, Eds. Pp.267−275.
  510. P. Jackson, N.J. Clayden, N.J. Walton, T.A. Carpenter, L.D. Hall, P. Jezzard, Polym. Int., 24 (1991) 139−143.
  511. S. Ahuja, S.L. Dieckman, N. Gopalsami, A.C. Raptis, nlH NMR imaging and spectroscopy studies of the polymerization of acrylamide gels“, Macromol., 29 (1996) 5356−5360.
  512. P. Jackson, „Curing of carbon-fibre reinforced epoxy resin- non-invasive viscosity measurement by NMR imaging“, J. Mater. Sci., 21 (1992) 1302−1306.
  513. A. Mavrich, F. Fondeur, H. Ishida, J.L. Koenig, H.D. Wagner, J. Adhesion, 46 (1994) 91.
  514. P. Blumler, B. Blumich, „NMR imaging of elastomers: a review“, Rubber Chem. Technol., 70 (1997) 468−518.
  515. C. Fulber, K. Unseld, V. Herrmenn, K.H. Jakob, B. Blumich, „In situ investigation of SBR vulcanization: a combined study of-NMR and vulcametry“, Colloid Polym. Sci., 274 (1996) 191−196.
  516. B.J. Balcom, T.A. Carpenter, L.D. Hall, „Methacrylic acid polymerization. Travelling waves observed by nucl-ear magnetic resonance imaging“, Macromol., 25 (1992) 6818−6823.
  517. T.G. Nunes, R. Pires, J. Perdigao, A. Amorim, M. Polido, „The study of a commercial dental resin by rH stray-field magnetic resonance imaging“, Polymer, 42 (2001) 8051−8054.
  518. U. Gunther, K. Albert, M. Grossa, „Monitoring of photopolymerization processes by NMR imaging“, J. Magn. Reson., 98 (1992) 593−598.
  519. Magnetic Resonance Microscopy. B. Blumich and W. Kuhn, Eds. Pp.277−286
  520. A. Ertl, A. Berg, М. Zehetmayer, P. Frigo, „High-resolution dose profile studies based on MR imaging with polymer BANG gels in stereotactic radiation techniques“, Magn. Reson. Imaging, 18 (2000) 343−349.
  521. M. McJury, M. Oldham, O.M. Leach, S. Webb, „Dynamics of polymerization in polyacrylamide gel (PAG) dosimeters: (I) ageing and long-term stability“, Phys. Med. Biol., 44 (1999)1863−1873.
  522. P. Haraldsson, S.AJ. Back, P. Magnusson, L.E. Olsson, „Dose response characteristics and basic dose distribution data for a polymerization-based dosimeter gel evaluated using MR“, Brit. J. Radiol., lb (2000) 58−65.
  523. E.W. Hansen, P. Ruoff, „Characterization of a manganese-catalyzed bromate-driven oscillator within the .H NMR framework“, J. Phys. Chem., 93 (1989) 264−269.
  524. A.R. Cross, R.L. Armstrong, A. Reid, S. Su, M Menzinger, „Contrast enhancement of magnetic resonance images of chemical waves in the Belousov-Zhabotinsky reaction“, J. Phys. Chem., 99 (1995) 16 616−16 621.
  525. A. Tzalmona, R.L. Armstrong, M. Menzinger, A. Cross, C. Lemaire, „Detection of chemical waves by magnetic resonance imaging“, Chem. Phys. Lett., 174 (1990) 199−202.
  526. M. Menzinger, A. Tzalmona, R.L. Armstrong, A. Cross, С Lemaire, „Dynamics of convective instability of waves in the Belousov-Zhabotinsky reaction as measured by magnetic resonance imaging“, J. Phys. Chem., 96 (1992) 4725−4727.
  527. S. Su, R.L. Armstrong, M. Menzinger, A. Cross, C. Lemaire, „Detection of critical mode convection in the presence of a thermal gradient using chemical waves as a passive indicator“, J. Chem. Phys., 98 (1993) 7295−7300.
  528. Magnetic resonance microscopy. Methods and applications inmaterials s cience, agriculture and biomedicine. B. Blumich and W. Kuhn, Eds. Weinheim, VCH, 1992, pp.309−323.
  529. S. Su, M. Menzinger, R.L. Armstrong, A. Cross, C. Lemaire, „Magnetic resonance imaging of kinematic wave and pacemaker dynamics in the Belousov-Zhabotinsky reaction“, J. Phys. Chem., 98 (1994) 2494−2498.
  530. Y. Gao, A.R. Cross, R.L. Armstrong, „Magnetic resonance imaging of ruthenium-, cerium-, and ferroin-catalyzed Belousov-Zhabotinsky reactions“, J. Phys. Chem., 100 (1996) 1 015 910 164.
  531. B.J. Balcom, A. Carpenter, L.D. Hall, „Spatial and temporal visualization of two aqueous iron oxidation-reducton reactions by nuclear magnetic resonance imaging“, J. Chem. Soc., Chem. Commun., (1992)312−313.
  532. B.J. Balcom, T.A. Carpenter, L.D. Hall, „Spatial and temporal visualization of a pH-dependent complexation equilibrium by nuclear magnetic resonance imaging“, Can. J. Chem., 70 (1992) 2693−2697.
  533. K. Potter, B.J. Balcom, T.A. Carpenter, L.D. Hall, „The gelation of sodium alginate with calcium ions studied by magnetic resonance imaging (MRI)“, Carbohydr. Res., 257 (1994) 117−126.
  534. J.J. Tessier, T.A. Carpenter, L.D. Hall, „A combined magnetization-transfer and null-point technique for studying gelation processes by magnetic resonance imaging“, J. Magn. Reson. A, 113 (1995) 232−234.
  535. L.G. Butler, D.G. Cory, K.M. Dooley, J.B. Miller, A.N. Garroway, „NMR imaging of anisotropic solid-state chemical reactions using multiple-pulse line-narrowing techniques and! H Ti weighting“, J. Amer. Chem. Soc., 114 (1992) 125−135.
  536. K.M. Salikhov, Yu. N. Molin, R.Z. Sagdeev, A.L. Buchachenko. Spin polarization and magnetic effects in radical reactions. Akademiai Kiado, Budapest, 1984.
  537. A.JI. Бучаченко, Р. З. Сагдеев, K.M. Салихов. Магнитные и спиновые эффекты в химических реакциях. Наука, Новосибирск, 1978.
  538. A.A. Obynochny, A.G. Maryasov, К.А. Ilyasov, O.I. Gnezdilov, K.M. Salikhov, „MRI study of spatial distribution of photochemical reaction products“, Appl. Magn. Reson., 17 (1999) 609 614.
