Π”ΠΈΠΏΠ»ΠΎΠΌ, курсовая, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°
ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚

Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² фотодинамичСского дСйствия Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ свСта Π½Π° Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ с ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ΠΌ эндогСнных ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½ΠΎΠ²

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ИсслСдованиС фотодинамичСских Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ прСдставляСт собой Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰Π΅Π΅ΡΡ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Ρ„ΠΎΡ‚ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ. Для протСкания Ρ‚Π°ΠΊΠΈΡ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ свСт, сСнсибилизатор ΠΈ ΠΊΠΈΡΠ»ΠΎΡ€ΠΎΠ΄. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ сСнсибилизаторами ΠΏΡ€ΠΈ воздСйствии Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ свСта ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Ρ‹. Π˜Ρ… Ρ„ΠΎΡ‚ΠΎΡ‚ΠΎΠΊΡΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ основана Π½Π° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΠΈ Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡ‹ кислорода (Π³Π»Π°Π²Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, синглСтный кислород), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅, рСагируя… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅
  • ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
  • Π“Π»Π°Π²Π° I. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ фотодинамичСских Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ
    • 1. Π’ΠΈΠ΄ΠΈΠΌΡ‹ΠΉ свСт. Π₯Ρ€ΠΎΠΌΠΎΡ„ΠΎΡ€Ρ‹ Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ свСта
    • 2. Π Π΅Π°ΠΊΡ†ΠΈΠΈ I ΠΈ II Ρ‚ΠΈΠΏΠ°
    • 3. АктивныС Ρ„ΠΎΡ€ΠΌΡ‹ кислорода (АЀК)
    • 4. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‚ΠΈΠΏΠ° фотодинамичСских Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ
  • Π“Π»Π°Π²Π° II. ЀотодинамичСскиС поврСТдСния Π±ΠΈΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΈ ΠΎΡ€Π³Π°Π½Π΅Π»Π» ΠΊΠ»Π΅Ρ‚ΠΊΠΈ
    • 1. ΠŸΠ΅Ρ€Π΅ΠΊΠΈΡΠ½ΠΎΠ΅ фотоокислСниС Π»ΠΈΠΏΠΈΠ΄ΠΎΠ²
    • 2. Π€ΠΎΡ‚ΠΎΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ²
    • 3. Π€ΠΎΡ‚ΠΎΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π±ΠΈΠΎΠΌΠ΅ΠΌΠ±Ρ€Π°Π½
    • 4. Π€ΠΎΡ‚ΠΎΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²Ρ‹Ρ… кислот ΠΈ Π½Π°ΡΠ»Π΅Π΄ΡΡ‚Π²Π΅Π½Π½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°
  • Π“Π»Π°Π²Π° III. Π€ΠΎΡ‚ΠΎΠ²Ρ‹Ρ†Π²Π΅Ρ‚Π°Π½ΠΈΠ΅ ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½ΠΎΠ²Ρ‹Ρ… сСнсибилизаторов
  • Π“Π»Π°Π²Π° IV. ЀотодинамичСская инактивация ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². Π­Π½Π΄ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Ρ‹
    • 1. ЀотодинамичСская антимикробная тСрапия
    • 2. БиосинтСз ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½ΠΎΠ²
    • 3. РСгуляция биосинтСза ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½ΠΎΠ² ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅
  • Π“Π»Π°Π²Π° I. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условий ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ накоплСния эндогСнных ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½ΠΎΠ² ΠΈ ΠΈΡ… Ρ„ΠΎΡ‚ΠΎΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ эффСктивности Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
  • Π“Π»Π°Π²Π° II. Π€ΠΎΡ‚ΠΎΠ²Ρ‹Ρ†Π²Π΅Ρ‚Π°Π½ΠΈΠ΅ эндогСнного ΠΏΡ€ΠΎΡ‚ΠΎΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Π° IX
  • Π“Π»Π°Π²Π° III. ЀотодинамичСскоС ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ субклСточных структур Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ с ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ΠΌ эндогСнного ΠΏΡ€ΠΎΡ‚ΠΎΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Π° IX Π’Ρ‹Π²ΠΎΠ΄Ρ‹

Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² фотодинамичСского дСйствия Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ свСта Π½Π° Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ с ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ΠΌ эндогСнных ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½ΠΎΠ² (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ИсслСдованиС фотодинамичСских Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ прСдставляСт собой Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰Π΅Π΅ΡΡ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Ρ„ΠΎΡ‚ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ. Для протСкания Ρ‚Π°ΠΊΠΈΡ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ свСт, сСнсибилизатор ΠΈ ΠΊΠΈΡΠ»ΠΎΡ€ΠΎΠ΄. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ сСнсибилизаторами ΠΏΡ€ΠΈ воздСйствии Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ свСта ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Ρ‹. Π˜Ρ… Ρ„ΠΎΡ‚ΠΎΡ‚ΠΎΠΊΡΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ основана Π½Π° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΠΈ Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡ‹ кислорода (Π³Π»Π°Π²Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, синглСтный кислород), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅, рСагируя с Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈ Π²Π°ΠΆΠ½Ρ‹ΠΌΠΈ ΠΌΠ°ΠΊΡ€ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ, Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΈΡ… Ρ„отоокислСниС ΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… свойств.

