ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΠ»ΠΈ ΡΡΡΠΈΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· ΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΠ’1-ΠΠΠ Π² ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ
ΠΡΠΎΡΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ Π±ΡΠ»ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ² Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΡΡΡΠΈΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ NS3, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈΠ³ΡΠ°Π΅Ρ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ΅ Π²ΠΈΡΡΡΠ° ΠΠΈΡ ΠΎΡΠ°Π΄ΠΊΠΈ ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ ΠΠΈΠ»Π°. ΠΠ»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π΄Π²ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠΉ ΡΠ΅ΡΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ, ΠΊΠΎΠ΄ΠΈΡΡΠ΅ΠΌΠΎΠΉ Π³Π΅Π½ΠΎΠΌΠΎΠΌ Π²ΠΈΡΡΡΠ°, ΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ, ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΡΠ΅ Π±Π΅Π»ΠΊΠΈ ΠΈ ΡΡΠ±ΡΡΡΠ°ΡΡ, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π½Π°ΠΌ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ ΡΠ°Π±ΠΎΡΡ Ρ Π²ΡΡΠΎΠΊΠΎΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΡΠΌ ΠΈ ΠΎΠΏΠ°ΡΠ½ΡΠΌ Π²ΠΈΡΡΡΠΎΠΌ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
- Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΡΠ΄Π΅ΡΠΆΠΊΠ°
- ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ°
- ΠΡΡΠ³ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ
- ΠΠΎΠΌΠΎΡΡ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈ
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- Π‘ΠΠΠ‘ΠΠ Π‘ΠΠΠ ΠΠ©ΠΠΠΠ
- 1. ΠΠΠΠΠΠΠΠ
- 2. ΠΠΠΠΠ ΠΠΠ’ΠΠ ΠΠ’Π£Π Π«
- 2. 1. ΠΠ±ΡΠΈΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎ ΠΏΡΠΎΡΠ΅Π°Π·Π°Ρ
ΠΈ ΠΈΡ
ΡΠΎΠ»ΠΈ Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ
- 2. 1. 1. ΠΡΠΎΡΠ΅Π°Π·Ρ
- 2. 1. 2. ΠΡΠΎΡΠ΅Π°Π·Ρ: ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΡ ΠΈ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ
- 2. 1. 3. ΠΡΠΎ-ΠΏΡΠΎΡΠ΅ΠΈΠ½ΠΊΠΎΠ½Π²Π΅ΡΡΠ°Π·Ρ: ΡΠΎΠ»Ρ Π² Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΡ ΠΈ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ
- 2. 2. Π ΠΎΠ»Ρ ΠΏΡΠΎΡΠ΅Π°Π· Π² Π²ΠΈΡΡΡΠ½ΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΡ
- 2. 2. 1. ΠΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ ΠΏΡΠΎΠ½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ Π²ΠΈΡΡΡΠΎΠ² Π²Π½ΡΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ
- 2. 2. 2. ΠΠΈΡΡΡ ΠΠΈΡ ΠΎΡΠ°Π΄ΠΊΠΈ ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ ΠΠΈΠ»Π°
- 2. 2. 3. ΠΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π° NS3 — ΡΠΎΠ»Ρ Π² ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠΌ ΡΠΈΠΊΠ»Π΅ ΡΠ»Π°Π²ΠΈΠ²ΠΈΡΡΡΠΎΠ²
- 2. 3. Π ΠΎΠ»Ρ ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΠ·Π° Π² Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΡ
- 2. 3. 1. ΠΠΈΠ½Π°ΡΠ½ΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠΎΠΊΡΠΈΠ½Ρ
- 2. 3. 2. Π’ΠΎΠΊΡΠΈΠ½Ρ ΡΠΈΠ±ΠΈΡΡΠΊΠΎΠΉ ΡΠ·Π²Ρ
- 2. 3. 3. Π‘Π²ΡΠ·ΡΠ²Π°Π½ΠΈΠ΅ Π Π Ρ ΠΊΠ»Π΅ΡΠΊΠ°ΠΌΠΈ ΠΌΠ΅ΡΠ΅Π½ΡΠΌΠΈ
- 2. 3. 4. Π‘Π±ΠΎΡΠΊΠ° ΡΠΎΠΊΡΠΈΠ½Π° ΠΈ ΡΠ½Π΄ΠΎΡΠΈΡΠΎΠ·
- 2. 3. 5. Π’ΡΠ°Π½ΡΠ»ΠΎΠΊΠ°ΡΠΈΡ EF/LF
- 2. 3. 6. Π€Π΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠ²Π½Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ
- 2. 4. Π ΠΎΠ»Ρ ΡΠ΅Π½ΡΡΠΎΡΠΎΠΌ ΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΠ’1-ΠΠΠ Π² Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΠ½ΠΎΠΉ Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΡΠΌΠΎΡΠΎΠ³Π΅Π½Π΅Π·Π΅
- 2. 4. 1. ΠΠ°ΡΡΠΈΠΊΡΠ½Π°Ρ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π° ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ° ΠΠ’1-ΠΠΠ
- 2. 4. 2. Π¦Π΅Π½ΡΡΠΎΡΠΎΠΌΠ° — ΠΎΡΠ³Π°Π½Π΅Π»Π»Π°, ΠΎΡΠ²Π΅ΡΠ°ΡΡΠ°Ρ Π·Π° Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΡΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ
- 2. 1. ΠΠ±ΡΠΈΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎ ΠΏΡΠΎΡΠ΅Π°Π·Π°Ρ
ΠΈ ΠΈΡ
ΡΠΎΠ»ΠΈ Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ
- 3. 1. Π Π΅Π°Π³Π΅Π½ΡΡ
- 3. 2. ΠΠ½ΡΠΈΡΠ΅Π»Π°, Π±Π΅Π»ΠΊΠΈ ΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠ΅ Π»ΠΈΠ½ΠΈΠΈ
- 3. 3. Π Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΡΠΎΠΏΠ»Π°Π·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΡΠ΄Π΅ΡΠ½ΠΎΠΉ ΡΡΠ°ΠΊΡΠΈΠΉ
- 3. 4. Π Π°ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΠ΅ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΠΠ1 ΠΈΠ½ΡΠ΅ΡΠ½Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠΌ LF
