Π”ΠΈΠΏΠ»ΠΎΠΌ, курсовая, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°
ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚

ВлияниС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² Π±Π΅Π»ΠΊΠ° Mod (mdg4) Π½Π° ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ «инсуляторных Ρ‚Π΅Π»Π΅Ρ†Β» Π² ядрах ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Drosophila melanogaster

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Drosophila melanogaster2. 1. 2. Π‘Ρ€Π΅Π΄Ρ‹ для выращивания Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Drosophila melanogaster. ΠžΠ»ΠΈΠ³ΠΎΠ½ΡƒΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Π΅ ΠΏΡ€Π°ΠΉΠΌΠ΅Ρ€Ρ‹. 16. Π˜ΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ. ВСстированиС ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ Π±Π΅Π»ΠΊΠ° Mod in vivo. 8. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. ДСсомулированиС. 5. РасщСплСниС Π”ΠΠš эндонуклСазами рСстрикции. Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ ΡΡƒΠΌΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‚ΡΡ in vitro ΠΈ in vivo… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Π“Π»Π°Π²Π° I. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
    • 1. Π Π•Π“Π£Π›Π―Π¦Π˜Π― ВРАНБКРИПЦИИ. Π˜ΠΠ‘Π£Π›Π―Π’ΠžΠ Π«
      • 1. 1. Π“Π΅Π½ΠΎΠΌ эукариот ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΎΠ²Π°Π½ Π² Π΄ΠΎΠΌΠ΅Π½Ρ‹
      • 1. 2. «ΠœΠΎΠ»Ρ‡Π°Ρ‰ΠΈΠ΅» Π΄ΠΎΠΌΠ΅Π½Ρ‹
      • 1. 3. АктивныС Π΄ΠΎΠΌΠ΅Π½Ρ‹
      • 1. 4. Π“Ρ€Π°Π½ΠΈΡ†Ρ‹ Π΄ΠΎΠΌΠ΅Π½ΠΎΠ²
      • 1. 5. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹
        • 1. 5. 1. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€ Su (Hw)
        • 1. 5. 2. Π­Π½Π΄ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ инсуляторы Su (Hw) ΠΈ ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Π΅ Ρ‚Π΅Π»ΡŒΡ†Π°
        • 1. 5. 3. НСйтрализация инсуляторов
        • 1. 5. 4. МодСли дСйствия инсулятора Su (Hw)
        • 1. 5. 5. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π±Π΅Π»ΠΊΠΎΠ² Su (Hw) инсулятора Π±Π΅Π»ΠΊΠΎΠΌ SUMO
    • 2. SUMO: ΠΠžΠ’Π«Π™ УЧАБВНИК ΠŸΠžΠ‘Π’Π’Π ΠΠΠ‘Π›Π―Π¦Π˜ΠžΠΠΠžΠ™ ΠœΠžΠ”Π˜Π€Π˜ΠšΠΠ¦Π˜Π˜
      • 2. 1. ΠŸΡƒΡ‚ΡŒ ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠ° SUMO
      • 2. 2. Π‘Ρ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° SUMO ΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²-участников ΠΏΡƒΡ‚ΠΈ сумолирования
        • 2. 2. 1. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚ El
        • 2. 2. 2. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚ Π•
        • 2. 2. 3. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚ Π•Π—
      • 2. 3. ДСсомулированиС
      • 2. 4. Π‘ΡƒΠΌΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ рСгуляторов транскрипции
      • 2. 5. Π‘ΡƒΠΌΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ², ассоциированных с Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠ΅ΠΉ Π”ΠΠš
      • 2. 6. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ ΡΡƒΠΌΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‚ΡΡ in vitro ΠΈ in vivo
      • 2. 7. ΠŸΡ€ΠΎΡ‚Π΅ΠΎΠ»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-зависимый ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ†ΠΈΠΈ SUMO
      • 2. 8. Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ядСрных Ρ‚Π΅Π»Π΅Ρ† PML
  • Π“Π»Π°Π²Π° II. ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
    • 2. 1. ΠœΠΠ’Π•Π Π˜ΠΠ›Π«
      • 2. 1. 1. Π¨Ρ‚Π°ΠΌΠΌΡ‹ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ Π»ΠΈΠ½ΠΈΡ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ‚Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
  • Drosophila melanogaster
    • 2. 1. 2. Π‘Ρ€Π΅Π΄Ρ‹ для выращивания Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Drosophila melanogaster
    • 2. 1. 3. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Ρ‹
    • 2. 1. 4. ΠžΠ»ΠΈΠ³ΠΎΠ½ΡƒΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Π΅ ΠΏΡ€Π°ΠΉΠΌΠ΅Ρ€Ρ‹
    • 2. 2. ΠœΠ•Π’ΠžΠ”Π« 57 2.2.1. БиохимичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
      • 2. 2. 1. 1. ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ для трансформации ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš
      • 2. 2. 1. 2. Врансформация ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π°ΠΌΠΈ
      • 2. 2. 1. 3. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠ³ΠΎ лизиса
      • 2. 2. 1. 4. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½Π°Ρ цСпная рСакция
      • 2. 2. 1. 5. РасщСплСниС Π”ΠΠš эндонуклСазами рСстрикции
      • 2. 2. 1. 6. Агарозный гСль-элСктрофорСз
      • 2. 2. 1. 7. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π”ΠΠš ΠΈΠ· Π³Π΅Π»Ρ ΠΈ ΠΎΡ‡ΠΈΡΡ‚ΠΊΠ° Π”ΠΠš ΠΎΡ‚ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ
      • 2. 2. 1. 8. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ
      • 2. 2. 1. 9. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Π· Π² ΠΏΠΎΠ»ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°ΠΌΠΈΠ΄Π½ΠΎΠΌ Π³Π΅Π»Π΅
      • 2. 2. 1. 10. ΠšΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
      • 2. 2. 1. 11. Врансформация Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
      • 2. 2. 1. 12. Анализ взаимодСйствий Π² Π΄Π²ΡƒΠ³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ систСмС
      • 2. 2. 1. 13. ВрансфСкция S2 ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