Π˜Π½Ρ‚Π΅Ρ€Π΅Ρ ΠΊ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ фотодинамичСских эффСктов Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Ρ€Π΅ Π±Ρ‹Π» обусловлСн ΠΈΡ… ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½ΡΠΊΠΈΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ для лСчСния онкологичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π’ ΡΠ²ΡΠ·ΠΈ с ΡΡ‚ΠΈΠΌ Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ большой объСм Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² фотодинамичСского дСйствия ΠΊΠ°ΠΊ экзогСнных, Ρ‚. Π΅. Π²Π²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… ΠΈΠ·Π²Π½Π΅, Ρ‚Π°ΠΊ ΠΈ ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½Ρ‹Ρ…, Ρ‚. Π΅. синтСзирумых самой ΠΊΠ»Π΅Ρ‚ΠΊΠΎΠΉ, ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½ΠΎΠ² Π½Π° ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… (Ochsner, 1997; Oleinick and Evans, 1998).

Π’ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ дСсятилСтиС ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ исслСдования Π² ΠΎΠ±Π»Π°ΡΡ‚ΠΈ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, Ρ‡Ρ‚ΠΎ связаносувСличСниСм числа ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², устойчивых ΠΊ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ фотодинамичСских процСссов с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ряда экзогСнных, Π° Ρ‚Π°ΠΊΠΆΠ΅ эндогСнных сСнсибилизаторов Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ проводится Π½Π° Π±Π°ΠΊΡ‚Сриях (van der Meulen et al., 1997; Ramstad et al., 1997; Wainwright, 1998; Szocs et al., 1999). ВмСстС с Ρ‚Π΅ΠΌ фунгицидная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ фотосСнсибилизаторов исслСдована ΠΌΠ°Π»ΠΎ. БущСствуСт Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ количСство Ρ€Π°Π±ΠΎΡ‚ ilo фотодинамичСской ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии экзогСнных сСнсибилизаторов (Paardekooper et al., 1995; Carre et al., 1999). Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎΠ± ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ях проявлСнии фотодинамичСских эффСктов Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ, Π½Π°ΠΊΠΎΠΏΠΈΠ²ΡˆΠΈΡ… эндогСнныС ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Ρ‹ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ воздСйствия Π½Π° ΠΈΡ… Π±ΠΈΠΎΡΠΈΠ½Ρ‚Π΅Π·. ΠžΡΡ‚Π°ΡŽΡ‚ΡΡ нСпрояснСнными вопросы ΠΊΠ°ΠΊ ΠΎ ΡΠ°ΠΌΠΎΠΉ возмоТности эффСктивной Ρ„ΠΎΡ‚ΠΎΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Ρ‚Π°ΠΊΠΈΡ… Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ, Ρ‚Π°ΠΊ ΠΈ ΠΎ Π΅Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ…. 4.

ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹.

I. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ фотодинамичСских Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ.

Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Показано, Ρ‡Ρ‚ΠΎ эффСктивной ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Saccharomyces cerevisiae ΠΈ Candida guilliermondii Π²ΠΈΠ΄ΠΈΠΌΡ‹ΠΌ свСтом ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ ΠΏΡ€ΠΈ использовании ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠ° биосинтСза эндогСнных ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½ΠΎΠ² 5-Π°ΠΌΠΈΠ½ΠΎΠ»Π΅Π²ΡƒΠ»ΠΈΠ½ΠΎΠ²ΠΎΠΉ кислоты ΠΈ/ΠΈΠ»ΠΈ Ρ…Π΅Π»Π°Ρ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ соСдинСния 2,2'-Π΄ΠΈΠΏΠΈΡ€ΠΈΠ΄ΠΈΠ»Π°, ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ послСднюю ΡΡ‚Π°Π΄ΠΈΡŽ биосинтСза Π³Π΅ΠΌΠ°, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ‡Π΅Π³ΠΎ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… накапливаСтся Π΅Π³ΠΎ нСпосрСдствСнный ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊ фотодинамичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΡ‚ΠΎΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½ IX.

2. ВыявлСно присутствиС Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π΄Π²ΡƒΡ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ ΠΏΡ€ΠΎΡ‚ΠΎΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Π° IX, Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ основного максимума флуорСсцСнции (625 ΠΈ 635 Π½ΠΌ).

3. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ различия Π² Ρ„ΠΎΡ‚ΠΎΠ²Ρ‹Ρ†Π²Π΅Ρ‚Π°Π½ΠΈΠΈ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ ΠΈ Π΄Π»ΠΈΠ½Π½ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ флуорСсцСнции эндогСнного ΠΏΡ€ΠΎΡ‚ΠΎΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Π° IX: большая Ρ„ΠΎΡ‚ΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ флуорСсцСнциипоявлСниС Ρ„Π»ΡƒΠΎΡ€Π΅ΡΡ†ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ„ΠΎΡ‚ΠΎΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° ΠΏΡ€ΠΈ Ρ„ΠΎΡ‚ΠΎΠ²Ρ‹Ρ†Π²Π΅Ρ‚Π°Π½ΠΈΠΈ Π΄Π»ΠΈΠ½Π½ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ.