  539. C.R. Bowers, D.P. Weitekamp, J. Amer. Chem. Soc. 109 (1987) 5541−5542.
  540. S.B. Duckett, C.J. Sleigh, Progr. NMR Spectrosc. 34 (1999) 71−92.
  541. J. Barkemeyer, M. Haake, J. Bargon, J. Amer. Chem. Soc. П7 (1995) 2927−2928.
  542. K. Golman, O. Axelsson, H. Johannesson, S. Mansson, C. Olofsson, J.S. Petersson, 13
  543. Parahydrogen-induced polarization in imaging: subsecond С angiography», Magn. Reson. Med., 46 (2001) 1−5.
  544. C. Ammann, P. Meier, A.E. Merbach, «A simple multinuclear NMR thermometer», J. Magn. Reson., 46 (1982) 319−321.
  545. R.D. Peters, R.S. Hinks, R.M. Henkelman, «Ex vivo tissue-type independence in proton resonance frequency shift MR thermometry», Magn. Reson. Med., 40 (1998) 454−459.
  546. N.J. McDannold, R.L. King, F.A. Jolesz, K.H. Hynynen, «Usefulness of MR imaging derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits», Radiology, 216 (2000) 517−523.
  547. W. Wlodarczyk, R. Boroschewski, M. Henyschel, P. Wust, G. Monich, R. Felix, «Three-dimensional monitoring of small temperature changes for therapeutic hyperthermia using MR», J. Magn. Reson. Imaging, 8 (1998) 165−174.
  548. H.P. Shukla, R.P. Mason, D.E. Woessner, P.P. Antich, «A comparison of three commercial perfluorocarbon emulsions as high-field 19 °F NMR probes of oxygen tension and temperature», J. Magn. Reson. B, 106 (1995) 131−141.
  549. G.C. Levy, J.T. Bailey, D.A. Wright, «A sensitive NMR thermometer for multinuclei FT NMR», J. Magn. Reson., 37 (1980) 353−356.
  550. Y. Ishihara, A. Calderon, H. Watanabe, K. Okamoto, Y. Suzuki, K. Kuroda, Y. Suzuki, «A precise and fast temperature mapping using water proton chemical shift», Magn. Reson. Med., 34(1995) 814−823.
  551. K.P. Nott, L.D. Hall, J.R. Bows, M. Hale, M.L. Patrick, «MRI phase mapping of temperature distributions induced in food by microwave heating», Magn. Reson. Imaging, 18 (2000) 69−79.
  552. T. Harth, T. Kahn, M. Rassek, B. Schwabe, H.-J. Schwarzmaier, J.S. Lewin, U. Modder, «Determination of laser-induced temperature distributions using echo-shifted turbo FLASH», Magn. Reson. Med., 38 (1997) 238−245.
  553. J. De Poorter, C. De Wagter, Y. De Deene, C. Thomsen, F. Stahlberg, E. Achten, «Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle», Magn. Reson. Med., 33 (1995) 74−81.
  554. K. Kuroda, K. Oshio, A.H. Chung, K. Hynynen, F.A. Jolesz, «Temperature mapping using the water proton chemical shift: a chemical shift selective phase mapping method», Magn. Reson. Med., M (1997) 845−851.
  555. K. Kuroda, Y. Suzuki, Y. Ishihara, K. Okamoto, Y. Suzuki, «Temperature mapping using water proton chemical shift obtained with 3D-MRSI: feasibility in vivo», Magn. Reson. Med., 35 (1996) 20−29.
  556. J. De Poorter, «Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects», Magn. Reson. Med., 34 (1995) 359−367.
  557. R.D. Peters, R.S. Hinks, R.M. Henkelman, «Heat-source orinetation and geometry dependence in proton resonance frequency shift magnetic resonance thermometry», Magn. Reson. Med., 41 (1999) 909−918.
  558. I.R. Young, J.W. Hand, A. Oatridge, M.V. Prior, «Modeling and observation of temperature changes in vivo using MRI», Magn. Reson. Med., 32 (1994) 358−369.
  559. R.V. Mulkern, L.P. Panych, N.J. McDannold, F.A. Jolesz, K. Hynynen, «Tissue temperature monitoring with multiple gradient echo imaging sequences», J. Magn. Reson. Imaging, 8 (1998) 493−502.
  560. S. Sinha, T. Oshiro, U. Sinha, R. Lufkin, «Phase imaging on a .2-T MR scanner: application to temperature monitoring during ablation procedures», J. Magn. Reson. Imaging, 7 (1997) 918 928.
  561. R. Stollberger, P.W. Ascher, D. Huber, W. Renhart, H. Radner, F. Ebner, «Temperature monitoring of interstitial thermal tissue coagulation using MR phase images», J. Magn. Reson. Imaging, 8 (1998) 188−196.
  562. K. Kuroda, A.H. Chung, K. Hynynen, F.A. Jolesz, «Calibration of water proton chemical shift with temperature for noninvasive temperature imaging during focused ultrasound surgery», J. Magn. Reson. Imaging, 8 (1998) 175−181.
  563. J.A. de Zwart, P. van Gelderen, D.J. Kelly, C.T.W. Moonen, «Fast magnetic resonance temperature imaging», J. Magn. Reson. В, 112 (1996) 86−90.
  564. L.D. Hall, S.L. Talagala, «mapping of pH and temperature distribution using chemical shift resolved tomography», J. Magn. Reson., 65 (1985) 501−505.
  565. C.S. Zuo, J.L. Bowers, K.R. Metz, T. Nosaka, A.D. Sherry, M.E. Clouse, «TmDOTP5-: a substance for NMR temperature measurements in vivo», Magn. Reson. Med., 36 (1996) 955 959.
  566. C.S. Zuo, K.R. Metz, Y. Sim, A.D. Sherry, «NMR temperature measurements using a paramagnetic lanthanide complex», J. Magn. Reson., 133 (1998) 53−60.
  567. S. Aime, M. Botta, M. Fasano, E. Terreno, P. Kinchesh, L. Calabi, L. Paleari, «A new ytterbium chelate as contrast agent in chemical shift imaging and temperature sensitive probe for MR spectroscopy», Magn. Reson. Med., 35 (1996) 648−651.
  568. I.R. Y oung, J. W. H and, A. О atridge, M .V. P rior, G.R. F orse, «Further о bservations о n the measurement oft issue Tito monitor t emperature i n v ivo b у M RI», Magn. R eson. Med., 31 (1994) 342−345.
  569. C. Bohris, J.W. Jenne, R. Rastert, I. Simiantonakis, G. Brix, J. Spoo, M. Hlavac, R. Nemeth, P.E. Huber, J. Debus, «MR monitoring of focused ultrasound surgery in a breast tissue model in vivo», Magn. Reson. Imaging, 19 (2001) 167−175.
  570. C. Schwarzbauer, J. Zange, H. Adolf, R. Deichmann, U. Noth, A. Haase, «Fast measurement of temperature distributions by rapid Ti mapping», J. Magn. Reson. B, 106 (1995) 178−180.
  571. C. Bohris, W.G. Schreiber, J. Jenne, I. Simiantonakis, R. Rastert, H.-J. Zabel, P. Huber, R. Bader, G. Brix, «Quantitative MR temperature monitoring of high-intensity focused ultrasound therapy», Magn. Reson. Imaging, 17 (1999) 603−610.