      • 2. 2. 1. 14. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π»ΠΈΠ·Π°Ρ‚Π° ΠΈΠ· S2 ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
      • 2. 2. 1. 15. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ядСрного Π»ΠΈΠ·Π°Ρ‚Π° ΠΈΠ· S2 ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
      • 2. 2. 1. 16. Π˜ΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ
      • 2. 2. 1. 17. Π˜ΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
      • 2. 2. 1. 18. Western-гибридизация
      • 2. 2. 1. 18. ΠžΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²
      • 2. 2. 1. 19. РНК-интСрфСрСция
      • 2. 2. 1. 20. ДСтСкция Π±Π΅Π»ΠΊΠΎΠ² Π½Π° ΠΏΠΎΠ»ΠΈΡ‚Π΅Π½Π½Ρ‹Ρ… хромосомах Π΄Ρ€ΠΎΠ·ΠΎΡ„ΠΈΠ»Ρ‹
      • 2. 2. 1. 21. ДСтСкция Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΈΠΌΠ°Π³ΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… дисков Π΄Ρ€ΠΎΠ·ΠΎΡ„ΠΈΠ»Ρ‹
      • 2. 2. 1. 22. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ конструкций, ΡΠΊΡΠΏΡ€ΡΡΡΠΈΡ€ΡŽΡ‰ΠΈΡ… Π±Π΅Π»ΠΊΠΈ CP 190, Mod (mdg4)-67.2 ΠΈ Π΅Π³ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ Π² 82-ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Drosophila
      • 2. 2. 1. 23. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ конструкций для Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ Π΄Π²ΡƒΠ³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ систСмы
      • 2. 2. 1. 24. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ конструкций для трансформации Π² Π»ΠΈΡ‡ΠΈΠ½ΠΊΠΈ ΠΌΡƒΡ… 72 2.2.1. ГСнСтичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
      • 2. 2. 1. Π›ΠΈΠ½ΠΈΠΈ Drosophila melanogaster, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅
      • 2. 2. 2. ЀСнотипичСский Π°Π½Π°Π»ΠΈΠ· экспрСссии Π³Π΅Π½ΠΎΠ²
      • 2. 2. 3. Врансформация эмбрионов Drosophila melanogaster ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ трансгСнных Π»ΠΈΠ½ΠΈΠΉ
  • Π“Π»Π°Π²Π° III. РЕЗУЛЬВАВЫ Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π™ 76 ЧАБВЬ I. Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π• Π’Π—ΠΠ˜ΠœΠžΠ‘Π’Π―Π—Π˜ ΠœΠ•Π–Π”Π£ ΠžΠ‘Π ΠΠ—ΠžΠ’ΠΠΠ˜Π•Πœ Π˜ΠΠ‘Π£Π›Π―Π’ΠžΠ ΠΠ«Π₯ Π’Π•Π›Π•Π¦" И Π˜ΠΠ‘Π£Π›Π―Π¦Π˜Π•Π™
    • 1. ΠœΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ Π±Π΅Π»ΠΊΠ° Mod (mdg4), ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅
    • 2. Локализация Mod (mdg4) ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π² 82-клстках
    • 3. РаспрСдСлСниС ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² Π±Π΅Π»ΠΊΠ° Mod Π² Ρ†ΠΈΡ‚оплазматичСской ΠΈ ΡΠ΄Π΅Ρ€Π½ΠΎΠΉ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… фракциях S2 ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
    • X. -ChIP Π°Π½Π°Π»ΠΈΠ·
    • 4. ВСстированиС ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ Π±Π΅Π»ΠΊΠ° Mod in vivo
    • 5. Локализация ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠ° Mod (mdg4) Π² Π»ΠΈΡ‡ΠΈΠ½ΠΊΠ°Ρ… 86 ЧАБВЬ II. Π’Π«Π―Π’Π›Π•ΠΠ˜Π• ЀАКВОРА, ΠžΠ’Π’Π•Π’Π‘Π’Π’Π•ΠΠΠžΠ“Πž Π—А ΠžΠ‘Π ΠΠ—ΠžΠ’ΠΠΠ˜Π• «Π˜ΠΠ‘Π£Π›Π―Π’ΠžΠ ΠΠ«Π₯ Π’Π•Π›Π•Π¦» Π‘Π•Π›ΠšΠ MOD (MDG4)
    • 1. Π£Π΄Π°Π»Π΅Π½ΠΈΠ΅ сигналов ядСрной Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠ° Mod (mdg4) влияСт Π½Π° Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ ΠΈ Π½Π΅ Π²Π»ΠΈΡΠ΅Ρ‚ Π½Π° Π΅Π³ΠΎ инсуляторныС свойства
    • 2. ΠŸΡ€ΠΎΡ†Π΅ΡΡ сумолирования ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΊΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ спСклов Π±Π΅Π»ΠΊΠ° Mod (mdg4)
    • 3. Π£Π½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ Π‘-ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Π΅ Π΄ΠΎΠΌΠ΅Π½Ρ‹ Π±Π΅Π»ΠΊΠ° Mod (mdg4) Π½Π΅ Π½ΡƒΠΆΠ½Ρ‹ для образования «ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Ρ… Ρ‚Π΅Π»Π΅Ρ†»
    • 4. ΠΠ΅Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ Π±Π΅Π»ΠΎΠΊ Su (Hw) способСн ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ спСклы
    • 5. ВыявлСниС ΡΠΏΠ΅ΠΊΠ»ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° инсуляторных Ρ‚Π΅Π»Π΅Ρ†
  • Π“Π»Π°Π²Π° IV. ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π• Π Π•Π—Π£Π›Π¬Π’ΠΠ’ΠžΠ’
  • Π’Π«Π’ΠžΠ”Π«
  • БПИБОК Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«

ВлияниС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² Π±Π΅Π»ΠΊΠ° Mod (mdg4) Π½Π° ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ «инсуляторных Ρ‚Π΅Π»Π΅Ρ†Β» Π² ядрах ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Drosophila melanogaster (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Около дСсяти Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π±Π΅Π»ΠΊΠΈ Su (Hw) ΠΈ Mod (mdg4) ΠΊΠΎΠ»ΠΎΠΊΠ°Π»ΠΈΠ·ΡƒΡŽΡ‚ΡΡ Π² Π΄ΠΈΡΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… скоплСниях Π² ΡΠ΄Ρ€Π°Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·ΠΈΡ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Drosophila. ΠžΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ исчСзновСниС этих ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π»ΡŽΠΎΡ€Π΅ΡΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… скоплСний ΠΏΡ€ΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠ° Mod (mdg4) соотвСтствовало ослаблСнию Su (Hw) инсулятора, Ρ‚Π°ΠΊΠΈΠ΅ ядСрныС образования Π±Ρ‹Π»ΠΈ Π½Π°Π·Π²Π°Π½Ρ‹ «ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹ΠΌΠΈ Ρ‚Π΅Π»ΡŒΡ†Π°ΠΌΠΈ».