4. УстановлСно, Ρ‡Ρ‚ΠΎ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΎΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Π° IX Π² ΠΏΠ»Π°Π·ΠΌΠ°Ρ‚ичСских ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ S. cerevisiae ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ ΠΈΡ… Ρ„ΠΎΡ‚ΠΎΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ проницаСмости, Π° Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΎΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Π° IX Π² ΠΌΠΈΡ‚охондриях Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ сопровоТдаСтся эффСктивным Ρ„ΠΎΡ‚ΠΎΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈΡ… Π΄Ρ‹Ρ…ания.

5. ΠšΠ»Π΅Ρ‚ΠΊΠΈ S. cerevisiae, Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π½Ρ‹Π΅ ΠΏΠΎ ΠΏΠΎΡΡ‚Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π”ΠΠš, Π±ΠΎΠ»Π΅Π΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΊ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ свСта ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π΄ΠΈΠΊΠΈΠΌ ΡˆΡ‚Π°ΠΌΠΌΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ± ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ Π”ΠΠš Π² Π΄Ρ€ΠΎΠΆΠΆΠ°Ρ… с ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Π° IX.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Π’.Π―., Π—Π°ΠΉΡ†Π΅Π²Π° Н. И., ΠŸΠΎΠ»ΡƒΠ»ΡΡ… О. Π’. (1985) ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ синтСз ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½ΠΎΠ². ΠžΠ±Π·ΠΎΡ€Π½Π°Ρ информация. БСрия V. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ², Π²ΠΈΡ‚Π°ΠΌΠΈΠ½ΠΎΠ², аминокислот, прСмиксов. М.: Π’ΠΠ˜Π˜Π‘Π­ΠΠ’Π˜, 1−5.
  2. Π“. ΠŸ., ЛосСв А. П. (1988) ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½ΠΎΠ² ΠΈ Ρ…Π»ΠΎΡ€ΠΈΠ½ΠΎΠ² для исслСдования фотодинамичСского дСйствия свСта Π½Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΡ‹, ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ биологичСского дСйствия оптичСского излучСния (ΠΏΠΎΠ΄ Ρ€Π΅Π΄. Π ΡƒΠ±ΠΈΠ½Π° А.Π‘.), М.: Наука, 123−130.
  3. A.A. (ΠΌΠ».). (1988) ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ образования ΠΈ Ρ€ΠΎΠ»ΡŒ синглСтного кислорода Π² Ρ„отобиологичСских процСссах, ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ биологичСского дСйствия оптичСского излучСния (ΠΏΠΎΠ΄ Ρ€Π΅Π΄. Π ΡƒΠ±ΠΈΠ½Π° А.Π‘.), М.: Наука, 23−40.
  4. A.A. (ΠΌΠ».). (1998) ЀосфорСсцСнтный Π°Π½Π°Π»ΠΈΠ· синглСтного молСкулярного кислорода Π² Ρ„отобиохимичСских систСмах, БиологичСскиС ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹, 15, 530−548.
  5. Π’.И. (1966) ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ пострадиационного восстановлСния, М.: Атомиздат, 391 с.
  6. Π ., Π“Ρ€Π΅Π½Π½Π΅Ρ€ Π”., МСйСс П., Родуэлл Π’. (1993) Биохимия Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, М.: ΠœΠΈΡ€, Ρ‚. 1.
  7. К. Π’., Π’ΠΈΠ·Π΅ Π‘., Π₯Π΅Π±Π΅Ρ€ Π£. (1999) Π€ΠΎΡ‚ΠΎΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ фотосинтСтичСского Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° Π² Π»ΠΈΡΡ‚ΡŒΡΡ… растСний, ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… 5-Π°ΠΌΠΈΠ½ΠΎΠ»Π΅Π²ΡƒΠ»ΠΈΠ½ΠΎΠ²ΠΎΠΉ кислотой ΠΈΠ»ΠΈ 2,2'-Π΄ΠΈΠΏΠΈΡ€ΠΈΠ΄ΠΈΠ»ΠΎΠΌ, II ΡΡŠΠ΅Π·Π΄ Π±ΠΈΠΎΡ„ΠΈΠ·ΠΈΠΊΠΎΠ² России, Москва, тСзисы Π΄ΠΎΠΊΠ»Π°Π΄ΠΎΠ², Ρ‚. III, стр. 1058.
  8. М.Π“., Власова Π•. Π’., Π€Ρ€Π°ΠΉΠΊΠΈΠ½ Π“. Π―. (1998) ИсслСдованиС флуорСсцСнции ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… плазматичСских ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π² Π²ΠΈΠ΄ΠΈΠΌΠΎΠΉ области спСктра, Π‘ΠΈΠΎΡ„ΠΈΠ·ΠΈΠΊΠ° 43, 447−452.77
  9. Π•.А., Π’ΠΎΡ€ΠΎΠ±Π΅ΠΉ А. Π’. (1988) ЀотосСнсибилизированныС поврСТдСния биологичСских ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ биологичСского дСйствия оптичСского излучСния (ΠΏΠΎΠ΄ Ρ€Π΅Π΄. Π ΡƒΠ±ΠΈΠ½Π° А.Π‘.), М.: Наука, 102−111.