- 3. 5. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΡΠΎΡΠΎΠΊΡΠΈΡΠ½ΠΎΡΡΠΈ LF
- 3. 6. Π Π°ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎ-ΠΏΡΠΎΡΠ΅ΠΈΠ½ΠΊΠΎΠ½Π²Π΅ΡΡΠ°Π·Π°ΠΌΠΈ Π Π
- 3. 7. ΠΠ½ΡΠ΅ΡΠ½Π°Π»ΠΈΠ·Π°ΡΠΈΡ Π±ΠΈΠΎΡΠΈΠ½-ΠΌΠ΅ΡΠ΅Π½ΡΡ Π Π ΠΈ LF
- 3. 8. ΠΠΌΠΌΡΠ½ΠΎΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½Π°Ρ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡ
- 3. 9. in silico ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅
- 3. 10. ΠΠ»ΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ² ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΡ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄
- 3. 11. ΠΠΊΡΠΏΡΠ΅ΡΡΠΈΡ ΠΈ ΠΎΡΠΈΡΡΠΊΠ° Π±Π΅Π»ΠΊΠΎΠ²
- 3. 12. Π Π°ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·ΠΎΠΉ NS3 Π±Π΅Π»ΠΊΠΎΠ²ΡΡ ΡΡΠ±ΡΡΡΠ°ΡΠΎΠ²
- 3. 13. ΠΠΈΠ΄ΡΠΎΠ»ΠΈΠ· ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ² ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·ΠΎΠΉ NS
- 3. 14. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ NS3 Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½ΡΡ ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ²
- 3. 15. ΠΡΡΠ°Π³Π΅Π½Π΅Π· ΠΈ ΡΡΠ°Π½ΡΡΠ΅ΠΊΡΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ
- 3. 16. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΠΎΠ³ΠΎ Π»Π΅Π½ΡΠΈΠ²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ° ΠΈ ΡΠ±ΠΎΡΠΊΠ° Π²ΠΈΡΡΡΠ°
- 3. 17. ΠΠ½ΡΠ΅ΠΊΡΠΈΡ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΠΌ Π»Π΅Π½ΡΠΈΠ²ΠΈΡΡΡΠΎΠΌ Π»ΠΈΠ½ΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ 184Π5 ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ»ΠΎΠ½ΠΎΠ²
- 3. 18. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ ΡΠΎΠΌΠΎΡΠΎΠΌΠ½ΠΎΠΉ Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ
- 3. 19. ΠΠΎΠ΄Π΅Π»Ρ ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ Π² ΠΈΠΌΠΌΡΠ½ΠΎΠ΄Π΅ΡΠΈΡΠΈΡΠ½ΡΡ (nude) ΠΌΡΡΠ°Ρ
- 4. 1. ΠΠΊΡΠΈΠ²Π°ΡΠΈΡ ΠΈ ΡΠ½Π΄ΠΎΡΠΈΡΠΎΠ· Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΡΠΈΠ½Π° ΡΠΈΠ±ΠΈΡΡΠΊΠΎΠΉ ΡΠ·Π²Ρ
- 4. 1. 1. Π Π°ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΠ΅ Π Π83 ΠΏΡΠΎ-ΠΏΡΠΎΡΠ΅ΠΈΠ½ΠΊΠΎΠ½Π²Π΅ΡΡΠ°Π·Π°ΠΌΠΈ
- 4. 1. 2. ΠΠ½Π΄ΠΎΡΠΈΡΠΎΠ· ΠΈ ΡΠ°ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΠ΅ Π Π
- 4. 1. 3. Π Π°ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΠ΅ Mekl ΠΈΠ½ΡΠ΅ΡΠ½Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠΌ LF
- 4. 1. 4. ΠΠ½ΡΠ΅ΡΠ½Π°Π»ΠΈΠ·Π°ΡΠΈΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ Π Π83-Π Π63 Π³Π΅ΠΏΡΠ°ΠΌΠ΅ΡΠΎΠ² ΠΌΡΡΠΈΠ½ΡΠΌΠΈ ΠΌΠ°ΠΊΡΠΎΡΠ°Π³Π°ΠΌΠΈ
- 4. 1. 5. ΠΠΌΠΌΡΠ½ΠΎΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½Π°Ρ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡ
- 4. 2. Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° NS3 ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΈΠ· Π²ΠΈΡΡΡΠ° ΠΠΈΡ
ΠΎΡΠ°Π΄ΠΊΠΈ ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ ΠΠΈΠ»Π°
- 4. 2. 1. NS3 ΡΠ°ΡΡΠ΅ΠΏΠ»ΡΠ΅Ρ ΡΠ°ΠΉΡ ΡΡΡΠΈΠ½Π° Π² Π±Π΅Π»ΠΊΠΎΠ²ΡΡ ΡΡΠ±ΡΡΡΠ°ΡΠ°Ρ
- 4. 2. 2. ΠΠ΅ΡΠΎΡΡΠ½ΡΠ΅ Π±Π΅Π»ΠΊΠΈ-ΠΌΠΈΡΠ΅Π½ΠΈ NS3 ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ Ρ ΠΎΠ·ΡΠΈΠ½Π°
- 4. 2. 3. Π‘Π΅ΡΠΏΠΈΠ½Ρ ΠΈ ΠΏΠ΅ΠΏΡΠΈΠ΄Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ D-Π°ΡΠ³ΠΈΠ½ΠΈΠ½Π° ΠΊΠ°ΠΊ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ NS
- 4. 3. ΠΠ½ΠΊΠΎΠ³Π΅Π½Π½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΠΠ’1-ΠΠΠ ΠΈ Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ· ΠΏΠ΅ΡΠΈΡΠ΅Π½ΡΡΠΈΠ½Π°
- 4. 3. 1. ΠΠ½Π°Π»ΠΈΠ· ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ², ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ ΡΠ°ΠΉΡ ΡΠ·Π½Π°Π²Π°Π½ΠΈΡ ΠΠ’1-ΠΠΠ ΠΈΠ· ΠΏΠ΅ΡΠΈΡΠ΅Π½ΡΡΠΈΠ½Π° ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΡΠΎΠ±Π°ΠΊΠΈ ΠΈ ΠΌΡΡΠΈ
- 4. 3. 2. Π Π°ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΠ΅ D948G ΠΌΡΡΠ°Π½ΡΠ° ΠΌΡΡΠΈΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΡΠ΅Π½ΡΡΠΈΠ½Π° ΠΠ’1-ΠΠΠ
- 4. 3. 3. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ ΡΠΎΠΌΠΎΡΠΎΠΌΠ½ΠΎΠΉ Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ Π² ΡΠΏΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΊΠ°Ρ ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° 184Π
- 4. 3. 4. ΠΠΎΠ΄Π΅Π»Ρ ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ Π² ΠΈΠΌΠΌΡΠ½ΠΎΠ΄Π΅ΡΠΈΡΠΈΡΠ½ΠΎΠΉ nude) ΠΌΡΡΠΈ
- 5. 1. ΠΠ»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΡΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΠΈ ΡΠ½Π΄ΠΎΡΠΈΡΠΎΠ·Π° Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΡΠΈΠ½Π° ΡΠΈΠ±ΠΈΡΡΠΊΠΎΠΉ ΡΠ·Π²Ρ