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ эти Ρ‚Π΅Π»ΡŒΡ†Π° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой зафиксированныС Π½Π° ΡΠ΄Π΅Ρ€Π½ΠΎΠΌ матриксС скоплСния ΠΌΠ½ΠΎΠ³ΠΈΡ… разнСсСнных ΠΏΠΎ Π³Π΅Π½ΠΎΠΌΡƒ комплСксов Π”ΠΠš инсулятора Su (Hw). По ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π΅ инсуляторы ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΡΡŽΡ‚ΡΡ Π΄Ρ€ΡƒΠ³ с Π΄Ρ€ΡƒΠ³ΠΎΠΌ ΠΈ Π΄Π΅Ρ€ΠΆΠ°Ρ‚ся вмСстС благодаря Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ ΠΌΠ΅ΠΆΠ΄Ρƒ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ Mod (mdg4) ΠΈ CP 190, Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ образуя «ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½ΠΎΠ²Ρ‹Π΅ ΠΏΠ΅Ρ‚Π»ΠΈ-Π΄ΠΎΠΌΠ΅Π½Ρ‹» ΠΈ ΠΊΠΎΠ½Ρ‚ролируя Π²Ρ‹ΡΠΎΠΊΠΎΡƒΠΏΠΎΡ€ΡΠ΄ΠΎΡ‡Π΅Π½Π½ΡƒΡŽ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠΌΠ°. ΠžΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° ΡΡ‚ΠΎΠΌ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ, Π±Ρ‹Π»Π° Π²Ρ‹Π΄Π²ΠΈΠ½ΡƒΡ‚Π° структурная модСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ инсулятора, ΠΏΠΎΡΡ‚ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ, Ρ‡Ρ‚ΠΎ энхансСр, находящийся Π² ΠΎΠ΄Π½ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ Π΄ΠΎΠΌΠ΅Π½Π΅, Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€, находящийся Π² Π΄Ρ€ΡƒΠ³ΠΎΠΌ Π΄ΠΎΠΌΠ΅Π½Π΅.

К ΡΠΎΠΆΠ°Π»Π΅Π½ΠΈΡŽ, ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ сосрСдоточСниС ΡƒΠ΄Π°Π»Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π”ΠΠš инсуляторов Π²Π½ΡƒΡ‚Ρ€ΠΈ «ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Ρ… Ρ‚Π΅Π»Π΅Ρ†» Π½Π΅ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΎ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π»Π΅Ρ‚. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π»ΠΈ поставлСны ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ:

1. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ связь функционирования 8ΠΈ (Нш)-зависимых инсуляторов ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡ внутриядСрных «ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Ρ… Ρ‚Π΅Π»Π΅Ρ†».

2. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ€ΠΎΠ»ΡŒ сумолирования Π² ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ «ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Ρ… Ρ‚Π΅Π»Π΅Ρ†».

3. ΠŸΠΎΠ½ΡΡ‚ΡŒ Ρ€ΠΎΠ»ΡŒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² инсуляторного комплСкса Π² ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ «ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Ρ… Ρ‚Π΅Π»Π΅Ρ†».

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ отсутствиС прямой взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ внутриядСрных «ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Ρ… Ρ‚Π΅Π»Π΅Ρ†» ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ 8ΠΈ (Нлу)-зависимых инсуляторов Ρƒ ΠžΠ³ΠΎ. Ρ‡ΠΎΡ€Π˜ΠΠ° Ρ‚Π΅1Π°ΠΏΠΎ%Π°$Π₯Π΅Π³.

Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ инсуляторного Π±Π΅Π»ΠΊΠ° Мос1(тс4) Π² ΡΠΎΡΡ‚Π°Π² «ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Ρ… Ρ‚Π΅Π»Π΅Ρ†» ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ зависит ΠΎΡ‚ ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ° Π΅Π³ΠΎ сумолирования ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ инсуляторный Π±Π΅Π»ΠΎΠΊ Π‘Π 190 ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΊΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ «ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Ρ… Ρ‚Π΅Π»Π΅Ρ†».

Π’Ρ‹Π΄Π²ΠΈΠ½ΡƒΡ‚Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° ΠΎ Ρ€ΠΎΠ»ΠΈ «ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Ρ… Ρ‚Π΅Π»Π΅Ρ†» ΠΊΠ°ΠΊ «Ρ„Π°Π±Ρ€ΠΈΠΊΠΈ» ΠΏΠΎ Π±Ρ‹ΡΡ‚Ρ€ΠΎΠΉ сборкС инсуляторного комплСкса ΠΈ Ρ…ранСния Π΅Π³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ².

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. И.Π€. ΠžΠ±Ρ‰Π°Ρ ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ Π³Π΅Π½Π΅Ρ‚ΠΈΠΊΠ°. Новосибирск: Π‘ΠΈΠ±.ΡƒΠ½ΠΈΠ².ΠΈΠ·Π΄-Π²ΠΎ, 2006 Π³. стр 254
  2. И.Π€., БСляСва Π•. Π‘., КолСсникова Π’. Π”., Π’ΠΎΠ»ΠΊΠΎΠ²Π° Π•. И. Π˜Π½Ρ‚Π΅Ρ€ΠΊΠ°Π»ΡΡ€Π½Ρ‹ΠΉ Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½ ΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° сайлСнсинга. ВСстник Π’ΠžΠ“ΠΈΠ‘. 2004, Π’. 8, № 2
  3. И.Π€. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ ΠΈ Π³Π΅Π½Π΅Ρ‚ичСская организация Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² Ρ…ромосомах Π΄Ρ€ΠΎΠ·ΠΎΡ„ΠΈΠ»Ρ‹. Боросовский ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΆΡƒΡ€Π½Π°Π». 2000. Π’. 6 № 2
  4. И.Π€. Π“Π΅Ρ‚Π΅Ρ€ΠΎΡ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½ ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ полоТСния Π³Π΅Π½Π°. Новосибирск, Наука, 1993
  5. Π›.И., ЭкспрСссия Π³Π΅Π½ΠΎΠ². М.: Наука, 2000.Π‘Ρ‚Ρ€. 289
  6. М., Π‘Π΅Ρ€Π³ П., Π“Π΅Π½Ρ‹ ΠΈ Π³Π΅Π½ΠΎΠΌΡ‹: Π² 2-Ρ… Ρ‚. М.: ΠœΠΈΡ€, 1998.- 391 с.