  10. T.L., Riley P.G., Dailey H.A. (1990) Regulation of heme biosynthesis in higher animals, Biosynthesis of heme and chlorophylls (Dailey H.A., ed.), McGrow-Hill Publishing company, N.Y., pp. 163−200.
  11. Atlante A., Quagliariello E., Passarella S., Moreno G. and Salet C. (1990) Carrier thiols are targets of Photofrin 2 photosensitization of isolated rat liver mitochondria, J. Photochem. Photobiol., B: Biol. 7, 21−32.78
  12. Bachowski G.J., Morehouse K.M. and Girotti A.W. (1988) Porphyrin-sensitized photoreactions in the presence of ascorbate: oxidation of cells membrane lipids and hydroxyl radical traps, Photochem. Photobiol. 47, 635−645.
  13. Bagdonas S., Ma L.W., Iani V., Rotomskis R., Juzenas P., Moan J. (2000) Phototransformations of 5-aminolevulinic acid-induced protoporphyrinIX in vitro: a spectroscopic study, Photochem. Photobiol. 72, 186−192.
  14. A.M., Maines S., Negritto M.T. (1995) The essential helicase gene RAD3 suppresses short-sequence recombination in Sciccharomyces cerevisiae, Mol. Cell Biol. 15, 3998−4008.
  15. D.J., Mayhew S., Wood S.R., Griffiths J., Vernon D.I., Brown S.B. (1999) A comparative study of the cellular uptake and photodynamic efficacy of three novel zinc phthalocyanines of differing charge, Photochem. Photobiol. 69, 390−396.
  16. Bech O., Phillips D., Moan J., MacRobert A.J. (1997) A hydroxypyridinone (CP94) enhances protoporphyrin IX formation in 5-aminolaevulinic acid treated cells, J. Photochem. Photobiol. B: Biol. 41, 136−144.
  17. Beijersbergen van Henegouwen G.M. (1991) Systemic phototoxicity of drugs and other xenobiotics, J. Photochem. Photobiol. B: Biol. 10, 183−210.
  18. K., Anholt H., Bech O., Moan J. (1996) The Influence of iron chelators on the accumulation of protoporphyrin IX in 5-aminolaevulinic acid-treated cells, Br. J. Cancer 74, 688−697.
  19. Berg K. and Moan J. (1994) Lysosomes as photochemical targets, Int. J. Cancer 59, 814−822.
  20. F., Reiken S.R., Toner M., Tompkins R.G., Yarmush M.L. (1994) Antibody-targeted photolysis of bacteria in vivo, Biotechnology 12, 703−706.
  21. G., Lauro F.M., Cortella G., Merchat M. (2000) Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells, Biochim. Biophys. Acta 1475, 169−174.79
  22. G., Reddi E., Gatta M., Burlini C., Jori G. (1989) Factors influencing the haematoporphyrin-sensitized photoinactivation of Candida albicans, J. Gen. Microbiol. 135 (Pt 4), 957−966.
  23. Bezdetnaya L., Zeghari N., Belitchenko I., Barberi-Heyob M., Merlin J.L., Potapenko A., Guillemin F. (1996) Spectroscopic and biological testing of photobleaching of porphyrins in solutions, Photochem, Photobiol. 64, 382−386.
  24. Boegheim J.P., Scholte H., Dubbelman T.M., Beems E., Raap A.K., van Steveninck J. (1987) Photodynamic effects of hematoporphyrin-derivative on enzyme activities of murine L929 fibroblasts, J. Photochem. Photobiol. B: Biol. 1, 61−73.
  25. L. (1979) Biosynthesis of porphyrins In: Dolphin D (ed) The porphyrins, Academic Press, New York, 125−178.
  26. Borg D.C. and Schaich K.M. (1974) Cytotoxity from coupled redox cycling of autoxidizing xenobiotics and metals, Isr. J. Chem. 24, 38−53.
  27. Brun A. and Sandberg S. (1991) Mechanisms of photosensitivity in porphyric patients with special emphasis on erythropoietic protoporphyria, J. Photochem. Photobiol., B: Biol. 10, 285−302.
  28. M., Saville D., Chevallier M.R., Rank G.H. (1979) Yeast plasma membrane ghosts, Biochim. Biophys. Acta 553, 185−196.
  29. J.M., Ibraham N.G., Levere R.D. (1984) Kinetic studies of human liver ferrochelatase, Role of endogenous metals, J. Biol. Chem. 259, 5678−5682.
  30. Canistraro S. and van de Vorst A. (1977) Photosensitization by hematoporphyrin: ESR evidence for free radical induction in unsaturated fatty acids and for singlet oxygen production, Biochem. Biophys. Res. Commun. 74, 11 771 185.
  31. V., Jayat C., Granet R., Krausz P., Guilloton M. (19 996) Chronology of the apoptotic events induced in the K562 cell line by photodynamic treatment with hematoporphyrin and monoglucosylporphyrin, Photochem. Photobiol. 69, 55−60.