- 5. 2. ΠΠ΅Π»ΠΊΠΎΠ²ΡΠ΅ ΡΡΠ±ΡΡΡΠ°ΡΡ ΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ NS3 ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΈΠ· Π²ΠΈΡΡΡΠ° ΠΠΈΡ ΠΎΡΠ°Π΄ΠΊΠΈ ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ ΠΠΈΠ»Π°
- 5. 3. Π ΠΎΠ»Ρ ΠΠ’1-ΠΠΠ Π² Ρ ΡΠΎΠΌΠΎΡΠΎΠΌΠ½ΠΎΠΉ Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π΅Π·Π΅
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΠ»ΠΈ ΡΡΡΠΈΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· ΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΠ’1-ΠΠΠ Π² ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
ΠΡΠΎΡΠ΅ΠΎΠ»ΠΈΠ· ΠΈ ΡΡΠ°ΡΡΠ²ΡΡΡΠΈΠ΅ Π² Π½Π΅ΠΌ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΡΠ΅Π³ΡΠ»ΠΈΡΡΡΡ Π²Π°ΠΆΠ½Π΅ΠΉΡΠΈΠ΅ ΡΡΠ°ΠΏΡ ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΊΠ»Π΅ΡΠΊΠΈ. ΠΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Π²Π°ΠΆΠ½Ρ Π΄Π»Ρ Π²ΡΠ΅Ρ ΠΆΠΈΠ²ΡΡ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ², Π²ΠΊΠ»ΡΡΠ°Ρ Π²ΠΈΡΡΡΡ, Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ ΠΈ ΡΡΠΊΠ°ΡΠΈΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΡ. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΠ· ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΎΡΡΠ΅ΠΌΠ»Π΅ΠΌΠΎΠΉ ΡΠ°ΡΡΡΡ, Π° Π² ΡΡΠ΄Π΅ ΡΠ»ΡΡΠ°Π΅Π² ΠΈ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΠΌΠ½ΠΎΠ³ΠΈΡ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ². Π’Π°ΠΊ Π²ΠΈΡΡΠ»Π΅Π½ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅Π°Π·Ρ ΠΈΠ³ΡΠ°ΡΡ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΡΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΡ , Π²ΡΠ·ΡΠ²Π°Π΅ΠΌΡΡ Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΌΠΈ ΠΈ Π²ΠΈΡΡΡΠ°ΠΌΠΈ. ΠΠ½ΠΎΠ³ΠΈΠ΅ Π²ΠΈΡΡΡΡ, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΠΠΠ§, Π³Π΅ΠΏΠ°ΡΠΈΡ Π‘, Π²ΠΈΡΡΡΡ ΠΠΈΡ ΠΎΡΠ°Π΄ΠΊΠΈ ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ ΠΠΈΠ»Π°, ΠΠ΅Π»ΡΠΎΠΉ ΠΠΈΡ ΠΎΡΠ°Π΄ΠΊΠΈ, ΠΏΠΎΠ»ΠΈΠΎΠΌΠΈΠ΅Π»ΠΈΡΠ° ΠΈ Π³ΡΠΈΠΏΠΏΠ° ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ Π³Π΅Π½Ρ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠ΅ Π΄Π»Ρ ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° Π²ΠΈΡΡΡΠ°, ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΡ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π·Π°ΡΠΈΡΡ ΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π½Π°Π΄ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠΎΠΌ ΠΊΠ»Π΅ΡΠΎΠΊ. Π‘Π΅ΠΊΡΠ΅ΡΠΎΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ Π·Π°ΡΠ°ΡΡΡΡ ΡΠ²Π»ΡΡΡΡΡ ΠΈΡ Π²Π°ΠΆΠ½Π΅ΠΉΡΠΈΠΌΠΈ Π²ΠΈΡΡΠ»Π΅Π½ΡΠ½ΡΠΌΠΈ ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ. ΠΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Π°ΠΊΡΠΈΠ²ΠΈΡΡΡΡ Π±Π΅Π»ΠΊΠΎΠ²ΡΠ΅ ΡΠΎΠΊΡΠΈΠ½Ρ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ. ΠΠ±Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΠ· Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ΅Π½ Π΄Π»Ρ ΡΠΎΡΡΠ° ΠΈ ΠΌΠ΅ΡΠ°ΡΡΠ°Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΎΠΏΡΡ ΠΎΠ»Π΅ΠΉ.
Π¦Π΅Π»Ρ Π½Π°ΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠΎΡΡΠΎΡΠ»Π° Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΎΠ»ΠΈ ΡΡΡΠΈΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· ΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΠ’1-ΠΠΠ Π² ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ .
ΠΠ΅ΡΠ²ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ Π½Π°ΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ»ΠΎΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΈΡ ΡΡΡΠΈΠ½ΠΎΠ²ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· Ρ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ ΠΈ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΠΌΠΈ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠΌΠΈ ΡΠΎΠΊΡΠΈΡΠ½ΠΎΡΡΡ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΡΠΈΠ½Π° ΡΠΈΠ±ΠΈΡΡΠΊΠΎΠΉ ΡΠ·Π²Ρ. ΠΡΠ° ΡΠΈΡΡΠ΅ΠΌΠ° Π²ΠΊΠ»ΡΡΠ°Π΅Ρ: ΡΠΎΠΊΡΠΈΠ½ ΡΠΈΠ±ΠΈΡΡΠΊΠΎΠΉ ΡΠ·Π²Ρ, ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΡ ΡΠΎΠΊΡΠΈΠ½Π°, Π½Π°Ρ ΠΎΠ΄ΡΡΠΈΠ΅ΡΡ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ, ΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΡΠΈΠ½ΠΎΠ²ΡΠ΅ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠ΅ Π΄Π»Ρ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠ½Π³Π° ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΡΠΎΠΊΡΠΈΠ½Π° ΠΈ Π΅Π³ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΈΠ½ΡΠ΅ΡΠ½Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠ»Π΅ΡΠΊΠΎΠΉ.
ΠΡΠΎΡΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ Π±ΡΠ»ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ² Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΡΡΡΠΈΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ NS3, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈΠ³ΡΠ°Π΅Ρ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ΅ Π²ΠΈΡΡΡΠ° ΠΠΈΡ ΠΎΡΠ°Π΄ΠΊΠΈ ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ ΠΠΈΠ»Π°. ΠΠ»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π΄Π²ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠΉ ΡΠ΅ΡΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ, ΠΊΠΎΠ΄ΠΈΡΡΠ΅ΠΌΠΎΠΉ Π³Π΅Π½ΠΎΠΌΠΎΠΌ Π²ΠΈΡΡΡΠ°, ΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ, ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΡΠ΅ Π±Π΅Π»ΠΊΠΈ ΠΈ ΡΡΠ±ΡΡΡΠ°ΡΡ, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π½Π°ΠΌ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ ΡΠ°Π±ΠΎΡΡ Ρ Π²ΡΡΠΎΠΊΠΎΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΡΠΌ ΠΈ ΠΎΠΏΠ°ΡΠ½ΡΠΌ Π²ΠΈΡΡΡΠΎΠΌ.
ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ°, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠ΅Π³ΠΎ ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΠΌΠ°ΡΡΠΈΠΊΡΠ½ΠΎΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΠ’1-ΠΠΠ , ΡΡΠ°Π»ΠΎ ΡΡΠ΅ΡΡΠ΅ΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ Π½Π°ΡΠ΅Π³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠ°ΠΌΠΈ Π±ΡΠ»ΠΈ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ Π½ΠΎΠ²ΡΠ΅ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠ΅ Π±Π΅Π»ΠΊΠΎΠ²ΡΠ΅ ΡΡΠ±ΡΡΡΠ°ΡΡ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΠ’1-ΠΠΠ . Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΠ’1-ΠΠΠ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠ³ΠΎ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·Π° ΡΠ΅Π½ΡΡΠΎΡΠΎΠΌΠ°Π»ΡΠ½ΡΡ Π±Π΅Π»ΠΊΠΎΠ² Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΌΠΈΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²Π΅ΡΠ΅ΡΠ΅Π½Π° Π΄Π΅Π»Π΅Π½ΠΈΡ, ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ, Ρ ΡΠΎΠΌΠΎΡΠΎΠΌΠ½ΡΠΌ Π°Π±Π΅ΡΡΠ°ΡΠΈΡΠΌ ΠΈ Π°Π½Π΅ΡΠΏΠ»ΠΎΠΈΠ΄ΠΈΠΈ. ΠΠ½Π΅ΡΠΏΠ»ΠΎΠΈΠ΄ΠΈΡ, ΠΏΠΎ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡΠΌ, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π³Π»Π°Π²Π½ΡΡ ΡΠ°ΠΊΡΠΎΡΠΎΠ² Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ.
ΠΠ°ΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΠ·Π° Π² ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ Π½Π΅ΡΠΎΠΌΠ½Π΅Π½Π½Π°, ΠΈ ΠΏΠΎ ΠΌΠ΅ΡΠ΅ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°ΡΡΠ½ΠΎΠΉ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ ΡΠ°ΡΡΠΈ. ΠΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΡΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ Π² ΠΆΠΈΠ²ΡΡ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ°Ρ , ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ Π½ΠΎΠ²ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π΄Π΅ΡΠ΅ΠΊΡΠΈΠΈ, ΠΏΡΠΎΠ³Π½ΠΎΠ·Π° ΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΈΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. ΠΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΡΡΠΈΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· ΠΈ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΠ’1-ΠΠΠ Π½Π΅ Π±ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΡΠ°Π½Π΅Π΅. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π½Π°ΠΌΠΈ Π΄Π°Π½Π½ΡΠ΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΏΡΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΠΈ Π½ΠΎΠ²ΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΡΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠ² ΡΠΈΠ±ΠΈΡΡΠΊΠΎΠΉ ΡΠ·Π²Ρ, ΡΡΠ΄Π° Π²ΠΈΡΡΡΠ½ΡΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΈ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ.
2. ΠΠΠΠΠ ΠΠΠ’ΠΠ ΠΠ’Π£Π Π«.
6. Π²ΡΠ²ΠΎΠ΄Ρ.
1. ΠΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½ ΠΈ ΠΎΡ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½ Π½ΠΎΠ²ΡΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ Π³Π΅ΡΠ΅ΡΠΎΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π°Π½ΡΠΈΠ³Π΅Π½Π° Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΡΠΈΠ½Π° ΡΠΈΠ±ΠΈΡΡΠΊΠΎΠΉ ΡΠ·Π²Ρ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΠΉ ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅ΡΡ Π΄Π΅ΡΠΈΡΠΈΡ ΠΏΡΠΎ-ΠΏΡΠΎΡΠ΅ΠΈΠ½ΠΊΠΎΠ½Π²Π΅ΡΡΠ°Π· Ρ ΠΎΠ·ΡΠΉΡΠΊΠΎΠΉ ΠΊΠ»Π΅ΡΠΊΠΈ-ΠΌΠΈΡΠ΅Π½ΠΈ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π²ΠΎΠ·Π±ΡΠ΄ΠΈΡΠ΅Π»Ρ ΡΠΈΠ±ΠΈΡΡΠΊΠΎΠΉ ΡΠ·Π²Ρ ΡΡΠΏΠ΅ΡΠ½ΠΎ Π°ΡΠ°ΠΊΠΎΠ²Π°ΡΡ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΠΏΡ ΠΊΠ»Π΅ΡΠΎΠΊ, Π΄Π΅ΡΠΈΡΠΈΡΠ½ΡΡ ΠΏΠΎ ΠΏΡΠΎ-ΠΏΡΠΎΡΠ΅ΠΈΠ½ΠΊΠΎΠ½Π²Π΅ΡΡΠ°Π·Π°ΠΌ.
2. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΡΡΠ±ΡΡΡΠ°ΡΠ½Π°Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΈΡΡΡΡΠ΅ΠΉ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ NS3 Π²ΠΈΡΡΡΠ° ΠΠΈΡ ΠΎΡΠ°Π΄ΠΊΠΈ ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ ΠΠΈΠ»Π°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΡΠ° ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π° ΠΏΠΎ ΡΡΠ±ΡΡΡΠ°ΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ ΡΡΡΠΈΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠΌ ΠΏΡΠΎΡΠ΅ΠΈΠ½ΠΊΠΎΠ½Π²Π΅ΡΡΠ°Π·Π°ΠΌ. ΠΠ½Π°Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ ΡΠ΅Π½ΠΎΠΌΠ΅Π½Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π½Π°ΠΌ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ ΡΡΠ΄ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ Π°Π½ΡΠ°Π³ΠΎΠ½ΠΈΡΡΠΎΠ² ΡΡΡΠΈΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ NS3.
3. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π±Π΅Π»ΠΎΠΊ ΠΌΠΈΠ΅Π»ΠΈΠ½Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ±ΡΡΡΠ°ΡΠΎΠΌ Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ NS3, Π΅Π³ΠΎ Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ· ΠΌΠΎΠΆΠ΅Ρ ΠΈΠΌΠ΅ΡΡ Π²Π°ΠΆΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π² ΡΠ°Π·Π²ΠΈΡΠΈΠΈ ΡΠΈΠΌΠΏΡΠΎΠΌΠΎΠ² ΡΠ½ΡΠ΅ΡΠ°Π»ΠΎΠΏΠ°ΡΠΈΠΈ, Π²ΡΠ·ΡΠ²Π°Π΅ΠΌΡΡ Π²ΠΈΡΡΡΠΎΠΌ ΠΠΈΡ ΠΎΡΠ°Π΄ΠΊΠΈ ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ ΠΠΈΠ»Π°.
4. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° Π½ΠΎΠ²Π°Ρ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΌΠ°ΡΡΠΈΠΊΡΠ½ΠΎΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Ρ ΠΠ’1-ΠΠΠ . ΠΡΠ° ΡΡΠ½ΠΊΡΠΈΡ ΡΠ²ΡΠ·Π°Π½Π° Ρ Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·ΠΎΠΌ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π½ΡΡΠΎΡΠΎΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° ΠΏΠ΅ΡΠΈΡΠ΅Π½ΡΡΠΈΠ½Π° ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·ΠΎΠΉ ΠΠ’1-ΠΠΠ , ΡΡΠΎ Π²Π΅Π΄Π΅Ρ ΠΊ Ρ ΡΠΎΠΌΠΎΡΠΎΠΌΠ½ΠΎΠΉ Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π² Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅.
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Fuller R.S., Brake A .J., Thorner J. Intracellular targeting and structural conservation of a prohormone-processing endoprotease // Science. 1989, v. 246, p. 482−486.
- Bresnahan P.A., Leduc R., Thomas L., Thorner J., Gibson H.L., Brake A.J., Barr P.J., Thomas G. Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo IIJ Cell Biol 1990, v. 111, p. 2851−2859.
- Rockwell N.C., Krysan D.J., Komiyama Π’., Fuller R.S. Precursor processing by kex2/furin proteases // Chem Rev. 2002, v. 102, p. 4525−4548.
- Thomas G. Furin at the cutting edge: from protein traffic to embryogenesis and disease // Nat Rev Mol Cell Biol. 2002, v. 3, p. 753−766.
- Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins // Biochem J. 1997, v. 327, p. 625−635.
- Brinton M.A. The molecular biology of West Nile Virus: a new invader of the western hemisphere // Annu Rev Microbiol. 2002, v. 56, p. 371−402.
- Stadler Π., Allison S.L., Schalich J., Heinz F.X. Proteolytic activation of tick-borne encephalitis virus by furin // J Virol. 1997, v. 71, p. 8475−8481.
- Devriese P.P. On the discovery of Clostridium botulinum // J Hist Neurosci. 1999, v. 8, p. 43−50.
- Aktories K., Barth H. Clostridium botulinum C2 toxin—new insights into the cellular up-take of the actin-ADP-ribosylating toxin // Int J Med Microbiol. 2004, v. 293, p. 557−564.
- Montecucco C., Papini E. Cell penetration of bacterial protein toxins // Trends Microbiol. 1995, v. 3, p. 165−167.
- Turton K., Chaddock J.A., Acharya K.R. Botulinum and tetanus neurotoxins: structure, function and therapeutic utility // Trends Biochem Sci. 2002, v. 27, p. 552−558.
- Finkelstein R.A., Boesman M., Neoh S.H., LaRue M.K., Delaney R. Dissociation and recombination of the subunits of the cholera enterotoxin (choleragen) // J Immunol. 1974, v. 113, p. 145−150.
- Gill D.M., Pappenheimer A.M., Brown R., Kurnick J.T. Studies on the mode of action of diphtheria toxin. VII. Toxin-stimulated hydrolysis of nicotinamide adenine dinucleotide in mammalian cell extracts // J Exp Med. 1969, v. 129, p. 1−21.
- Collier R.J., Kandel J. Structure and activity of diphtheria toxin. I. Thiol-dependent dissociation of a fraction of toxin into enzymicallyactive and inactive fragments IIJ Biol Chem. 1971, v. 246, p. 14 961 503.
- Smith H. Discovery of the anthrax toxin: the beginning of studies of virulence determinants regulated in vivo // Int J Med Microbiol. 2002, v. 291, p. 411−417.
- Aktories K., Barmann M., Ohishi I., Tsuyama S., Jakobs K.H., Habermann E. Botulinum C2 toxin ADP-ribosylates actin // Nature. 1986, v. 322, p. 390−392.
- Baseman J.B., Pappenheimer A.M., Gill D.M., Harper A.A. Action of diphtheria toxin in the guinea pig IIJ Exp Med. 1970, v. 132, p. 11 381 152.
- Vitale G., Bernardi L., Napolitani G., Mock M., Montecucco C. Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor // Biochem J. 2000, v. 352, p. 739−745.
- Stanley J.L., Smith H. Purification of factor I and recognition of a third factor of the anthrax toxin IIJ Gen Microbiol. 1961, v. 26, p. 4963.
- Guidi-Rontani C. The alveolar macrophage: the Trojan horse of Bacillus anthracis // Trends Microbiol. 2002, v. 10, p. 405−409.
- Green B.D., Battisti L., Koehler T.M., Thorne C.B., Ivins B.E. Demonstration of a capsule plasmid in Bacillus anthracis II Infect Immun. 1985, v. 49, p. 291−297.
- Pezard C., Berche P., Mock M. Contribution of individual toxin components to virulence of Bacillus anthracis // Infect Immun. 1991, v. 59, p. 3472−3477.
- Smith H., Keppie J. Observations on experimental anthrax- demonstration of a specific lethal factor produced in vivo by Bacillus anthracis Π Nature. 1954, v. 173, p. 869−870.
- Mourez M. Anthrax toxins // Rev Physiol Biochem Pharmacol. 2004, v. 152, p. 135−164.
- Bradley K.A., Mogridge J., Mourez M., Collier R.J., Young J.A. Identification of the cellular receptor for anthrax toxin // Nature. 2001, v. 414, p. 225−229.
- Scobie H.M., Rainey G.J., Bradley K.A., Young J.A. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor Π Proc Natl AcadSci USA. 2003, v. 100, p. 5170−5174.
- Santelli E., Bankston L.A., Leppla S.H., Liddington R.C. Crystal structure of a complex between anthrax toxin and its host cell receptor II Nature. 2004, v. 430, p. 905−908.