  7. Π›., Биохимия: Π² 3-Ρ… Ρ‚. Π’. Π— М.: ΠœΠΈΡ€, 1985.Π‘Ρ‚Ρ€.128
  8. Apionishev S, Malhotra D, Raghavachari S, Tanda S, Rasooly RS. The Drosophila UBC9 homologuc lesswright mediates the disjunction of homologues in meiosis I. // Genes Cells 2001. V.6.P.215−224.
  9. Azuma Y, Tan SH, Cavenagh MM, Ainsztein AM, Saitoh H, Dasso M. Expression and regulation of the mammalian SUMO-1 El enzyme. // FASEB J. 2001. V.15. P.1825−1827.
  10. Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, et a). Structure determination of the small ubiquitin-related modifier SUMO-1. // J. Mol. Biol. 1998. V.280. P.275−286.
  11. Bencsath KP, Podgorski MS, Pagala VR, Slaughter CA, Schulman BA. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. // J. Biol. Chem. 2002. V.277. P.47 938—47 945.
  12. Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAPl. // Cell. 2002. V.108. P.345−356.
  13. Blackwood E, Kadonaga J. Going the distance: a current view of enhancer action. // Science. 1998. V.281 P.60−63.
  14. Blackwood EM, Kadonaga JT. Going the distance: a current view of enhancer action. // Science. 1998. V.281. P.60−63.
  15. Boddy MN, Howe K, Etkin LD, Solomon E, Freemont PS. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. // Oncogene 1996. V.13. P.971−982.
  16. Bondarenko VA, Liu YV, Jiang YI, Studitsky VM. Communication over a large distance: enhancers and insulators. // Biochem. Cell Biol. 2003 Vol.81. P.241−251.
  17. Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins. // Annu Rev Biochem. 1981. V.50. P.349−383.
  18. Buchner K, Roth P, Schotta G, Krauss V, Saumweber H, Reuter G, Dorn R. Genetic and molecular complexity of the position effect variegation modifier mod (mdg4) in Drosophila. //Genctics. 2000. V.155. P. 141−157.
  19. Bulger M, Groudine M. Looping versus linking: toward a model for long-distance gene activation. // Genes Dev. 1999. V.13. P.2465−2477.
  20. Bulger M, Groudine M. Looping versus linking: toward a model for long-distance
  21. Burke T, Kadonaga J. Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. // Genes Dev. 1996. V.10.P.711−724.
  22. Burley S, Roeder G. Biochemistry and structural biology of transcription factor IID (TFIID). // Annu Rev Biochem. 1996. V.65. P.769−799.
  23. Bylebyl GR, Belichenko I, Johnson ES. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. // J. Biol. Chem. 2003. V.278. P.44 113−44 120.
  24. Cai HN, Shen P. Effects of cis arrangement of chromatin insulators on enhancer-blocking activity. // Science. 2001. V.291. P.49395.
  25. Cai HN, Zhang Z, Adams JR, Shen P. Genomic context modulates insulator activity through promoter competition. // Development. 2001. V.128. P.4339−4347.
  26. Cajiao I, Zhang A, Yoo EJ, Cooke NE, Liebhaber SA. Bystander gene activation by a locus control region. // EMBO J. 2004 V.23(19). P.3854−3863.
  27. Campuzano S, Carramolino L, Cabrera CV, Ruiz-Gomez M, Villares R, Boronat A, Modolell J. Molecular genetics of the achaete-scute gene complex of D. melanogaster. // Cell. 1985. V.40(2) P.327−338.
  28. Capelson M, Corces VG. Boundary elements and nuclear organization. // Biol. Cell 2004. V.96. P.617−629.
  29. Capelson M, Corces VG. The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator. // Mol. Cell. 2005. V.20. P.105−116.
  30. Capelson M. and Corces VG. SUMO conjugation attenuates the activity of the gypsy chromatin insulator // The EMBO Journal. 2006.
  31. Carey M. Ordered recruitment: gene-specific mechanism of transcription activation. // Mol. Cell. 1998. V.10. P.227−236.
  32. Carey M. The enhanceosome and transcriptional synergy. // Cell. 1998. V.92. P.5−8.
  33. Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P. Long-range chromatin regulatory interactions in vivo. //Nat. Genet. 2002. V.32. P.623−626.
  34. Chakalova L, Carter D, Debrand E, Goyenechea B, Horton A, et al. Developmental regulation of the beta-globin gene locus. // Prog Mol Subcell Biol. 2005−38:183−206.
  35. Chen A, Mannen H, Li SS. Characterization of mouse ubiquitin-like SMT3A and SMT3B cDNAs and gene/pseudogenes. // Biochem. Mol. Biol. Int. 1998. V.46. P.1161−1174.
  36. Courey A, Jia S. Transcriptional repression: the long and the short of it. // Genes Dev. 2001. V.15. P.2786−2796.
  37. Desterro JM, Rodriguez MS, Hay RT. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. // Mol. Cell. 1998. V.2. P.233−239.
  38. Desterro JM, Rodriguez MS, Kemp GD, Hay RT. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. // J. Biol. Chem. 1999. V.274. P. 10 618−10 624.
  39. Desterro JM, Thomson J, Hay RT. Ubch9 conjugates SUMO but not ubiquitin. // FEBS Lett. 1997. V.417. P.297−300.
  40. Dillon N, Grosveld F. Chromatin domains as potential units of eukaryotic gene function. // Curr. Opin. Genet. Dev. 1994. V.4. P.260−264.
  41. Donze D, Kamakaka R. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. // EMBO J. 2001. V.20. P.520−531.
  42. Dorsett D. Distant liaisons: long-range enhancer-promoter interactions in Drosophila. // Curr. Opin. Genet. Dev. 1999. V.9. P.505−514.