  32. W.M., Parks L.W. (1989) A role for sterols in the porphyrin mediated photosensitization of yeast, Photochem. Photobiol. 50, 553−556.81
  33. Ceckler T.L., Bryant R.G., Penney D.P. Gibson S.L. and Hilf R. (1986) 31P-NMR spectroscopy demonstrates decreased ATP levels in vivo as an early response to photodynamic therapy, Biochem. Biophys. Res. Commun. 140, 273−279.
  34. Csatorday K., MacColl R. and Berns D.S. (1981) Accumulation of Protoporphyrin and Zn-porphyrin in Cyanidium caldarium, Proc. Natl. Acad. Sei. USA, 78, 1700−1702.
  35. Cox R. and Charles H.P. (1973) Porphyrin-accumulating mutants of Escherichia coli, J. Bacteriology 113, 122−132.
  36. Dantas F.J., Moraes M.O., Carvalho E.F., Valsa J.O., Bernardo-Filho M., Caldeira-de-Araujo A. (1996) Lethality induced by stannous chloride on Escherichia coli AB 1157: participation of reactive oxygen species, Food Chem. Toxicol. 34, 959−962.
  37. M. (1996) Apoptosis or necrosis following Photofrin photosensitization: influence of the incubation protocol, Photochem. Photobiol. 64, 182−187.
  38. M., Ricchelli F., Moreno G., Salet C. (1994) Hematoporphyrin derivative (Photofrin) photodynamic action on Ca2+ transport in monkey kidney cells (CV-1), Photochem. Photobiol. 60, 368−372.
  39. W., Bolsen K., Dickson E., Fritsch C., Pottier R., Wendenburg R. (1996) Formation of water-soluble porphyrins and protoporphyrin IX in 5-aminolevulinic-acid-incubated carcinoma cells, J. Photochem. Photobiol. B: Biol. 33, 225−231.82
  40. R., Mukhtar H., Bickers D.R. (1983) Destruction of microsomal cytochrome P-450 by reactive oxygen species generated during photosensitization of hematoporphyrin derivative, Photochem. Photobiol. 37, 173−176.
  41. Dubbelman T.M., de Goeij A.F., Christianse K., van Steveninck J. (1981) Protoporphyrin-induced photodynamic effects on band 3 protein of human erythrocyte membranes, Biochim. Biophys. Acta 649, 310−316.
  42. Dubbelman T.M., de Goeij A.F., van Steveninck J. (1980) Protoporphyrin-induced photodynamic effects on transport processes across the membrane of human erythrocytes, Biochim. Biophys. Acta, 595, 133−139.
  43. P., Hanocq M., Dubois J. (2001) Photodynamic DNA damage mediated by delta-aminolevulinic acid-induced porphyrins, Carcinogenesis 22, 771−778.
  44. B., Malik Z., Nitzan Y. (1985) Fluorescence spectral changes of hematoporphyrin derivative upon binding to lipid vesicles, Staphylococcus aureus and Escherichia coli cells, Photochem. Photobiol. 41, 429−435.
  45. S., Carre J., Vonarx V., Heyman D., Lajat Y., Patrice T. (1997) Delta-aminolevulinic acid-induced fluorescence in normal human lymphocytes, J. Photochem. Photobiol. B: Biol. 41, 22−29.
  46. Felix C.C., Reszka K. and Sealy R.C. (1983) Free radicals from photoreduction of hematoporphyrin in aqueous solution, Photochem. Photobiol. 37, 141−147.
  47. J.M., Bilgin M.D., Grossweiner L.I. (1997) Singlet oxygen generation by photodynamic agents, J. Photochem. Photobiol. B: Biol. 37, 131−140.
  48. Ferreira G.C. and Gong J. (1995) 5-Aminolevulinate synthase and the first step of heme biosynthesis, J. Bioenerg. Biomembr. 27, 151−159.
  49. G.C., Franco R., Lloyd S.G., Moura I., Moura J.J., Huynh B.H. (1995) Structure and function of ferrochelatase, J. Bioenerg. Biomembr. 27, 221 229.83
  50. C.S. (1991) Definition of Type 1 and Type 2 photosensitized oxidation, Photochem. Photobiol. 54, 659.
  51. C.S. (1976) Photosensitized oxidation and singlet oxygen: consequences in biological systems, in W.A.Pryor (ed.), Free radicals in biology, 2, Academic Press, New York, 85−134.
  52. G.Ya., Strakhovskaya M.G., Rubin A.B. (1996) The role of membrane-bound porphyrin-type compound as endogenous sensitizer in photodynamic damage to yeast plasma membranes, J.Photochem. Photobiol. B: Biol. 34, 129−135.
  53. C., Riesenberg R., Siegert J., Baumgartner R. (1997) pH-Dependent formation of 5-aminolaevulinic acid-induced protoporphyrin IX in fibrosarcoma cells, J. Photochem. Photobiol. B: Biol. 40, 49−54.
  54. J., Weber S., Kaufmann R. (2000) Genotoxic potential of porphyrin type photosensitizers with particular emphasis on 5-aminolevulinic acid: implications for clinical photodynamic therapy, Free Radic. Biol. Med. 28, 537−548.