  572. H.E. Cline, J.F. Schenk, R.D. Watkins, K. Hynynen, F.A. Jolesz, «Magnetic resonance-guided thermal surgery», Magn. Reson. Med., 30 (1993) 98−106.
  573. H.E. Cline, K. Hynynen, C.J. Hardy, R.D. Watkins, J.F. Schenck, F.A. Jolesz, «MR temperature mapping of focused ultrasound surgery», Magn. Reson. Med., 31 (1994) 628−636.
  574. S.J. Doran, T.A. Carpenter, L.D. Hall, «Noninvasive measurement of temperature distrinutions with high spatial resolution using quantitative imaging of NMR relaxation times», Rev. Sci. Instr., 65 (1994) 2231−2237.
  575. J. Delannoy, C.-N. Chen, R. Turner, R.L. Levin, D. Le Bihan, «Noninvasive temperature imaging using diffusion MRI», Magn. Reson. Med., 19 (1991) 333−339.
  576. A.R. Bleier, F.A. Jolesz, M.S. Cohen, R.M. Weisskoff, J.J. Dalcanton, N. Higuchi, D.A. Feinberg, B.R. Rosen, R.C. McKinstry, S.G. Hushek, «Real-time magnetic resonance imaging of laser heat deposition in tissue», Magn. Reson. Med., 21 (1991) 132−137.
  577. D. Morvan, A. Leroy-Willig, A. Malgouyres, C.A. Cuenod, P. Jehenson, A. Syrota, «Simultaneouis temperature and regional blood volume measurements in human muscle using an MRI fast diffusion technique», Magn. Reson. Med., 29 (1993) 371−377.
  578. Н.Е. С line, К. Н ynynen, Е. S chneider, С .J. Н ardy, S .Е. М aier, R .D. W atkins, F .A. Jo lesz, «Simultaneous magnetic resonance phase and magnitude temperature maps in muscle», Magn. Reson. Med., 35 (1996) 309−315.
  579. N. Hedin, I. Furo, «Temperature imaging by .H NMR and suppression of convection in NMR probes», J. Magn. Reson., 131 (1998) 126−130.
  580. R.D. Farrant, J.C. Lindon, «Assessment of NMR probe temperature stability and gradient usong a nematic phase solution», Magn. Reson. Chem., 32 (1994) 231−234.
  581. E. Samset, T. Mala, B. Edwin, I. Gladhaug, 0. Soreide, E. Fosse, «Validation of estimated 3D temperature maps during hepatic cryo surgery», Magn. Reson. Imaging, 19 (2001) 715−721.
  582. J.C. Gilbert, B. Rubinsky, S.T.S. Wong, K.M. Breenan, G.R. Pease, P.P. Leung, «Temperature determination in the frozen region during cryosurgery of rabbit liver using MR image analysis», Magn. Reson. Imaging, 15 (1997) 651−667.
  583. N.S. Sullivan, «NMR at Very Low Temperatures: Population Difference Thermometry», Bull. Magn. Reson., 18 (1997) 258.
  584. Методы получения и измерения низких и сверхнизких температур, под ред. Б. И. Веркина, Наукова Думка, Киев, 1987.
  585. I. Sersa, О. Jarh, F. Demsar, «Magnetic resonance microscopy of electric currents», J. Magn. Reson. A, Hi (1994) 93−99.
  586. G.C. Scott, M.L.G. Joy, R.L. Armstrong, R.M. Henkelman, «Sensitivity of magnetic resonance current density imaging», J. Magn. Reson., 97 (1992) 235−254.
  587. G.C. Scott, M.L.G. Joy, R.L. Armstrong, R.M. Henkelman, «Measurement of nonuniform current density by magnetic resonance», IEEE Trans. Med. Imaging, 10 (1991) 362−374.
  588. M. Joy, G. Scott, M. Henkelman, «In vivo detection of applied electric currents by magnetic resonance imaging», Magn. Reson. Imaging, 7 (1989) 89−94.
  589. K. Beravs, D. White, I Sersa, F. Demsar, «Electric current density imaging of bone by MRI», Magn. Reson. Imaging, 15 (1997) 909−915.
  590. I. Sersa, K. Beravs, N.J.F. Dodd, S. Zhao, D. Miklavcic, F. Demsar, «Electric current density imaging of mice tumors», Magn. Reson. Med., 37 (1997) 404−409.
  591. K. Beravs, A. Demsar, F. Demsar, «Magnetic resonance current density imaging of chemical processes and reactions», J. Magn. Reson., 137 (1999) 253−257.
  592. G.C. Scott, M.L.G. Joy, R.L. Armstrong, R.M. Henkelman, «RF current density imaging in homogeneous media», Magn. Reson. Med., 28(1992) 186−201.
  593. G.C. Scott, M.L.G. Joy, R.L. Armstrong, R.M. Henkelman, «Electromagnetic considerations for rf current density imaging», IEEE Trans. Med. Imaging, 14 (1995) 515−524.
  594. G.C. Scott, M.L.G. Joy, R.L. Armstrong, R.M. Henkelman, «Rotating frame rf current density imaging», Magn. Reson. Med., 33 (1995) 355−369.
  595. К. Beravs, R. Frangez, A.N. Gerkis, F. Demsar, «Radiofrequency current density imaging of kainate-evoked depolarization», Magn. Reson. Med., 42 (1999) 136−140.
  596. J. Bodurka, A. Jesmanowica, J.S. Hyde, H. Xu, L. Estkowski, S.-J. Li, «Current-induced magnetic resonance phase imaging», J. Magn. Reson., 137 (1999) 265−271.
  597. M. Holz, C. Muller, «NMR measurements of internal magnetic field gradients caused by the presence of ellectric current in electrolyte solutions», J. Magn. Reson., 40 (1980) 595−599.
  598. P.J. Prado, B.J. Balcom, I.V. Mastikhin, A.R. Cross, R.L. Armstrong, A. Logan, «Magnetic resonance imaging of gases: a single-point ramped imaging with Ti enhancement (SPRITE) study», J. Magn. Reson., 137 (1999) 324−332.
  599. D.O. Kuethe, A. Caprihan, H.M. Gach, I.J. Lowe, E. Fukushima, «Imaging obstructed ventilation with NMR using inert fluorinated gases», J. Appl. Physiol., 88 (2000) 2279−2286.
  600. D.O. Kuethe, A. Caprihan, E. Fukushima, R.A. Waggoner, «Imaging lungs using inert fluorinated gases», Magn. Reson. Med., 39 (1998) 85−88.
  601. I.L. Moudrakovski, S. Lang, C.I. Ratcliffe, B. Simard, G. Santyr, J.A. Ripmeester, «Chemical shift imaging with continuously flowing hyperpolarized xenon for the characterization of materials», J. Magn. Reson., 144 (2000) 372−377.
  602. W. Happer, E. Miron, S. Schaefer, D. Schreiber, W.A. van Wijngaarden, X. Zeng, «Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms», Phys. Rev. A, 29 (1984) 3092−3110.