  43. Dvir A, Conaway J, Conaway R. Mechanism of transcription initiation and promoter escape by RNA polymerase II. // Curr.Opin.Genet.Dev. 2001. V.ll. P.209−214.
  44. Emerson B. Specificity of gene regulation. // Cell. 2002. V.109. P.267−270.
  45. Epner E, Reik A, Cimbora D, Telling A, Bender MA, et al. The beta-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse beta-globin locus. // Mol. Cell. 1998. V.2. P.447−455.
  46. Epps JL, Tanda S. The Drosophila semushi mutation blocks nuclear import of bicoid during embryogenesis. //Curr. Biol. 1998. V.8. P. 1277−1280.
  47. Espinas M, Jimenez-Garcia E, Vaquero A, Canudas S, Bernues J, Azorin F. The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity. // J.Biol.Chem. 1999. V.274. P.16 461−16 469.
  48. Fiering S, Whitelaw E, Martin DI. To be or not to be active: the stochastic nature fly: different paths, same destinations. // Mol. Cell. 2005. V.18. P.395−398.
  49. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. //Nature. 2000. V.408. P.325−330.
  50. Gaszner M., Vazquez J., Schedl P. The Zw5 protein, a component of the ses chromatin domain boundary, is able to block enhancer-promoter interaction. // Genes Dev. 1999. V.13. P.2098−2107.
  51. Gdula DA, Corces VG. Characterization of functional domains of the Su (Hw) protein that mediate the silencing effect of mod (mdg4) mutations. // Genetics. 1997. V.145. P.153−161.
  52. Georgiev P, Kozycina M. Interaction between mutations in the suppressor of Hairy wing and modifier of mdg4 genes of Drosophila melanogaster affecting the phenotype of gypsy-induced mutations. // Genetics. 1996. V.142. P.425−436.
  53. Georgiev P., Kozycina M. Interaction between mutations in the suppressor of Hairy wing and modifier of mdg4 genes of Drosophila melanogaster affecting the phenotype of gypsy-induced mutations. // Genetics. 1996. V.142. P.425136.
  54. Gerasimova TI, Byrd K, Corces VG. A chromatin insulator determines the nuclear localization of DNA. // Mol. Cell. 2006. P.1025−1035.
  55. Gerasimova TI, Byrd K, Corces VG. A chromatin insulator determines the nuclear localization of DNA. // Mol. Cell. 2000. V.6. P.1025−1035.
  56. Gerasimova TI, Corces VG. Chromatin insulators and boundaries: effects on transcription and nuclear organization. // Annu. Rev. Genet. 2001. V.35. P. 193−208.
  57. Gerasimova TI, Corces VG. Polycomb and trithorax group proteins mediate the function of a chromatin insulator. // Cell. 1998. V.92. P.511−521.
  58. Geyer PK, Clark I. Protecting against promiscuity: the regulatory role of insulators. // Cell. Mol. Life Sci. 2002. V.59. P.2112−2127.
  59. Geyer PK. The role of insulator elements in defining domains of gene expression. // Curr. Opin. Genet. Dev. 1997. V.7. P.242−248.
  60. Ghosh D, Gerasimova T, Corces V. Interactions between the Su (Hw) and Mod (mdg4) proteins required for gypsy insulator function. // EMBO J. 2001. V.20. P.2518−2527.
  61. Ghosh D, Gerasimova TI, Corces VG. Interactions between the Su (Hw) and Mod (mdg4) proteins required for gypsy insulator function. // EMBO J. 2001. V.20. P.2518−2527.
  62. Gill, G. Something aboutSUMOinhibits transcription. // Curr. Opin. Genet. Dev. 2005. V.15. P.536 541.
  63. Glass C, Rosenfeld M. The coregulator exchange in transcriptional functions of nuclear receptors. // Genes Dev. 2000. V.14 P.121−141.
  64. Golovnin A, Birukova I, Romanova O, Silicheva M, Parshikov A, et al. An endogenous Su (Hw) insulator separates the yellow gene from the Achaete-scute gene complex in Drosophila. // Development 2003. V.130. P.3249−3258.
  65. Golovnin A, Mazur A, Kopantseva M, Kurshakova M, Gulak P, Gilmore B, Whitfield W, Geyer P, Pirrotta V, Georgiev P. Integrity of the Mod (mdg4)-67.2 BTB domain is critical to insulator function in Drosophila. // Mol. Cell Biol. 2007. V.27. P.963−974.
  66. Guasconi V, Souidi M, Ait-Si-Ali S. Nuclear Positioning, Gene Activity and Cancer. // Cancer Biology & Therapy. 2005. V.4. P.134−138.
  67. Hampsey M. Molecular genetics of the RNA polymerase II general transcription machinery. // Microbiology and Molecular Biology Reviews. 1998. V.62. P.465−503.
  68. Hardeland U, Steinacher R, Jiricny J, S char P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. // EMBO J. 2002. V.21. P.1456−1464.
  69. Harrison D. A., Gdula D. A., Coyne R.S., Corces V. G. A leucine zipper domain of the suppressor of Hairy-wing protein mediates its repressive effect on enhancer function. // Genes Dev. 1993. V.7. P.1966−1978.
  70. Hatzis P, Talianidis I. Dynamics of enhancer-promoter communication during differentiation-induced gene activation. // Mol Cell. 2002. V.10(6). P. 1467−1477.
  71. Hay, R. T. Role of ubiquitin-like proteins in transcriptional regulation. // Ernst Schering Res. Found. Workshop, 2006. P. 173 192.
  72. Hayashi T, Seki M, Maeda D, Wang W, Kawabe Y, et al. Ubc9 is essential for viability of higher eukaryotic cells. // Exp. Cell Res. 2002. V.280. P.212−221.
  73. Hershko A, Ciechanover A. The ubiquitin system. // Annu.Rev. Biochem. 1998. V.67. P.425−479.
  74. Hochstrasser M. SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. //Cell 2001. V. 107. P.5−8.
  75. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. // Nature 2002.
  76. Hofmann H, Floss S, Stamminger T. Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. // J. Virol. 2000. V.74. P.2510−2524.