  55. Gantchev T.G., van Lier J.E. (1995) Catalase inactivation following photosensitization with tetrasulfonated metallophthalocyanines, Photochem. Photobiol. 62, 123−134.
  56. I., Foster T.H. (1998) Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry, Photochem. Photobiol. 67, 612−625.
  57. P.M., Boiteux S. (1997) Repair of oxidized DNA bases in the yeast Saccharomyces cerevisiae, Biochimie 79, 559−566.
  58. A.W. (1992) Photosensitized oxidation of cholesterol in biologikal systems: reaction pathways, cytotoxic effects and defense mechanisms, J. Photochem. Photobiol. B: Biol. 13, 105−118.
  59. A.W. (1990) Photodynamic lipid peroxidation in biological systems, Photochem. Photobiol. 51, 497−509.
  60. A.W. (1985) Mechanisms of lipid peroxidation, J. Free Rad. Biol. Med. 1, 87−95.
  61. Girotti A.W. and Deziel M.R. (1983) Photodynamic action of protoporphyrin on resealed erythrocyte membranes: mechanisms of release of trapped markers, Adv. Exp. Med. Biol. 160, 213−225.
  62. Girotti A.W. and Thomas J.P. (1984) Superoxide- and hydrogen peroxid-depdndent lipid peroxidation in intact and tritondespersed erythrocyte membranes, Biochem. Biophys. Res. Commun. 118, 474−480.
  63. Girotti A.W., Bachowski G.J. and Jordan J.E. (1987) Lipid peroxidation in erythrocyte membranes: cholesterol peroxide analyses in photosensitized and xanthine oxidase-catalysed reactions, Lipids 22, 401−408.
  64. Sl.Gudgin Dickson E.F., Pottier R.H. (1995) On the role of protoporphyrin IX photoproducts in photodynamic therapy, J. Photochem. Photobiol. B: Biol. 29, 9193.
  65. J.M., Smith A. (1988) Antioxidant protection by haemopexin of haem-stimulated lipid peroxidation, Biochem. J. 256, 861−865.
  66. K.J., Hoff W.D., Crielaard W. (1996) Photobiology of microorganisms: how photosensors catch a photon to initialize signalling, Mol. Microbiol. 21, 683−693.
  67. Henderson B.W. and Dougherty T.J. (1992) How does photodynamic therapy work? Photochem. Photobiol., 55, 145−157.
  68. Hermes-Lima M. (1995) How do Ca2+ and 5-aminolevulinic acid-derived oxyradicals promote injury to isolated mitochondria? Free Radic. Biol. Med. 19, 381−390.
  69. Kennedy J.C. and Pottier R.H. (1992) Endogenous protoporthyrin 9, a clinically useful photo-sensitizer for photodynamic therapy, J.Photochem.Photobiol. B: Biol. 14, 275−292.86
  70. Kennedy J.C., Jin Y.-M. and Pottier R.H. (1990) Effect of extracellular pH upon the uptake of porphyrins by malignant cells, Photochem. Photobiol. 51 (Suppl.), 4S.
  71. Kessel D. and Luo Y. (1998) Mitochondrial photodamage and PDT-induced apoptosis, J. Photochem. Photobiol. B: Biol. 42, 89−95.
  72. Kessel D. and Rossi E. (1982) Determinants of porphyrin-sensitized photooxidation characterized by fluorescence and absorption spectra, Photochem. Photobiol. 35, 37−41.
  73. Kessel D. and Schulz V. (1990) Sites of photosensitization by protoporphyrin and tin protoporphyrin in leukemia L1210 cells, J. Photochem. Photobiol. B: Biol. 6, 87−92.
  74. Koller M.-E. and Romslo I. (1978) Studies on the uptake of porphyrin by isolated mitochondria, Biochim. Biophys. Acta 503, 238−250.
  75. Koller M.-E. and Romiso I. (1980) Uptake of proptoporphyrin 9 by isolated rat liver mitochondria, Biochim. J. 188, 329−335.
  76. B., Uberriegler K. (1996) In-vitro investigation of ALA-induced protoporphyrin IX, J. Photochem. Photobiol. B: Biol. 36, 121−126.
  77. B. (1999) Apoptosis induction by photodynamic treatment with endogenous protoporphyrin IX? 8th Congress of European Society for Photobiology, Granada, Spain, Book of Abstracts, P. 64.87
  78. Labbe-Bois R. and Labbe P. (1990) Tetrapyrrole and heme biosynthesis in the yeast Saccharomyces cerevisiae, Biosynthesis of heme and chlorophylls (Dailey H.A., ed.), McGrow-Hill Publishing company, N.Y., pp. 235−285.
  79. M., Rothstein R., Mortensen U.H. (2001) Rad 52 forms DNA repair and recombination centers during S phase, Proc. Natl. Acad. Sei. USA 98, 8276−8282.
  80. P., Jacob K., Ehret W. (1993) The production of porphyrins from delta-aminolaevulinic acid by Haemophilus parainfluenzae, J. Med. Microbiol. 39, 262 267.
  81. Ma L., Bagdonas S., Moan J. (2001) The photosensitizing effect of the photoproduct of protoporphyrin IX, J. Photochem. Photobiol. B: Biol. 60, 108−113.