- Gordon V.M., Klimpel K.R., Arora N., Henderson M.A., Leppla S.H. Proteolytic activation of bacterial toxins by eukaryotic cells isperformed by furin and by additional cellular proteases // Infect lmmun. 1995, v. 63, p. 82−87.
- Milne J.C., Furlong D., Hanna P.C., Wall J.S., Collier R.J. Anthrax protective antigen forms oligomers during intoxication of mammalian cells IIJ Biol Chem. 1994, v. 269, p. 20 607−20 612.
- Beauregard K.E., Collier R.J., Swanson J.A. Proteolytic activation of receptor-bound anthrax protective antigen on macrophages promotes its internalization // Cell Microbiol. 2000, v. 2, p. 251−258.
- Lacy D.B., Mourez M., Fouassier A., Collier R.J. Mapping the anthrax protective antigen binding site on the lethal and edema factors Π J Biol Chem. 2002, v. 277, p. 3006−3010.
- Arora N., Leppla S.H. Residues 1−254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides // J Biol Chem. 1993, v. 268, p. 3334−3341.
- Wesche J., Elliott J.L., Falnes P.O., Olsnes S., Collier R.J. Characterization of membrane translocation by anthrax protective antigen 11 Biochemistry. 1998, v. 37, p. 15 737−15 746.
- Mogridge J., Cunningham K., Collier R.J. Stoichiometry of anthrax toxin complexes // Biochemistry. 2002, v. 41, p. 1079−1082.
- Lacy D.B., Lin H.C., Melnyk R.A., Schueler-Furman O., Reither L., Cunningham K., Baker D., Collier R.J. A model of anthrax toxin lethal factor bound to protective antigen // Proc Natl Acad Sci USA.2005, v. 102, p. 16 409−16 414.
- Melnyk R.A., Hewitt K.M., Lacy D.B., Lin H.C., Gessner C.R., Li S., Woods V.L., Collier R.J. Structural determinants for the binding of anthrax lethal factor to oligomeric protective antigen IIJ Biol Chem.2006, v. 281, p. 1630−1635.
- Abrami L., Liu S., Cosson P., Leppla S.H., van der Goot F.G. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process IIJ Cell Biol. 2003, v. 160, p. 321−328.
- Liu S., Leppla S.H. Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, and internalization IIJ Biol Chem. 2003, v. 278, p. 5227−5234.
- Blaustein R.O., Koehler T.M., Collier R.J., Finkelstein A. Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers // Proc Natl Acad Sci USA. 1989, v. 86, p. 2209−2213.
- Miller Π‘.J., Elliott J.L., Collier RJ. Anthrax protective antigen: prepore-to-pore conversion Π Biochemistry. 1999, v. 38, p. 1 043 210 441.
- Benson E.L., Huynh P.D., Finkelstein A., Collier R.J. Identification of residues lining the anthrax protective antigen channel // Biochemistry. 1998, v. 37, p. 3941−3948.
- Krantz B.A., Trivedi A.D., Cunningham K., Christensen K.A., Collier R.J. Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin // JMol Biol. 2004, v. 344, p. 739−756.
- Zhang S., Udho E., Wu Z., Collier R.J., Finkelstein A. Protein translocation through anthrax toxin channels formed in planar lipid bilayers // Biophys J. 2004, v. 87, p. 3842−3849.
- Krantz B.A., Finkelstein A., Collier R.J. Protein Translocation through the Anthrax Toxin Transmembrane Pore is Driven by a Proton Gradient IIJ Mol Biol. 2006, v. 355, p. 968−979.
- Leppla S.H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells // Proc Natl Acad Sci USA. 1982, v. 79, p. 3162−3166.
- Klimpel K.R., Arora N., Leppla S.H. Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity // Mol Microbiol. 1994, v. 13, p. 1093−1100.
- Kochi S.K., Schiavo G., Mock M., Montecucco C. Zinc content of the Bacillus anthracis lethal factor // FEMS Microbiol Lett. 1994, v. 124, p. 343−348.
- Pellizzari R., Guidi-Rontani C., Vitale G., Mock M., Montecucco C. Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/lFNgamma-induced release of NO and TNFalpha // FEBS Lett. 1999, v. 462, p. 199−204.
- Chopra A.P., Boone S.A., Liang X., Duesbery N.S. Anthrax lethal factor proteolysis and inactivation of ΠΠΠ Π kinase /IJ Biol Chem. 2003, v. 278, p. 9402−9406.
- Zucker S., Pei D., Cao J., Lopez-Otin C. Membrane type-matrix metalloproteinases (MT-MMP) // Curr Top Dev Biol. 2003, v. 54, p. 1−74.
- Itoh Y., Seiki M. MT1-MMP: a potent modifier of pericellular microenvironment IIJ Cell Physiol. 2006, v. 206, p. 1−8.
- Hotary K.B., Allen E.D., Brooks P.C., Datta N.S., Long M.W., Weiss S.J. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix // Cell. 2003, v. 114, p. 33−45.
- Seiki M. Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion // Cancer Lett. 2003, v. 194, p. 1−11.
- Shiomi Π’., Okada Y. MT1-MMP and MMP-7 in invasion and metastasis of human cancers // Cancer Metastasis Rev. 2003, v. 22, p. 145−152.
- Zucker S., Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer // Cancer Metastasis Rev. 2004, v. 23, p. 101−117.
- Soulie P., Carrozzino F., Pepper M.S., Strongin A.Y., Poupon M.F., Montesano R. Membrane-type-1 matrix metalloproteinase confers tumorigenicity on nonmalignant epithelial cells // Oncogene. 2005, v. 24, p. 1689−1697.
- Holmbeck K., Bianco P., Yamada S., Birkedal-Hansen H. MT1-MMP: a tethered collagenase // J Cell Physiol. 2004, v. 200, p. 11−19.
- Hornebeck W., Emonard H., Monboisse J.C., Bellon G. Matrix-directed regulation of pericellular proteolysis and tumor progression // Semin Cancer Biol. 2002, v. 12, p. 231−241.
- Kajita M., Itoh Y., Chiba Π’., Mori H., Okada A., Kinoh H., Seiki M. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration IIJ Cell Biol. 2001, v. 153, p. 893−904.
- Deryugina E.I., Ratnikov B.I., Strongin A.Y. Prinomastat, a hydroxamate inhibitor of matrix metalloproteinases, has a complex effect on migration of breast carcinoma cells // Int J Cancer. 2003, v. 104, p. 533−541.
- Hernandez-Barrantes S., Bernardo M., Toth M., Fridman R. Regulation of membrane type-matrix metalloproteinases // Semin Cancer Biol 2002, v. 12, p. 131−138.