  77. Hofmann, T.G., Will, H. Body language: the function of PML nuclear bodies in apoptosis regulation. // Cell Death Differ. 2003. V.10. P.1290−1299.
  78. Howe K, Williamson J, Boddy N, Sheer D, Freemont P, Solomon E. The ubiquitin-homology gene PIC1: characterization of mouse (Picl) and human (UBL1) genes and pseudogenes. //Genomics 1998.V.47. P.92−100.
  79. HoY, Elefant F, Cooke N, Liebhaber S. A defined locus control region determinant links chromatin domain acetylation with long-range gene activation. // Mol. Cell. 2002. V.9. P.291−302.
  80. Jackson PK. A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. // Genes Dev.2001. V.15. P.3053−3058.
  81. Jensen, K., Shiels, C., Freemont, P. S. PML protein isoforms and the RBCC/TRIM motif. // Oncogene. 2001. V.20. P.7223−7233.
  82. Johnson Erica S. Protein modification by sumo 2004. // Annu. Rev. Biochem. V.73. P.355−382.
  83. Johnson ES, Blobel G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. // J. Biol. Chem. 1997. V.272. P.26 799−26 802.
  84. Johnson ES, Blobel G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. // J. Cell Biol. 1999. V.147. P.981−994.
  85. Johnson ES, Gupta AA. An E3-like factor that promotes SUMO conjugation to the yeast septins. // Cell 2001. V.106. P. 735−744.
  86. Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aoslp/Uba2p heterodimer. // EMBO J. 1997. V.16. P.5509−5519.
  87. Jones D, Crowe E, Stevens TA, Candido EP. Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. // Genome Biol. 2002.
  88. Kagey MH, Melhuish TA, Wotton D. The polycomb protein Pc2 is a SUMO E3. //Cell 2003. V.113. P. 127−137.
  89. Kahyo T, Nishida T, Yasuda H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. //Mol. Cell. 2001. V.8. P.713−718.
  90. Kamitani T, Kito K, Nguyen HP, Fukuda-Kamitani T, Yeh ET. Characterization of a second member of the sentrin family of ubiquitin-like proteins. // J. Biol. Chem. 1998. V.273. P. 11 349−11 353.
  91. Kamitani T, Nguyen HP, Yeh ET. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. // J. Biol. Chem. 1997. V.272. P. 1 400 114 004.
  92. Katsani K, Hajibagheri M, Verrijzer C. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology. // EMBO J. 1999. V.18. P.698−708.
  93. Kellum R, Schedl P. A group of scs elements function as domain boundaries in an enhancer-blocking assay. // Mol. Cell Biol. 1992. V.12. P.2424−2431.
  94. Kellum R, Schedl P. A position-effect assay for boundaries of higher order chromosomal domains. // Cell. 1991. V.64. P.941−950.
  95. Kellum R., Schedl P. A group of scs elements function as domain boundaries in an enhancer-blocking assay. // Mol. Cel. Biol. 1992. V.12. P.2424−2431.
  96. Kim A, Dean A. Developmental stage differences in chromatin subdomains of thebeta-globin locus. // Proc. Natl. Acad. Sci. USA. 2004. V.101. P.7028−7033
  97. Kim J., Shen B., Rosen C., Dorsett D. The DNA-binding and enhancer-blocking domains of the Drosophila suppressor of Hairy-wing protein. // Mol. Cel. Biol. 1996. V.16. P.3381−3392.
  98. Kim KI, Baek SH, Chung CH. Versatile protein tag, SUMO: its enzymology and biological function. // J. Cell Physiol. 2002. V.191. P.257−268.
  99. Kosak ST, Groudine M. Form follows function: the genomic organization of cellular differentiation. // Genes Dev. 2004. V.18. P.1371−1384.
  100. Krebs, J.E., Fry, C.J., Samuels, M.L., and Peterson, C.L. Global role for chromatin remodeling enzymes in mitotic gene expression. // Cell. 2000. V.102. P.587−598.
  101. Kuhn EJ, Viering MM, Rhodes KM, Geyer PK. A test of insulator interactions in Drosophila. // EMBO J. 2003. V.22. P.2463−2471.
  102. Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, et al. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMOl and -2 conjugates is increased by stress. // J. Biol. Chem. 2003. V.278. P.6862−6872.
  103. Laemmli UK, Kas E, Poljak L, Adachi Y. Scaffold-associated regions: cis-acting
  104. Lee PS, Chang C, Liu D, Derynck R. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling. // J. Biol. Chem. 2003. V.278. P.27 853−27 863.
  105. Lee T, Young R. Transcription of eukaryotic protein-coding genes. // Annu Rev Genet. 2000. V.34. P.77−137.
  106. Lefstin J, Yamamoto K. Allosteric effects of DNA on transcriptional regulators. // Nature. 1998. V.392 P.885−888.
  107. Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. // Genes Dev. 2000. V.14. P.2551−2569.
  108. Li Y, Wang H, Wang S, Quon D, Liu YW, Cordell B. Positive and negative regulation of APP amyloidogenesis by sumoylation. // Proc. Natl. Acad. Sci. USA. 2003. V.100. P.259−264.
  109. Lim C, Santoso B, Boulay T, Dong E, Ohler U, Kadonaga J. The MTE, a new core promoter element for transcription by RNA polymerase II. // Genes Dev. 2004. V.18. P.1606−1617.
  110. Lin X, Liang M, Liang YY, Brunicardi FC, Feng XH. SUMO-l/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. // J. Biol. Chem. 2003. V.278. P.31 043−31 048.
  111. Lois LM, Lima CD, Chua NIL Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. // Plant Cell. 2003. V.15. P.1347−1359.
  112. Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAPl to nuclear pore complex protein RanBP2. // Cell. 1997. V.88. P.97−107.
  113. Mahajan R, Gerace L, Melchior F. Molecular characterization of the SUMO-1 modification of RanGAPl and its role in nuclear envelope association. // J. Cell Biol. 1998. V.140. P.259−270.
  114. Majumder P, Cai HN. The functional analysis of insulator interactions in the Drosophila embryo. // Proc. Natl. Acad. Sci. USA. 2003. V.100. P.5223.
  115. Mannen H, Tseng HM, Cho CL, Li SS. Cloning and expression of human homolog FISMT3 to yeast SMT3 suppressor of MIF2 mutations in a centromere protein gene. // Biochem. Biophys. Res. Commun. 1996. V.222. P. 178−180.