  82. Z., Kostenich G., Roitman L., Ehrenberg B., Orenstein A. (1995) Topical application of 5-aminolevulinic acid, DMSO and EDTA: protoporphyrin IX accumulation in skin and tumours of mice, J. Photochem. Photobiol. B: Biol. 28, 213−208.
  83. Z., Lugaci H. (1987) Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins, Br. J. Cancer 56, 589−595.
  84. F., Frohlich E., Ligr M., Grey M., Sigrist S.J., Wolf D.H., Frohlich K.U. (1999) Oxygen stress: a regulator of apoptosis in yeast, J. Cell Biol. 145, 757 767.
  85. F., Frohlich E., Frohlich K.U. (1997) A yeast mutant showing diagnostic markers of early and late apoptosis, J. Cell Biol. 139, 729−734.88
  86. Mattoon J. and Balcavage W.X. (1967) Yeast mitochondria and submitochondrial particles, in: R.W.Estabrook, M.E.Pullman (Eds.), Metods in Enzymology, vol. 10, Academic Press, New York, 135−142.
  87. W.R., Dahl T.A., Hartman P.E. (1987) Cytotoxity but no mutagenecityin bacteria with externally generated singlet oxygen, New directions in Photodynamic Therapy, SPIE 847, 122−126.
  88. J. (1986) Effect of bleaching of porphyrin sensitisers during photodynamic therapy, Cancer Lett. 33, 43−53.
  89. Moan J. and Bagdonas S. (1999) Photodegradation and phototransformation of sensitizers during PDT- good or bad? 8th Congress of European Society for Photobiology, Granada, Spain, Book of Abstracts, P. 69.
  90. Moan J. and Berg K. (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Photochem. Photobiol. 53, 549 553.89
  91. J., Streckyte G., Bagdonas S., Bech O., Berg K. (1997) Photobleaching of protoporphyrin IX in cells incubated with 5-aminolevulinic acid, Int. J. Cancer 70, 90−97.
  92. Y., Gutterman M., Malik Z., Ehrenberg B. (1992) Inactivation of gram-negative bacteria by photosensitized porphyrins, Photochem. Photobiol. 55, 89−96.
  93. Y., Ashkenazi H. (2001) Photoinactivation of Acinetobacter baumannii and Escherichia coli by a cationic hydrophilic porphyrin at various light wavelengths, Curr. Microbiol. 42, 408−414.
  94. B.B., Berg K., Stokke T., Peng Q., Nesland J.M. (1996) Apoptosis and necrosis induced with light and 5-aminolaevulinic acid-derived protoporphyrin IX, Br. J. Cancer 74, 22−29.
  95. Paardekooper M., van Gompel A.E., van Steveninck J., van den Broek P.J. (1995) The effect of photodynamic treatment of yeast with the sensitizer chloroaluminum phthalocyanine on various cellular parameters, Photochem. Photobiol. 62, 561−567.
  96. Penning L.C., Keirse M.J., van Steveninck J., Dubbelman T.M. (1993) Ca2±mediated prostaglandin E2 induction reduces haematoporphyrin-derivative-induced cytotoxicity of T24 human bladder transitional carcinoma cells in vitro, Biochem. J. 292, 237−240.
  97. J. (1991) Biological consequences associated with DNA oxidation mediated by singlet oxigen, J. Photochem. Photobiol. B: Biol. 11, 241−260.
  98. C., Reelfs O., Kvam E., Tyrrell R.M. (1999) The iron regulatory protein can determine the effectiveness of 5-aminolevulinic acid in inducing protoporphyrin IX in human primary skin fibroblasts, J. Invest. Dermatol. 112, 419−425.
  99. Radakovic-Fijan S., Rappersberger K., Tanew A., Honigsmann H., Ortel B. (1999) Ultrastructural changes in PAM cells after photodynamic treatment with delta-aminolevulinic acid-induced porphyrins or photosan, J. Invest. Dermatol. 112, 264−270.91
  100. S., Futsaether C.M., Johnsson A. (1997) Porphyrin sensitization and intracellular calcium changes in the prokaryote Propionibacterium acnes, J. Photochem. Photobiol. B: Biol. 40, 141−148.
  101. N., Arkins S., Kelley K.W., Rebeiz C.A. (1996a) Enhancement of coproporphyrinogen III transport into isolated transformed leukocyte mitochondria by ATP, Arch. Biochem. Biophys. 333, 475−481.
  102. N., Arkins S., Rebeiz C.A., Simon J., Zachary J.F., Kelley K.W. (19 966) Induction of tumor necrosis by delta-aminolevulinic acid and 1,10-phenanthroline photodynamic therapy, Cancer Res. 56, 339−344.
  103. N., Rebeiz C.C., Arkins S., Kelley K.W., Rebeiz C.A. (1992) Photodestruction of tumor cells by induction of endogenous accumulation of protoporphyrin IX: enhancement by 1,10-phenanthroline, Photochem. Photobiol. 55, 431−435.
  104. F.J. (1995) Photophysical properties of porphyrins in biological membranes, J. Photochem. Photobiol. B: Biol. 29, 109−118.