  603. F. Kober, P.-E. Wolf, J.-L. Leviel, G. Vermeulen, G. Duhamel, A. Delon, J. Derouard, M. Decorps, A. Ziegler, «Low-temperature polarized helium-3 for MRI applications», Magn. Reson. Med., 41 (1999) 1084−1087.
  604. M. Bock, «Simultaneous T2* and diffusion measurements with 3He», Magn. Reson. Med., 38 (1997) 890−895.
  605. J. Wolber, I.J. Rowland, M.O. Leach, A. Bifone, «Intravascular delivery of hyperpolarized 129Xenon for in vivo MRI», Appl. Magn. Reson., 15 (1998) 343−352.
  606. K.L. Sauer, R.J. Fitzgerald, W. Happer, «Laser-polarized liquid xenon», Chem. Phys. Lett., 277 (1997) 153−158.
  607. M. Haake, B.M. Goodson, D.D. Laws, E. Brunner, M.C. Cyrier, R.H. Havlin, A. Pines, «NMR of supercritical laser-polarized xenon», Chem. Phys. Lett., 292 (1998) 686−690.
  608. I.L. Moudrakovski, A. Sanchez, C.I. Ratcliffe, J.A. Ripmeester, «Applications of hyperpolarized xenon to diffusion in vycor porous glass», J. Phys. Chem. B, 104 (2000) 73 067 310.
  609. B.M. Goodson, Y.-Q. Song, R.E. Taylor, V.D. Schepkin, K.M. Brennan, G.C. Chingas, T.F. Budinger, G. Navon, A. Pines, «In vivo NMR and MRI using inhection delivery of laser-polarized xenon», Proc. Natl. Acad. Sci. USA, 94 (1997) 14 725−14 729.
  610. Y.-Q. Song, H.C. Gaede, T. Pietrass, G.A. Barrall, G.C. Chingas, G.C. Ayers, A. Pines, «Spin-polarized 129Xe gas imaging of materials», J. Magn. Reson. А, П5 (1995) 127−130.
  611. M. Haake, A. Pines, J.A. Reimer, R. Seydoux, «Surface-enhanced NMR using continuous-flow laser-polarized xenon», J. Amer. Chem. Soc., П9 (1997) 11 711−11 712.
  612. L.G. Kaiser, T. Meersmann, J.W. Logan, A. Pines, «Visuzlization of gas flow and diffusion in porous media», Proc. Natl. Acad. Sci. USA, 97 (2000) 2414−2418.
  613. G.P. Wong, C.H. Tseng, V.R. Pomeroy, R.W. Mair, D.P. Hinton, D. Hoffmann, R.E. Stoner, F.W. Hersman, D.G. Cory, R.L. Walsworth, «A system for low field imaging of laser polarized noble gas», J. Magn. Reson., 141 (1999) 217−227.
  614. B. Saam, D.A. Yablonsky, D.S. Gierada, M.S. Conradi, «Rapid imaging of hyperpolarized gas using EPI», Magn. Reson. Med., 42 (1999) 507−514.
  615. M.P. Augustine, E.L. Hahn, «Three component spin echo generation by radiation damping», J. Chem. Phys., 107 (1997) 3324−3328.
  616. X. Mao, J. Chen, «Radiation damping effects in solvent preirradiation experiments in NMR», Chem. Phys., 202 (1996) 357−366.
  617. P. Broekaert, J. Jeener, «Suppression of radiation damping in NMR in liquids by active electronic feedback», / Magn. Reson. A, 113 (1995) 60−64.
  618. W.E. Maas, F.H. Laukien, D.G. Cory, «Suppression of radiation damping by Q switching during acquisition», J. Magn. Reson. A, 113 (1995) 274−277.
  619. B.JI. Берлинский, A.JI. Бучаченко, А. Д. Першин, «Теоретический анализ радиочастотного мазера с химической накачкой ядерных зеемановских энергетических уровней», Теор. эксп. химия, 12 (1976) 666−672.
  620. Р.А. Rinck, S.B. Petersen, Р.С. Lauterbur, «NMR-Imaging von fluorhaltigen Substanzen», Fortschr. Roentgenstr., 140 (1984) 239−243.
  621. F. Kober, B. Koenigsberg, V. Belle, M. Viallon, J.L. Leviel, A. Delon, A. Ziegler, M. Decorps, «NMR imaging of thermally polarized helium-3 gas», J. Magn. Reson., Ц8 (1999) 308−312.
  622. G.C. Chingas, J. Milliken, H.A. Resing, T. Tsang, «Graphite AsF5 intercalation kinetics and diffusion by NMR imaging», Synthetic Metals, 12 (1985) 131−136.
  623. T. Pietrass, J.M. Kneller, R.A. Assink, M.T. Anderson, «129Xe NMR of mesoporous silicas», J. Phys. Chem. B, 103 (1999) 8837−8841.
  624. N. Bansal, C. Dybowski, «Using xenon-129 NMR spectrometry to measure diffiisivity of water in microporous Y zeolites», J. Magn. Reson., 89 (1990) 21−27.
  625. G. Pavlovskaya, A.K. Blue, S.J. Gibbs, M. Haake, F. Cros, L. Malier, T. Meersmann, «Xenon-131 surface sensitive imaging of aerogels in liquid xenon near the critical point», J. Magn. Reson., 137 (1999) 258−264.
  626. G. Navon, Y.-Q. Song, T. Room, S. Appelt, R.E. Taylor, A. Pines, «Enhancement of solution NMR and MRI with laser-polarized xenon», Science, 2Ц (1996) 1848−1851.
  627. R. Seydoux, A. Pines, M. Haake, J.A. Reimer, «NMR with a continuously circulating flow of laser-polarized 129Xe», J. Phys. Chem. В, ШЗ (1999) 4629−4637.
  628. H.C. Gaede, Y.-Q. Song, R.E. Taylor, E.J. Munson, J.A. Reimer, A. Pines, «High-field cross-polarization NMR from laser-polarized xenon to surface nuclei», Appl. Magn. Reson., 8 (1995) 373−384.
  629. E. Brunner, «Enhancement of surface and biological magnetic resonance using laser-polarized noble gases», Concepts Magn. Reson., Ц (1999) 313−335.
  630. J. Smith, L.J. Smith, K. Knagge, E. MacNamara, D. Raftery, «Hyperpolarized xenon-mediated cross-polarization to material surfaces observed at room temperature and above «, J. Amer. Chem. Soc., 123 (2001) 2927−2928.
  631. B. Driehuys, G.D. Cates, W. Happer, H. Mabuchi, B. Saam, M.S. Albert, A. Wishnia, «Spin transfer between laser-polarized 129Xe nuclei and surface protons», Phys. Lett. A, 184 (1993) 88−92.
  632. H.W. Long, H.C. Gaede, J. Shore, L. Reven, C.R. Bowers, J. Kritzenberger, T. Pietrass, A. Pines, P. Tang, J.A. Reimer, «High-field cross-polarization NMR from laser-polarized xenon to a polymer surface», J. Amer. Chem. Soc., П5 (1993) 8491−8492.