  116. Matunis MJ, Coutavas E, Blobel G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAPlbetween the cytosol and the nuclear pore complex. // J. Cell Biol. 1996. V.135. P.1457−1470.
  117. McKenna N, O’Malley B. Combinatorial control of gene expression by nuclear receptors and coregulators. // Cell. 2002. V.108. P.465−474. Melchior F. SUMO nonclassical ubiquitin.// Annu. Rev. Cell Dev.Biol. 2000. V.16. P.591−626.
  118. Meulmeester E. and Melchior F. SUMO // Nature 2008 V.452.
  119. Mongelard F, Corces VG. Two insulators are not better than one. // Nat. Struct.
  120. Biol. 2001. V.8. P.192−194.
  121. Muller S, Hoege C, Pyrowolakis G, Jentsch S. SUMO, ubiquitin’s mysterious cousin. //Nat. Rev. Mol. Cell Biol. 2001. V.2. P.202−210.
  122. Muravyova E, Golovnin A, Gracheva E, Parshikov A, Belenkaya T, et al. Loss of insulator activity by paired Su (Hw) chromatin insulators. // Science. 2001. V.291. P.49598.
  123. Myer VE, Young RA. RNA polymerase II holoenzymes and subcomplexes. // J Biol Chem. 1998. V.273. P.27 757−27 760.
  124. Narlikar G, Fan H, Kingston R. Cooperation between complexes that regulate chromatin structure and transcription. // Cell. 2002. V.108. P.475−487.
  125. Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H. // Biochem. Biophys. Res. Commun. 1999. V.254. P.693−698.
  126. Orphanides G, Lagrange T, Reinberg D. The general transcription factors of RNA polymerase II. // Genes Dev. 1996. V.10 P.2657−2683.
  127. Orphanides G, Reinberg D. A unified theory of gene expression // Cell. 2002. V.108 P.439−451.
  128. Pagans S, Ortiz-Lombardia M, Espinas M, Bernues J, Azorin F. The Drosophila transcription factor tramtrack (TTK) interacts with Trithorax-like (GAGA) and represses GAGA-mediated activation. //NAR. 2002. V.30. P.4406−4413.
  129. Pai CY, Lei EP, Ghosh D, Corces VG. The centrosomal protein CP 190 is a component of the gypsy chromatin insulator. // Mol. Cell. 2004. V.16. P.737−748.
  130. Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W. The betaglobin nuclear compartment in development and erythroid differentiation. // Nat. Genet. 2003. V.35. P.190−194.
  131. Pandolfi PP, Tian Huai Shen, Hui-Kuan Lin, Scaglioni PP, Yung MT. The Mechanisms of PML-Nuclear Body Formation // Molecular Cell. 2006. V.24. P.331−339.
  132. Parkhurst S.M., Harrison D.A., Remington M.P., Spana C., Kelley R.L., et al. //Genes Dev. 1988. V.2. P.1205−1215.
  133. Parnell TJ, Geyer PK. Differences in insulator properties revealed by enhancer blocking assays on episomes. // EMBO J. 2000. V.19. P.5864−5874.
  134. Parnell TJ, Viering MM, Skjesol A, Helou C, Kuhn EJ, Geyer PK. An endogenous suppressor of hairy-wing insulator separates regulatory domains in Drosophila. //Proc. Natl. Acad. Sei. USA 2003. V.100. P. 13 436−13 441.
  135. Parnell TJ, Kuhn EJ, Gilmore BL, Helou C, Wold MS, Geyer PK. Identification of genomic sites that bind the Drosophila suppressor of Hairy-wing insulator protein // Mol Cell Biol. 2006. V.26(16). P.5983−5993.
  136. Perrod S, Gasser SM. Long-range silencing and position effects at telomeres and centromeres: parallels and differences.// Cell Mol. Life Sei. 2003. V.60. P.2303−2318.
  137. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F. The nucleoporin RanBP2 has SUMOl E3 ligase activity. // Cell 2002. V.108. P.109−120.
  138. Pickart CM. Mechanisms underlying ubiquitination. // Annu. Rev. Biochem. 2001. V.70. P.503−533.
  139. Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, et al. Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. // Proc. Natl. Acad. Sei. USA 1995. V.92. P.3804−3808.
  140. Pirrotta V, Gross DS. Epigenetic silencing mechanisms in budding yeast and fruit fly: different paths, same destinations. // Mol. Cell. 2005. V.18. P.395−398.
  141. Razin SV, FarrellCM, Recillas-Targa F. Genomic domains and regulatory elements operating at the domain level. // Int. Rev. Cytol. 2003. V.226. P.63−125.
  142. Reynaud CA, Imaizumi-Scherrer MT, Scherrer K. The size of the transcriptional units of the avian globin genes defined at the premessenger RNA level. // J. Mol. Biol. 1980.
  143. Roeder R. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. // Cold Spring Harbor Symp Quant Biol. 1998. V.58. P.201−218.
  144. Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. // Annu Rev Biochem. 2003. V.72. P.481−516.
  145. Rusche LN, Rine J. Conversion of a gene-specific repressor to a regional silencer. // Genes Dev. 2001. V.15. P.955−967.
  146. Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R. PIASy, a nuclear matrix-associatcd SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. // Genes Dev. 2001. V.15. P.3088−3103.
  147. Saitoh H, Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. // J. Biol. Chem. 2000. V.275. P.6252−6258.
  148. Schmidt, D. and Muller, S. PIAS/SUMO: new partners in transcriptional regulation. // Cell. Mol. Life Sci. 2003. V.60. P.2561 -2574.
  149. Schubeler D, Francastel C, CimboraDM, Reik A, Martin DI, Groudine M. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. // Genes Dev. 2000. V.14. P.940−950
  150. Schubeler D, Groudine M, Bender MA. The murine beta-globin locus control region regulates the rate of transcription but not the hyperacetylation of histones at the active genes. // Proc. Natl. Acad. Sci. USA. 2001. V.98. P. 11 432−11 437
  151. Schwartz DC, Hochstrasser M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. // Trends Biochem. Sci. 2003. V.28. P.321−328.