  105. Ricchelli F., Barbato P., Milani ML, Gobbo S., Salet C., Moreno G. (1999) Photodynamic action of porphyrin on Ca2+ influx in endoplasmic reticulum: a comparison with mitochondria, Biochem. J. 338, 221−227.
  106. Rotenberg M. and Margalit R. (1987) Porphyrin-membrane interactions: binding or partition? Biochim. Biophys. Acta 905, 173−180.
  107. R., Streckyte G., Bagdonas S. (1997) Phototransformations of sensitizers 2. Photoproducts formed in aqueous solutions of porphyrins, J. Photochem. Photobiol. B: Biol. 39, 172−175.
  108. Salet C. and Moreno G. (1990) Photosensitization of mitochondria. Molecularand cellular aspects, J. Photochem. Photobiol. B: Biol. 5, 133−150.
  109. Sandberg S. and Romslo I. (1980) Porphyrin-sensitized photodynamic damageof isolated rat liver mitochondria, Biochem. Biophys. Acta 593, 187−195.
  110. S., Gleite J., Hopen G., Solberg C.O., Romslo I. (1981) Porphyrininduced photodamage to isolated human neutrophils, Photochem. Photobiol. 34,471.475.
  111. I., Chekulayev V., Moan J., Berg K. (1996) Effects of the inhibitors of energy metabolism, lonidamine and levamisole, on 5-aminolevulinic-acid-induced photochemotherapy, Int. J. Cancer 67, 791−799.
  112. R., Iani V., Moan J. (1998) Kinetics of photobleaching of protoporphyrin IX in the skin of nude mice exposed to different fluence rates of red light, Photochem. Photobiol. 68, 835−840.
  113. Soukos N.S., Ximenez-Fyvie L.A., Hamblin M.R., Socransky S.S., Hasan T. (1998) Targeted antimicrobial photochemotherapy, Antimicrob. Agents Chemother. 42, 2595−2601.
  114. K.G., Rodgers M.A. (1991) Plasma membrane depolarization and calcium influx during cell injury by photodynamic action, Biochim. Biophys. Acta 1070, 60−68.
  115. Steenvoorden D.P., Beijersbergen van Henegouwen G.M. (1997) The use of endogenous antioxidants to improve photoprotection, J. Photochem. Photobiol. B: Biol. 41, 1−10.94
  116. K., Gabor F., Csik G., Fidy J. (1999) delta-Aminolaevulinic acid-induced porphyrin synthesis and photodynamic inactivation of Escherichia coli, J. Photochem. Photobiol. B: Biol. 50, 8−17.
  117. D.P. (1987) Photomodification of biological membranes with emphasis on singlet oxygen mechanisms, Photochem. Photobiol. 46, 147−160.
  118. J.R., Wilson T.E. (2001) Repair of DNA strand breaks by the overlapping functions of lesion-specific and non-lesion-specific DNA 3' phosphatases, Mol. Cell Biol. 21, 7191−7198.
  119. Verma A., Nye J.S. and Snyder S.H. (1987) Porphyrins are endogenous ligands for the mitochondrial (peripheral-type) benzodiazepin receptor, Proc. Natl. Acad. Sci. USA, 84, 2256−2260.
  120. Verweij H., Dubbelman T.M., van Steveninck J. (1981) Photodynamic protein cross-linking, Biochim. Biophys. Acta 647, 87−94.
  121. Villanueva A., Canete M., Trigueros C., Rodriguez-Borlado L., Juarranz A. (1993) Photodynamic induction of DNA-protein cross-linking in solution by several sensitizers and visible light, Biopolymers 33, 239−244.
  122. Vincent S.H., Holeman B., Cully B.C., Muller-Eberhard U. (1986) Porphyrin-induced photodynamic cross-linking of hepatic heme-binding proteins, Life Sci. 38, 365−372.
  123. M. (1998) Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chem. 42, 13−28.
  124. E., Rothmann C., Greenbaum L., Shainberg A., Adamek M., Ehrenberg B., Malik Z. (2000) Mitochondrial localization and photodamage during photodynamic therapy with tetraphenylporphines, J. Photochem. Photobiol. B: Biol. 59, 92−102.96
  125. M., Burns T., Pratten J. (1996) Killing of Streptococcus sanguis in biofilms using a light-activated antimicrobial agent, J. Antimicrob. Chemother. 37, 377−381.
  126. S.J., Bartczak A., Bloomer J.R. (1979) Effect of endogenous heme generation on delta-aminolevulinic acid synthase activity in rat liver mitochondria, J. Biol. Chem. 254, 3543−3546.
  127. T., Nguyen B.N., Jagiello I., Graczyk A., Rytka J. (1997) Diamino acid derivatives of porphyrins penetrate into yeast cells, induce photodamage, but have no mutagenic effect, Photochem. Photobiol. 66, 253−259.
  128. T., Nguyen B.N., Rytka J. (1996) Saccharomyces cerevisiae mutants defective in heme biosynthesis as a tool for studying the mechanism of phototoxicity of porphyrins, Photochem. Photobiol. 64, 957−962.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