  633. H. Middleton, R.D. Black, B. Saam, G.D. Cates, G.P. Cofer, R. Guenther, W. Happer, L.W. Hedlund, G.A. Johnson, K. Juvan, J. Swartz, «MR imaging with hyperpolarized 3He gas», Magn. Reson. Med., 33 (1995) 271−275.
  634. R.D. Black, H.L. Middleton, G.D. Cates, B. Driehuys, W. Happer, L.W. Hedlund, G.A. Johnson, M.D. Shattuck, J.C. Swartz, «In vivo He-3 MR images of guinea pig lungs», Radiology, 199 (1996) 867−870.
  635. G.A. Johnson, G. Cates, X.J. Chen, G.P. Cofer, B. Driehuys, W. Happer, L.W. Hedlund, B. Saam, M.D. Shattuck, J. Swartz, «Dynamics of magnetization in hyperpolarized gas MRI of the lung», Magn. Reson. Med., 38 (1997) 66−71.
  636. XJ. Chen, M.S. Chawla, L.W. Hedlund, H.E. Moeller, J.R. MacFall, G.A. Johnson, «MR microscopy of lung airways with hyperpolarized 3He», Magn. Reson. Med., 39 (1998) 79−84.
  637. X.J. Chen, M.S. Chawla, G.P. Cofer, L.W. Hedlund, H.E. Moeller, G.A. Johnson, «Hyperpolarized 3He NMR lineshape measurements in the live guinea pig lung», Magn. Reson. Med., 40 (1998) 61−65.
  638. Y. Cremillieux, Y. Berthezene, H. Humbolt, M. Viallon, E. Canet, M. Bourgeois, T. Albert, W. Heil, A. Briguet, «A combined 'H perfusion / 3 He ventilation NMR study in rat lungs», Magn. Reson. Med., 41 (1999) 645−648.
  639. M. Ebert, T. Grossmann, W. Heil, W.E. Otten, R. Surkau, M. Leduc, P. Bachert, M.Y. Knopp, L.R. Schad, M. Thelen, «Nuclear magnetic resonance imaging with hyperpolarized helium-3», Lancet, Ш (1996) 1297−1299.
  640. P. Bachert, L.R. Schad, M. Bock, M.V. Knopp, M. Ebert, T. Grossmann, W. Heil, D. Hofmann, R. Surkau, E.W. Otten, «Nuclear magnetic resonance imaging of airways in humans with use of hyperpolarized 3He», Magn. Reson. Med., 36 (1996) 192−196.
  641. M. Leduc, E. Otten, «Voir les poumons grace a l’helium», La Recherche, 287 (1996) 41−43.
  642. R.R. Rizi, I.E. Dimitrov, A. Thompson, G. Jones, T.R. Gentile, M. Ishii, R. Reddy, M.D. Schnall, J.S. Leigh, «MRI of hyperpolarized 3He gas in human paranasal sinuses», Magn. Reson. Med., 39 (1998) 865−868.
  643. H.-U. Kauczor, D. Hofmann, K.-F. Kreitner, N. Nilgens, R. Surkau, W. Heil, A. Potthast, M.V. Knopp, E.W. Otten, M. Thelen, «Normal and abnormal pulmonary ventilation: visuzlization at hyperpolarized He-3 MR imaging», Radiology, 201 (1996) 564−568.
  644. M. Viallon, G.P. Cofer, S.A. Suddarth, H.E. Moeller, X.J. Chen, M.S. Chawla, L.W. Hedlund, Y. Cremillieux, G.A. Johnson, «Functional MR microscopy of the lung using hyperpolarized 3He», Magn. Reson. Med., 41 (1999) 787−792.
  645. X.J. Chen, H.E. Moeller, M.S. Chawla, G.P. Cofer, B. Driehuys, L.W. Hedlund, G.A. Johnson, «Spatially resolved measurements of hyperpolarized gas properties in the lung in vivo. Part I: diffusion coeficient», Magn. Reson. Med., 42 (1999) 721−728.
  646. X.J. Chen, H.E. Moeller, M.S. Chawla, G.P. Cofer, B. Driehuys, L.W. Hedlund, J.R. MacFall, G.A. Johnson, «Spatially resolved measurements of hyperpolarized gas properties in the lung in vivo. Part II: T2*», Magn. Reson. Med, 42 (1999) 729−737.
  647. M.S. Albert, G.D. Cates, B. Driehuys, W. Happer, B. Saam, C.S. Springer, A. Wishnia, «Biological magnetic resonance imaging using laser-polarized 129Xe», Nature, 370 (1994) 199 201.
  648. M.E. Wagshul, Т.Е. Button, H.F. Li, Z. Liang, C.S. Springer, K. Zhong, A. Wishnia, «In vivo MR imaging and spectroscopy using hyperpolarized 129Xe», Magn. Reson. Med., 36 (1996) 183−191.
  649. K. Sakai, A.M. Bilek, E. Oteiza, R.L. Walsworth, D. Balamore, F.A. Jolesz, M.S. Albert, «Temporal dynamics of hyperpolarized 129Xe resonances in living rats», J. Magn. Reson. B, 111 (1996) 300−304.
  650. M.S. Albert, C.H. Tseng, D. Williamson, E.R. Oteiza, R.L. Walsworth, B. Kraft, D. Kacher, B.L. Holman, F.A. Jolesz, «Hyperpolarized 129 Xe imaging of the oral cavity», J. Magn. Reson. В, Ш (1996) 204−207.
  651. H.E. Moeller, X.J. Chen, M.S. Chawla, B. Driehuys, L.W. Hedlund, G.A. Johnson, «Signal dynamics in magnetic resonance imaging of the lung with hyperpolarized noble gases», J. Magn. Reson., 135 (1998) 133−143.
  652. H.E. Moeller, X.J. Chen, M.S. Chawla, G.P. Cofer, B. Driehuys, L.W. Hedlund, S.A. Suddarth, G.A. Johnson, «Sensitivity and resolution in 3D NMR microscopy of the lung with hyperpolarized noble gases», Magn. Reson. Med., 41 (1999) 800−808.
  653. S.D. Swanson, M.S. Rosen, K.P. Coulter, R.C. Welsh, Т.Е. Chupp, «Distribution and dynamics of laser-polarized 129Xe magnetization in vivo», Magn. Reson. Med., 42 (1999) 11 371 145.
  654. M.S. Albert, D. Balamore, «Development of hyperpolarized noble gas MRI», Nucl. Instr. Meth. Phys. Res. A, 402 (1998) 441−453.
  655. J. Wolber, A. Cherubini, A.S.K. Dzik-Jurasz, M.O. Leach, A. Bifone, «Spin-lattice relaxation of laser polarized xenon in human blood», Proc. Natl. Acad. Sci. USA, 96 (1999) 3664−3669.
  656. S.D. Swanson, M.S. Rosen, B.W. Agranoff, K.P. Coulter, R.C. Welsh, Т.Е. Chupp, «Brain MRI with laser-polarized 129Xe», Magn. Reson. Med., 38 (1997) 695−698.