  152. Scott K.S., Geyer P.K. Effects of the su (Hw) insulator protein on the expression of the divergently transcribed Drosophila yolk protein genes. // EMBO J. 1995. V.14. P.6258−6279.
  153. Scott KC, Taubman AD, Geyer PK. Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength. // Genetics 1999. V.15. P.787−798.
  154. Seeler JS, Dejean A. Nuclear and unclear functions of SUMO. // Nat. Rev.Mol. Cell Biol. 2003. V.4. P.690−699.
  155. Seufert W, Futcher B, Jentsch S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. //Nature 1995. V.373. P.78−81.
  156. Sharrocks, A. D. PIAS proteins and transcriptional regulation more than just SUMO E3 ligases? // Genes Dev. 2006. V.20. P.754 — 758.
  157. Shayeghi M, Doe CL, Tavassoli M, Watts FZ. Characterisation of Schizosaccharomyces pombe rad31, a UBA-related gene required for DNA damage tolerance. //Nucleic Acids Res. 1997. V.25. P. 1162−1169.
  158. Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen DJ. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. // Genomics. 1996. V.36. P.271−279.
  159. Shuai K. Modulation of STAT signaling by STAT-interacting proteins. // Oncogene 2000. V.19. P.2638−2644.
  160. Smale S. Core promoters: active contributors to combinatorial gene regulation. // Genes Dev. 2001. V.15. P.2503−2508.
  161. Smale S. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. // Biochim Biophys Acta. 1997. V.1351 P.73−88.
  162. Sproul D, Gilbert N, BickmoreWA. The role of chromatin structure in regulating the expression of clustered genes. //Nat Rev Genet. 2005. V.6(10) P.775−781.
  163. Strahl B, Allis C. The language of eovalent histone modifications. // Nature. 2000. V.403. P.41−45.
  164. Struhl K. Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast. // Cell. 1987. V.49. P.295−297.
  165. Struhl, K. Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. // Cell. 1999. V.98. P. l-4.
  166. Takahashi Y, Toh-e A, Kikuchi Y. A novel factor required for the SUM01/Smt3 conjugation of yeast septins. // Gene 2001. V.275. P.223−231.
  167. Takahashi Y, Toh-e A, Kikuchi Y. Comparative analysis of yeast PIAS-type SUMO ligases in vivo and in vitro. // J. Biochem. 2003. V.133. P.415122.
  168. Tatham MH, Chen Y, Hay RT. Role of two residues proximal to the active site of Ubc9 in substrate recognition by the Ubc9. SUMO-1 thiolester complex. // Biochemistry 2003. V.42. P.3168−3179.
  169. Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. // J. Biol. Chem. 2001. V.276. P.35 368−35 374.
  170. Tatham MH, Kim S, Yu B, Jaffray E, Song J, et al. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. // Biochemistry 2003. V.42. P.9959−9969.
  171. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W. Looping and interaction between hypersensitive sites in the active beta-globin locus. // Mol Cell. 2002. V.10(6) P.1453−1465.
  172. Tong H, Hateboer G, Perrakis A, Bernards R, Sixma TK. Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. // J. Biol. Chem. 1997.
  173. Turner B.M. Histone acetylation and an epigenetic code // BioEssays. 2000. V. 22. P.836−845
  174. Udvardy A, Maine E, Schedl P. The 87A7 chromomere. Identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. Hi Mol Biol. 1985. V.185(2) P.341−358.
  175. Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, et al. Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. // Mol. Cell. 2005. V.17. P.453−462.
  176. Valenzuela L, Gangadharan S, KamakakaRT. Analyses of SUM1−1-mediated longrange repression. // Genetics. 2006. V.172. P.99−112.
  177. Valenzuela L. and Kamakaka R.T. Chromatin Insulators. // Annu. Rev. Genet. 2006. Vol.40. P. 107−38
  178. Verdel A, Moazed D. RNAi-directed assembly of heterochromatin in fission yeast. //FEBS Lett. 2005. V.579. P.5872−5878.
  179. Verger A, Perdomo J, Crossley M. Modification with SUMO. A role in transcriptional regulation. // EMBO Rep.2003.V.4. P.137−142.
  180. Vijay-Kumar S, Bugg CE, Cook WJ. //J. Mol. Biol. 1987. V.194. P.531−544.
  181. Walden H, Podgorski MS, Schulman BA. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. // Nature. 2003. V.422. P.330−334.
  182. Wei W, Brennan MD. The gypsy insulator can act as a promoter-specific transcriptional stimulator. //Mol. Cell Biol. 2001. V.21. P.7714−7720.
  183. Weis L, Reinberg D. Transcription by RNA polymerase II: initiator-directed formation of transcription-competent complexes. // FASEB J. 1992 V.6. P.3300−3309.
  184. West A, Gaszner M, Felsenfeld G. Insulators: many functions, many mechanisms. // Genes Dev. 2002. V.16. P.271−288.
  185. West AG, Fraser P. Remote control of gene transcription. // Hum. Mol. Genet. 2005. V.14(Spec. No 1). P.101−111.
  186. West AG, Gaszner M, Felsenfeld G. Insulators: many functions, many mechanisms. // Genes Dev. 2002. V.16. P.271−288.
  187. Wijgerde M, Grosveld F, Fraser P. Transcription complex stability and chromatin dynamics in vivo. //Nature. 1995. V.377(6546) P.209−213.
  188. Xu Q, Li M, Adams J, Cai HN. Nuclear location of a chromatin insulator in Drosophila melanogaster. // J Cell Sci. 2004. V. l 17(Pt 7) P. 1025−1032.
  189. Yamaguchi, T., Sharma, P., Athanasiou, M., Kumar, A., Yamada, S. and Kuehn, M. R. Mutation of SENPl/SuPr-2 reveals an essential role for dcsumoylation in mouse development. // Mol. Cell. Biol. 2005. V.25. P.5171 5182.
  190. Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. // Genes Dev. 2001. V.15. P.2343−2360.
  191. Zhao K., Hart C.M., Laemmli U.K. Visualization of chromosomal domains with boundary element-associated factor BEAF-32. // Cell. 1995. V.81. P.879−889.
  192. Zhong, S., Salomoni, P., Pandolfi, P.P. The transcriptional role of PML and the nuclear body. // Nat. Cell Biol. 2000. V.2. P.85−90.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