- Itoh Y., Seiki M. MT1-MMP: an enzyme with multidimensional regulation // Trends Biochem Sci. 2004, v. 29, p. 285−289.
- Osenkowski P., Toth M., Fridman R. Processing, shedding, and endocytosis of membrane type 1-matrix metalloproteinase (MT1-MMP) // J Cell Physiol 2004, v. 200, p. 2−10.
- Wang X., Ma D., Keski-Oja J., Pei D. Co-recycling of MT1-MMP and MT3-MMP through the trans-Golgi network. Identification of DKV582 as a recycling signal /IJ Biol Chem. 2004, v. 279, p. 93 319 336.
- Uekita Π’., Itoh Y., Yana I., Ohno H., Seiki M. Cytoplasmic tail-dependent internalization of membrane-type 1 matrix metalloproteinase is important for its invasion-promoting activity // J Cell Biol. 2001, v. 155, p. 1345−1356.
- Jiang A., Lehti K., Wang X., Weiss S.J., Keski-Oja J., Pei D. Regulation of membrane-type matrix metalloproteinase 1 activity by dynamin-mediated endocytosis // Proc Natl Acad Sci USA. 2001, v. 98, p. 13 693−13 698.
- Doxsey S., McCollum D., Theurkauf W. Centrosomes in Cellular Regulation Π Annu Rev Cell Dev Biol. 2005, v 21., p. 411−434.
- Doxsey S., Zimmerman W., Mikule K. Centrosome control of the cell cycle // Trends Cell Biol. 2005, v. 15, p. 303−311.
- Nigg E.A. Centrosome aberrations: cause or consequence of cancer progression? II Nat Rev Cancer. 2002, v. 2, p. 815−825.
- Fukasawa Π. Centrosome amplification, chromosome instability and cancer development // Cancer Lett. 2005, v. 230, p. 6−19.
- Pihan G.A., Purohit A., Wallace J., Malhotra R., Liotta L., Doxsey S.J. Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression // Cancer Res. 2001, v. 61, p. 2212−2219.
- Pihan G., Doxsey S.J. Mutations and aneuploidy: co-conspirators in cancer? // Cancer Cell. 2003, v. 4, p. 89−94.
- Giet R., Petretti C., Prigent C. Aurora kinases, aneuploidy and cancer, a coincidence or a real link? // Trends Cell Biol. 2005, v. 15, p. 241 250.
- Duensing S. A tentative classification of centrosome abnormalities in cancer // Cell Biol Int. 2005, v. 29, p. 352−359.
- Duensing A., Duensing S. Guilt by association? p53 and the development of aneuploidy in cancer // Biochem Biophys Res Commun. 2005, v. 331, p. 694−700.
- Park S., Leppla S.H. Optimized production and purification of Bacillus anthracis lethal factor // Protein Expr Purif. 2000, v. 18, p. 293−302.
- Doxsey S.J., Stein P., Evans L., Calarco P.D., Kirschner M. Pericentrin, a highly conserved centrosome protein involved in microtubule organization // Cell. 1994, v. 76, p. 639−650.
- Deryugina E.I., Soroceanu L., Strongin A.Y. Up-regulation of vascular endothelial growth factor by membrane-type 1 matrix metalloproteinase stimulates human glioma xenograft growth and angiogenesis// Cancer Res. 2002, v. 62, p. 580−588.
- Rozanov D.V., Golubkov V.S., Strongin A.Y. Membrane type-1 matrix metalloproteinase (MT1-MMP) protects malignant cells from tumoricidal activity of re-engineered anthrax lethal toxin // Int J Biochem Cell Biol. 2005, v. 37, p. 142−154.
- Ramirez D.M., Leppla S.H., Schneerson R., Shiloach J. Production, recovery and immunogenicity of the protective antigen from a recombinant strain of Bacillus anthracis // JInd Microbiol Biotechnol. 2002, v. 28, p. 232−238.
- Ratnikov Π., Deryugina E., Leng J., Marchenko G., Dembrow D., Strongin A. Determination of matrix metalloproteinase activity using biotinylated gelatin II Anal Biochem. 2000, v. 286, p. 149−155.
- Fugere M., Limperis P.C., Beaulieu-Audy V., Gagnon F., Lavigne P., Klarskov K., Leduc R., Day R. Inhibitory potency and specificity ofsubtilase-like pro-protein convertase (SPC) prodomains // J Biol Chem. 2002, v. 277, p. 7648−7656.
- Pannifer A.D., Wong T.Y., Schwarzenbacher R., Renatus M., Petosa C., Bienkowska J., Lacy D.B., Collier R.J., Park S., Leppla S.H., Hanna P., Liddington R.C. Crystal structure of the anthrax lethal factor I I Nature. 2001, v. 414, p. 229−233.
- Petosa C., Collier R.J., Klimpel K.R., Leppla S.H., Liddington R.C. Crystal structure of the anthrax toxin protective antigen // Nature. 1997, v. 385, p. 833−838.
- Bieth J.G. Theoretical and practical aspects of proteinase inhibition kinetics II Methods Enzymol. 1995, v. 248, p. 59−84.
- Deryugina E.I., Bourdon M.A., Reisfeld R.A., Strongin A. Remodeling of collagen matrix by human tumor cells requiresactivation and cell surface association of matrix metalloproteinase-2 // Cancer Res. 1998, v. 58, p. 3743−3750.
- Stawowy P., Fleck E. Proprotein convertases furin and PC5: targeting atherosclerosis and restenosis at multiple levels // J Mol Med. 2005, v. 83, p. 865−875.
- Mousa S.A., Shakibaei M., Sitte N., Schafer M., Stein C. Subcellular pathways of beta-endorphin synthesis, processing, and release from immunocytes in inflammatory pain // Endocrinology. 2004, v. 145, p. 1331−1341.
- Klimpel K.R., Molloy S.S., Thomas G., Leppla S.H. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin // Proc Natl Acad Sci USA. 1992, v. 89, p. 10 277−10 281.
- Komiyama Π’., Swanson J.A., Fuller R.S. Protection from anthrax toxin-mediated killing of macrophages by the combined effects of furin inhibitors and chloroquine // Antimicrob Agents Chemother. 2005, v. 49, p. 3875−3882.
- Liu S., Schubert R.L., Bugge Π’.Π., Leppla S.H. Anthrax toxin: structures, functions and tumour targeting // Expert Opin Biol Ther. 2003, v. 3, p. 843−853.
- Banks D.J., Barnajian M., Maldonado-Arocho F.J., Sanchez A.M., Bradley K.A. Anthrax toxin receptor 2 mediates Bacillus anthracis killing of macrophages following spore challenge // Cell Microbiol. 2005, v. 7, p. 1173−1185.