  657. A. Bifone, Y.-Q. Song, R. Seydoux, R.E. Taylor, B.M. Goodson, T. Pietrass, T.F. Budinger, G. Navon, A. Pines, «NMR of laser-polarized xenon in human blood», Proc. Natl. Acad. Sci. USA, 93 (1996) 12 932−12 936.
  658. H.E. Moeller, M.S. Chawla, X.J. Chen, B. Driehuys, L.W. Hedlund, C.T. Wheeler, G.A. Johnson, «Magnetic resonance angiography with hyperpolarized 129Xe dissolved in a lipid emulsion», Magn. Reson. Med., 41 (1999) 1058−1064.
  659. M.S. Chawla, X.J. Chen, H.E. Moller, G.P. Cofer, C.T. Wheeler, L.W. Hedlund, G.A. Johnson, «In vivo magnetic resonance vascular imaging using laser-polarized 3He microbubbles», Proc. Natl. Acad. Sci. USA, 95 (1998) 10 832−10 835.
  660. B. Blumich, P. Blumler, K. Saito, «NMR imaging and spatial information», in Solid state NMR of polymers, I. Ando, T. Asakura, eds, Studies in Physical and Theoretical Chemistry, vol. 84. Elsevier Science, 1998.
  661. P. Blumler, B. Blumich, «NMR imaging of solids», NMR В asicPrincip. Progr., 30(1994) 209−277.
  662. P. Adriaensens, A. Pollaris, D. Vanderzande, J. Gelan, J.L. White, M. Kelchtermans, «Relationships between microvoid heterogeneity and physical properties in cross-linked elastomers: an NMR imaging study», Macromol., 33 (2000) 7116−7121.
  663. P. Adriaensens, A. Pollaris, D. Vanderzande, J. Gelan, J.L. White, A.J. Dias, M. Kelchtermans, «Critical analysis of network defects in cross-linked isobutylene-based elastomers by NMR imaging», Macromol, 32 (1999) 4692−4699.
  664. J.B. Miller, D.G. Cory, A.N. Garroway, «Line-narrowing approaches to solid state NMR imaging: pulsed gradients and second averaging», Phil. Trans. R. Soc. Lond. A, 333 (1990) 413 426.
  665. F. De Luca, B.C. De Simone, N. Lugeri, B. Maraviglia, «NMR imaging of solids by spin nutation in the rotating frame. A comparative analysis», J. Magn. Reson. A, 102 (1993) 287 292.
  666. D.G. Cory, Annu. Rep. NMR, 24 (1992) 87.
  667. D.G. Cory, J.B. Miller, A.N. Garroway, «Time-suspension multiple-pulse sequences: application to solid-state imaging», J. Magn. Reson., 90 (1990) 205−213.
  668. S. Hafher, P. Barth, W. Kuhn, «3D magic-echo phase-encoding solid imaging», J. Magn. Reson. A, 108 (1994) 21−24.
  669. S. Matsui, «Solid-state NMR imaging by magic sandwich echoes», Chem. Phys. Lett., Г79 (1991) 187−190.
  670. S. Choi, X.-W. Tang, D.G. Cory, «Constant time imaging approaches to NMR microscopy», Int. J. Imaging Syst. Technol., 8 (1997) 263−276.
  671. S. Gravina, D.G. Cory, «Sensitivity and resolution of constant-time imaging», J. Magn. Reson. B, 104(1994) 53−61.
  672. S.D. Beyea, B.J. Balcom, I.V. Mastikhin, T.W. Bremner, R.L. Armstrong, P.E. Grattan-Bellew, «Imaging of heterogeneous materials with a turbo spin echo single-point imaging technique», J. Magn. Reson., 144 (2000) 255−265.
  673. B.J. Balcom, R.P. MacGregor, S.D. Beyea, D.P. Green, R.L. Armstrong, T.W. Bremner, «Single-point ramped imaging with Ti enhancement (SPRITE)», J. Magn. Reson. A, 123 (1996) 131−134.
  674. I.V. Mastikhin, B.J. Balcom, P.J. Prado, C.B. Kennedy, «SPRITE MRI with prepared magnetization and centric k-space sampling», J. Magn. Reson., 136 (1999) 159−168.
  675. C.B. Kennedy, B.J. Balcom, I.V. Mastikhin, «Three-dimensional magnetic resonance imaging о rigid polymeric materials using single-point ramped imaging with Ti enhancement (SPRITE)», Can. J. Chem., 76 (1998) 1753−1765.
  676. G.R. Davies, D.J. Lurie, J.M.S. Hutchison, S.J. McCallum, I. Nicholson, «Continuous-Wave Magnetic Resonance Imaging of Short T2 Materials «, J. Magn. Reson., 148 (2001) 289−297.
  677. W. Zhang, D.G. Cory, «Pulsed gradient NMR probes for solid state studies», J. Magn. Reson., 132 (1998) 144−149.
  678. J.H. Strange, «Echoes and imaging in solids», Phil. Trans. R. Soc. Lond. A, 333 (1990) 427 439.
  679. S.L. Codd, M.J.D. Mallett, M.R. Halse, J.H. Strange, W. Vennart, T. Van Doom, «A three-dimensional NMR imaging scheme utilizing doubly resonant gradient coils», J. Magn. Reson. B. 113 (1996)214−221.
  680. A.A. Samoilenko, D.Yu. Artemov, L.A. Sibeldina, BrukerRep., 2 (1987) 30.
  681. A.A. Samoilenko, D.Yu. Artemov, L.A. Sibeldina, «Formation of sensitive layer in experiments on NMR subsurface imaging of solids», JETP Lett., 47 (1988) 417−419.
  682. P.J. McDonald, «Stray field magnetic resonance imaging», Progr. NMR Spectr., 30 (1997) 6999.
  683. P. Kinchesh, E.W. Randall, K. Zick, «The elimination of magnetic susceptibility distortions in the imaging of liquids in solids: the stray field imaging technique», J. Magn. Reson., 100 (1992)411−415.
  684. T.B. Benson, P.J. McDonald, «The application of spin echoes to stray-field imaging», J. Magn. Reson. В, 109 (1995) 314−317.
  685. E.W. Randall, A.A. Samoilenko, T. Nunes, «NMR imaging of paramagnetic solids in the high-field-gradient approximation with the STRAFI method», J. Magn. Reson. А, П6 (1995) 122 124.
  686. M.J.D. Mallett, M.R. Halse, J.H. Strange, «Stray field imaging by magnetic field sweep», J. Magn. Reson., 132 (1998) 172−175.
  687. A.N. Garroway, J. Baum, M.G. Munowitz, A. Pines, J. Magn. Reson. 60 (1984) 337.
  688. D.E. Demco, S. Hafner, R. Kimmich, «Localized cross-polarization in solids», Appl. Magn. Reson., 9(1995) 267−287.
  689. D.E. Demco, S. Hafner, I. Ardeleanu, R. Kimmich, «Slice selection in solids by localized double-quantum coherence transfer»,^/"/. Magn. Reson., 9 (1995) 491−507.
  690. M. Corti, F. Borsa, A. Rigamonti, «Slice-selection method for topical NMR in solids», J. Magn. Reson., 79 (1988) 21−27.
  691. A. Spyros, N. Chandrakumar, M. Heidenreich, R. Kimmich, «Selective determination of elastomer distribution in multicomponent systems using proton-detected 13C imaging», Macromol., 31 (1998) 3021−3029.
  692. J.J.H. Ackerman, «Surface (local) coils as NMR receivers», Concepts Magn. Reson., 2 (1990) 33−42.
  693. B. Blumich, P. Blumler, G. Eidmann, A. Guthausen, R. Haken, U. Schmitz, K. Saito, G. Zimmer, «The NMR-mouse: construction, excitation, and applications», Magn. Reson. Imaging, 16 (1998) 479−484.
  694. G. Eidmann, R. Savelsberg, P. Blumler, B. Blumich, «The NMR MOUSE, a mobile universal surface explorer», J. Magn. Reson. A, 122 (1996) 104−109.
  695. P.J. Prado, B. Blumich, U. Schmitz, «One-dimensional imaging with a palm-size probe «, J. Magn. Reson., 144 (2000) 200−206.
  696. B. Blumich, «Contrast in solid-state NMR imaging. Part I: principles», Concepts Magn. Reson., 10(1998) 19−31.
  697. B. Blumich, «Contrast in solid-state NMR imaging. Part Ila: basic filters», Concepts Magn. Reson., 11 (1999) 71−87.
  698. B. Blumich, «Contrast in solid-state NMR imaging. Part lib: advanced filters, spectroscopic parameters, and sample manipulation», Concepts Magn. Reson., Ц (1999) 147−164.
  699. P. Barth, S. Hafner, P. Denner, «Material property NMR imaging of cross-linked p olymers based on longitudinal relaxation in the rotating frame», Macromol., 29 (1996) 1655−1659.
  700. A. Guthausen, G. Zimmer, P. Blumler, B. Blumich, «Analysis of polymer materials by surface NMR via the MOUSE», J. Magn. Reson., 130 (1998) 1−7.
  701. D.E. Demco, F. Weigand, C. Fulber, X. Filip, C. Filip, «Spin-lattice relaxation in multiple-pulse experiments as contrast parameter in NMR imaging of solids», Appl. Magn. Reson., 12 (1997) 363−374.
  702. L. Gasper, D.E. Demco, B. Blumich, «Proton residual dipolar couplings by NMR magnetization exchange in cross-linked elastomers: determination and imaging», Solid State NMR, 14 (1999) 105−116.
  703. M. Schneider, D.E. Decmo, B. Blumich, «NMR images of proton residual dipolar coupling from strained elastomers», Macromol., 34 (2001) 4019−4026.
  704. M.A. Hepp, J.B. Miller, «Mapping molecular orientation by solid-state NMR imaging», J. Magn. Reson. А, Ш (1994) 62−69.
  705. P. Barth, S. Hafner, «Investigation of aging in polymer networks by Tip material property NMR imaging», Magn. Reson. Imaging, 15 (1997) 107−112.
  706. M. Knorgen, U. Heuert, H. Menge, H. Schneider, «The use of NMR relaxation and NMR imaging in studying the aging of rubber», Angew. Makromol. Chem., 261 (1998) 123−133.
  707. B. Traub, S. Hafber, U. Wiesner, H.W. Spiess, «Investigation of mechanical deformation in rigid polymers by 2D solid-state NMR imaging», Macromol., Ц (1998) 8585−8589.
  708. P. Adriaensens, L. Storme, R. Carleer, D. Vanderzande, J. Gelan, V.M. Litvinov, R. Marissen, «Visualization of tensile stress induced material response at a crack tip in polymers under critical load by NMR imaging», Macromol., 33 (2000) 4836−4841.
  709. M. Klinkenberg, P. Blumler, B. Blumich, «2H-NMR imaging of stress in strained elastomers», Macromol., 30 (1997) 1038−1043.
  710. D. Hauck, P. Blumler, B. Blumich, «NMR imaging of technical SBR vulcanizates under dynamic mechanical loadMacromol. Chem. Phys., 198 (1997) 2729−2742.
  711. S.L. Dieckman, P. Rizo, N. Gopalsami, J.P. Heeschen, R.E. Botto, «Three-dimensional microscopic imaging of rigid polymers», J. Amer. Chem. Soc., 114 (1992) 2717−2719.
  712. B. Blumich. NMR Imaging of Materials. Oxford University Press, Oxford, 2000.
  713. Proceedings of the third International meeting on recent advances in MR applications to porous media, Magn. Reson. Imaging, special issue, 14, #7/8 (1996).
  714. Proceedings of the fourth International meeting on recent advances in MR applications to porous media, Magn. Reson. Imaging, special issue, 16, #5/6 (1998).
  715. Proceedings of the fifth International meeting on recent advances in MR applications to porous media, Magn. Reson. Imaging, special issue, 19, #¾ (2001).
  716. R. Kimmich. NMR tomography, diffusometry, relaxometry. Springer-Verlag, Berlin, Heidelberg, 1997.
  717. Magnetic resonance microscopy. Methods and applications in materials science, agriculture and biomedicine. B. Blumich and W. Kuhn, Eds. Weinheim, VCH, 1992.
  718. Spatially resolved magnetic resonance. Methods, materials, medicine, biology, rheology, geology, ecology, hardware. B. Blumich, P. Blumler, R. Botto, E. Fukushima, eds. Wiley/VCH, Weinheim, 1998.
  719. B. Hills. Magnetic resonance imaging in food science. Wiley, New York, 1998.
  720. W.E. Kenyon, The Log Analyst (1997) 21−43
  721. P.J. Prado, B. Blumich, B.J. Balcom, «Magnetic resonance techniques in process analysis», in Spectroscopy in Process Analysis, J. M. Chalmers, ed., Sheffield Academic Press/ CRC Press, 2000, pp. 234−283.
  722. R.M.E. Valckenborg, NMR on technological porous materials, Ph.D. thesis, Eindhoven University of Technology, the Netherlands (2001). Интернет-издание http://www.phys.tue.nl/nfcmr/PhDthesis.html
  723. L. Pel, Moisture transport in porous building materials, Ph.D. thesis, Eindhoven University of Technology, the Netherlands (1995). Интернет-издание http://www.phys.tue.nl/nfcmr/PhDthesis.html
  724. L.F. Gladden, «Nuclear magnetic resonance in chemical engineering: principles and applications», Chem. Engng Sci., 49 (1994) 3339−3408.
  725. L.F. Gladden, P. Alexander, «Applications of nuclear magnetic resonance imaging in process engineering», Meas. Sci. Technol, 7 (1996) 423−435.
  726. L.F. Gladden, «Applications of in situ magnetic resonance techniques in chemical reaction engineering», Topics in Catalysis, 8 (1999) 87−95.