- Popov S.G., Villasmil R., Bernardi J., Grene E., Cardwell J., Popova Π’., Wu A., Alibek D., Bailey C., Alibek K. Effect of Bacillus anthracis lethal toxin on human peripheral blood mononuclear cells // FEBSLett. 2002, v. 527, p. 211−215.
- YusofR., Clum S" Wetzel M., Murthy H.M., Padmanabhan R. Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro Π J Biol Chem. 2000, v. 275, p. 9963−9969.
- Henrich S., Cameron A., Bourenkov G.P., Kiefersauer R., Huber R., Lindberg I., Bode W., Than M.E. The crystal structure of the proprotein processing proteinase furin explains its stringent specificity // Nat Struct Biol. 2003, v. 10, p. 520−526.
- Yamshchikov V.F., Trent D.W., Compans R.W. Upregulation of signalase processing and induction of prM-E secretion by theflavivirus NS2B-NS3 protease: roles of protease components // J Virol 1997, v. 71, p. 4364−4371.
- Elshuber S., Allison S.L., Heinz F.X., Mandl C.W. Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus // J Gen Virol 2003, v. 84, p. 183−191.
- Yamshchikov V.F., Compans R.W. Processing of the intracellular form of the west Nile virus capsid protein by the viral NS2B-NS3 protease: an in vitro study // J Virol 1994, v. 68, p. 5765−5771.
- Boyd S.E., Pike R.N., Rudy G.B., Whisstock J.C., Garcia de la Banda M. PoPS: a computational tool for modeling and predicting protease specificity // JBioinform Comput Biol 2005, v. 3, p. 551−585.
- Chernoff G.F. Shiverer: an autosomal recessive mutant mouse with myelin deficiency // JHered. 1981, v. 72, p. 128.
- Lutton J.D., Winston R., Rodman T.C. Multiple sclerosis: etiological mechanisms and future directions // Exp Biol Med (Maywood). 2004, v. 229, p. 12−20.
- Pedraza L. Nuclear transport of myelin basic protein // JNeurosci Res. 1997, v. 50, p. 258−264.
- Seiwa C., Kojima-Aikawa K., Matsumoto I., Asou H. CNS myelinogenesis in vitro: myelin basic protein deficient shiverer oligodendrocytes // J Neurosci Res. 2002, v. 69, p. 305−317.
- Kacprzak M.M., Peinado J.R., Than M.E., Appel J., Henrich S., Lipkind G., Houghten R.A., Bode W., Lindberg I. Inhibition of furin by polyarginine-containing peptides: nanomolar inhibition by nona-D-arginine H J Biol Chem. 2004, v. 279, p. 36 788−36 794.
- Cameron A., Appel J., Houghten R.A., Lindberg I. Polyarginines are potent furin inhibitors Π J Biol Chem. 2000, v. 275, p. 36 741−36 749.
- Jean F., Stella K., Thomas L., Liu G., Xiang Y., Reason A.J., Thomas G. alpha 1-Antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent // Proc Natl AcadSci USA. 1998, v. 95, p. 7293−7298.
- Moayeri M., Leppla S.H. The roles of anthrax toxin in pathogenesis // Curr Opin Microbiol. 2004, v. 7, p. 19−24.
- Bardwell A.J., Abdollahi M., Bardwell L. Anthrax lethal factor-cleavage products of ΠΠΠ Π (mitogen-activated protein kinase) kinases exhibit reduced binding to their cognate MAPKs // Biochem J. 2004, v. 378, p. 569−577.
- Park J.M., Greten F.R., Li Z.W., Karin M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition // Science.2002, v. 297, p. 2048−2051.
- Gordon V.M., Rehemtulla A., Leppla S.H. A role for PACE4 in the proteolytic activation of anthrax toxin protective antigen // Infect Immun. 1997, v. 65, p. 3370−3375.
- Collier R.J., Young J.A. Anthrax toxin // Annu Rev Cell Dev Biol.2003, v. 19, p. 45−70.
- Chambers T.J., Nestorowicz A., Amberg S.M., Rice C.M. Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication // J Virol. 1993, v. 67, p. 6797−6807.
- Falgout Π., Miller R.H., Lai C.J. Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity IIJ Virol. 1993, v. 67, p. 2034−2042.
- Jan L.R., Yang C.S., Trent D.W., Falgout Π., Lai C.J. Processing of Japanese encephalitis virus non-structural proteins: NS2B-NS3 complex and heterologous proteases // J Gen Virol. 1995, v. 76, p. 573−580.
- Lobigs M. Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3 // Proc Natl Acad Sci USA. 1993, v. 90, p. 6218−6222.
- Droll D.A., Krishna Murthy H.M., Chambers T.J. Yellow fever virus NS2B-NS3 protease: charged-to-alanine mutagenesis and deletionanalysis define regions important for protease complex formation and function// Virology. 2000, v. 275, p. 335−347.
- Falgout Π., Pethel M., Zhang Y.M., Lai C.J. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins // J Virol. 1991, v. 65, p. 24 672 475.
- Preugschat F., Yao C.W., Strauss J.H. In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3 // J Virol. 1990, v. 64, p. 4364−4374.
- Bauvois B. Transmembrane proteases in cell growth and invasion: new contributors to angiogenesis? // Oncogene. 2004, v. 23, p. 317 329.
- Holmbeck K., Bianco P., Chrysovergis K., Yamada S., Birkedal-Hansen H. MTl-MMP-dependent, apoptotic remodeling of unmineralized cartilage: a critical process in skeletal growth // J Cell Biol 2003, v. 163, p. 661−671.
- Le Roy C., Wrana J.L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling // Nat Rev Mol Cell Biol 2005, v. 6, p. 112−126.
- Nabi I.R., Le P.U. Caveolae/raft-dependent endocytosis // J Cell Biol. 2003, v. 161, p. 673−677.
- Remacle A., Murphy G., Roghi C. Membrane type I-matrix metalloproteinase (MT1-MMP) is internalised by two different pathways and is recycled to the cell surface Π J Cell Sci. 2003, v. 116, p. 3905−3916.
- Remacle A.G., Rozanov D.V., Baciu P.C., Chekanov A.V., Golubkov V.S., Strongin A.Y. The transmembrane domain is essential for the microtubular trafficking of membrane type-1 matrix metalloproteinase (MT1-MMP) // J Cell Sci. 2005, v. 118, p. 49 754 984.
- Zimmerman W.C., Sillibourne J., Rosa J., Doxsey S.J. Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry // Mol Biol Cell. 2004, v. 15, p. 3642−3657.