  727. P. Jezzard, J.J. Attard, T.A. Carpenter, L.D. Hall, «Nuclear magnetic resonance imaging in the solid state», Progr. NMR Spectr., 23 (1991) 1.
  728. J.B. Miller, «NMR imaging of materials», Progr. NMR Spectr., 33 (1998) 273−308.
  729. Appl. Magn. Reson., special issue, vol. 8, #3−4, 1995.
  730. Landolt-Bornstein, «Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik», IIВ and, 5 Teil, Bandteil a, Transportphaenomene I, S. 516. Springer-Verlag, Berlin, 1969.
  731. М.Э. Аэров, O.M. Тодес, Д. А. Наринский. Аппараты со стационарным зернистым слоем. Ленинград, Химия, 1979.
  732. С. Van Den Broeck, «A stochastic description of longitudinal dispersion in uniaxial flows», Physica A, 112 (1982) 343−352.
  733. Патент РФ N 2 178 399 С 07 С5/333, 20.01.2002. «Способ каталитического дегидрирования углеводородов», Золотарский И. А., Пахомов Н. А., Барышева JI.B., Носков А. С. и др.
  734. J. Fan, X. Zhang, L. Cheng, К. Cen, «Numerical simulation and experimental study of two-phase flow in a vertical pipe», Aerosol Sci. Tech., TL (1997) 281−292.
  735. P. Бусройд. Течение газа со взвешенными частицами. Пер. с англ., Москва, Мир, 1975. R.G. Boothroyd. Flowing gas-solids suspensions. Ghapman and Hall, London, 1971.
  736. L.V. Barysheva, E.S. Borisova, V.M. Khanaev Movement of finely dispersed heat carrier through the fixed catalyst bed. XV International Conference on Chemical Reactors CHEMREACTOR-15. June 5−8, 2001, Helsinki, Finland. ppl80−181.
  737. L.V.Barysheva, E.S. Borisova, V.M. Khanaev, V.A. Kuzmin, I.A. Zolotarskii, N.A. Pakhomov, A.S. Noskov, «Motion of particles through the fixed bed in a gas-solid-solid downflow reactor» Chemical Engineering Journal, in press.
  738. H.B. Физико-химия процессов массопереноса в пористых телах, Москва, Химия, 1990.
  739. М.Н., Чураев Н. В., Яламов ЮЖ, ЖТФ 46 (1976) 2142−2147.
  740. Физические величины: Справочник. Под ред. Григорьева И. С., Мейлихова Е. З. Москва, Энергоатомиздат, 1991.
  741. Справочник химика. Т.З. М. и Л.: Химия, 1966.
  742. А.В. Теория сушки. М.: Энергия, 1968.
  743. С.Н., Рабинович Я. И., Чураев Н. В., ИФЖ 34 (1978) 1035.
  744. Л.Ю. Ильина. Исследование массопереноса жидкой фазы в пористых гранулахкатализаторов и сорбентов методом *Н ЯМР томографии in situ. Дисс.канд. хим. наук, ИК СО РАН, Новосибирск, 2001.
  745. С.П. Рудобашта. Массоперенос в системах с твердой фазой. Москва, Химия, 1980.
  746. Сollard, J.-M.- Arnaud, G.- Fohr, J.-P.- Dragon, A. Int. J. Heat Mass Transfer, 35 (1992), 1103−1114.
  747. П.Г., Фролов В. Ф. Массообменные процессы химической технологии, Л. Химия, 1990.
  748. И.В. Сушка древесины. М, 1980.
  749. Ю.Я., Гынкина Н. М., Физичнские основы ультразвуковой технологии. Под ред. Л. Д. Розенберга, М, 1970.
  750. Е.И. Древесиноведение с основами леснго товароведения. М, 1975.
  751. J. Crank. The mathematics of diffusion. Oxford, Clarendon Press, 1956.
  752. М.М. Токарев, С. Г. Козлова, С. П. Габуда, Ю. И. Аристов, «ЯМР *Н в нанокристаллах СаС12*хНгО и изобары сорбции воды в системе СаС12 силикагель», Ж. структ. химии, 39 (1998) 259−264.
  753. Yu.I. Aristov, G. Restuccia, M.M. Tokarev, G. Cacciola, «Selective water sorbents for multiple applications, 10. Energy storage ability», React. Kinet. Catal. Lett., 69 (2000) 345−353.
  754. И.Т. Гороновский, Ю. П. Назаренко, Е. Ф. Некряч, Краткий справочник по химии, Киев, Наукова Думка, 1987, с. 539.
  755. Yu.I.Aristov, I.V.Koptyug, LS. Glaznev, L.G.Gordeeva, M. Tokarev, L.Yu.Ilyina, «.H NMR microimaging for studying the water transport in an adsorption heat pump», Proc. Int.Conf.Sorption Heat Pumps, Sept. 23−27,2002, Shanghai, China (accepted).
  756. Chen H.-C., Anderson R.B., J. Catal. 43 (1976) 200.
  757. Komiyama M., Merrill R.P., Harnsberger H.F., J. Catal. 63 (1980) 35.
  758. Melo F., Cervell J., Hermana E., Chem. Eng. Sci. 35 (1980) 2175.
  759. Harriott P., J. Catal. 14 (1969) 43.
  760. Summers J.C., Hegedus L.L., J. Catal. 51 (1978) 185.
  761. Geschke, D., Winkler, H., Wendt, G. Z. Phys. Chem. (Leipzig) 252 (1973) 235.
  762. M. Kaern, М. Menzinger, «Propagation of excitation pulses and autocatalytic fronts in packed-bed reactors», J. Phys. Chem. B, 106 (2002) 3751−3758.
  763. G.K. Boreskov, M.G. Slinko, Pure Appl. Chem. 10(1965) 611.
  764. V.Z. Yakhnin, M. Menzinger, «Convective instability and its suppression in packed-bed and monolith reactors», Chem. Engng Sci., 54 (1999) 4547−4557.
  765. Y.S. Matros. Unsteady processes in catalyic reactors. Elsevier, Amsterdam, 1985.
  766. Lauschke, G., Gilles, E.D. Chem. Engng Sci. 49 (1994) 5359−5374.
  767. A. Toth, K. Showalter, «Logic gates in excitable media», J. Chem. Phys., 103 (1995) 20 582 066.
  768. O. Steinbock, P. Kettunen, K. Showalter, «Chemical wave logic gates», J. Phys. Chem., 100 (1996) 18 970−18 975.
  769. М.Г., Кириллов B.A., Куликов A.B., Кузин Н. А., Шигаров А. Б., ДАН 373 (2000) 359.
  770. Yu.I.Aristov, I.V.Koptyug, L.Yu.Ilyina, L.G.Gordeeva NMR-imaging for analysis of mass transfer in adsorption heat pumps, Proc. IX Int. Sumposium on Magnetic Resonance in Colloid and Interface Science, St. Peterburg, Russia, June 26−30, 2001, p.70.
Заполнить форму текущей работой