Π”ΠΈΠΏΠ»ΠΎΠΌ, курсовая, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°
ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚

Π€ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС ΠΈ каталитичСскиС свойства Ρ†Π΅ΠΎΠ»ΠΈΡ‚ΠΎΠ² Ρ‚ΠΈΠΏΠ° ZSM-5, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»Π°ΠΌΠΈ

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… скоростСй установлСна коррСляция ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΈΡΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΊΠ°Ρ‚алитичСской Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Π² ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠΈ основных ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата. Показано, Ρ‡Ρ‚ΠΎ процСсс Π°Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π΅Ρ‚ Π½Π° Π»ΡŒΡŽΠΈΡΠΎΠ²ΡΠΊΠΈΡ… Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ… срСднСй силы, Π° Π·Π° ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΏΠ°Π½-Π±ΡƒΡ‚Π°Π½ΠΎΠ²ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‚ прСимущСствСнно ΡΠΈΠ»ΡŒΠ½Ρ‹Π΅ брСнстСдовскиС кислотныС Ρ†Π΅Π½Ρ‚Ρ€Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ РЀА, БЭМ, EXAFS, ВГА, Π’ΠŸΠ’ Н2, Π’ΠŸΠ” NH3… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • 1. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅
  • 2. ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
    • 2. 1. Π¦Π΅ΠΎΠ»ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Ρ‹ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠ² Π‘Π·-Бю
      • 2. 1. 1. Π’ΠΈΠΏΡ‹ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² Π°Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ
      • 2. 1. 2. ΠœΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π°Π³Π΅Π½Ρ‚Ρ‹
      • 2. 1. 3. ВлияниС способа ввСдСния ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° Π½Π° ΠΊΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ
      • 2. 1. 4. ВлияниС Π³Π°Π·Π°-носитСля Π½Π° Ρ€Π°Π±ΠΎΡ‚Ρƒ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π°
      • 2. 1. 5. ДСзактивация ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² Π°Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ
    • 2. 2. ΠŸΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½Ρ‹Π΅ процСссы ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π»Π΅Π³ΠΊΠΈΡ… ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠ²
      • 2. 2. 1. Π¦ΠΈΠΊΠ»Π°Ρ€
      • 2. 2. 2. Аромакс
      • 2. 2. 3. ΠŸΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠΈΠ½Π³
      • 2. 2. 4. Π¦Π΅ΠΎΡ„ΠΎΡ€ΠΌΠΈΠ½Π³
      • 2. 2. 5. М2-Ρ„ΠΎΡ€ΠΌΠΈΠ½Π³
      • 2. 2. 6. ΠΠ»ΡŒΡ„Π°-процСсс
    • 2. 3. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ прСвращСния Π»Π΅Π³ΠΊΠΈΡ… ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠ² Π½Π° Ρ†Π΅ΠΎΠ»ΠΈΡ‚Π½Ρ‹Ρ… ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π°Ρ…
    • 2. 4. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ приготовлСния Π±ΠΈΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ†Π΅ΠΎΠ»ΠΈΡ‚Π½Ρ‹Ρ… ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ²
      • 2. 4. 1. ΠŸΡ€ΠΎΠΏΠΈΡ‚ΠΊΠ°
      • 2. 4. 2. Π–ΠΈΠ΄ΠΊΠΎΡ„Π°Π·Π½Ρ‹ΠΉ ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΎΠ±ΠΌΠ΅Π½
      • 2. 4. 3. Π’Π²Π΅Ρ€Π΄ΠΎΡ„Π°Π·Π½Ρ‹ΠΉ ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΎΠ±ΠΌΠ΅Π½
      • 2. 4. 4. НанСсСниС ΠΈΠ· Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ„Π°Π·Ρ‹
      • 2. 4. 5. Π˜Π·ΠΎΠΌΠΎΡ€Ρ„Π½ΠΎΠ΅ Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅
      • 2. 4. 6. Π‘ΡƒΠ»ΡŒΡ„ΠΈΠ΄Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄
  • 3. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ
    • 3. 1. ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ²
      • 3. 1. 1. Π‘ΠΈΠ½Ρ‚Π΅Π· мСталлосодСрТащих Ρ†Π΅ΠΎΠ»ΠΈΡ‚ΠΎΠ² Ρ‚ΠΈΠΏΠ° ZSM
      • 3. 1. 2. ΠŸΠΎΡΡ‚ΡΠΈΠ½Ρ‚Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ
    • 3. 2. ИсслСдованиС Ρ„ΠΈΠ·ΠΈΠΊΠΎ — химичСских свойств ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ²
    • 3. 3. ИсслСдованиС каталитичСских свойств
      • 3. 3. 1. ΠšΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ установка
      • 3. 3. 2. Анализ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ
      • 3. 3. 3. РасчСт ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ каталитичСского процСсса
        • 3. 3. 3. 1. ΠŸΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΏΠ°Π½Π°
        • 3. 3. 3. 2. ΠŸΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата
      • 3. 3. 4. Π₯арактСристики ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… вСщСств
  • 4. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅
    • 4. 1. Ароматизация ΠΏΡ€ΠΎΠΏΠ°Π½Π°
      • 4. 1. 1. Π€ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС свойства ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ²
        • 4. 1. 1. 1. ΠžΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° мСталлсодСрТащих ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ
        • 4. 1. 1. 2. ИзмСнСниС состояния мСталлсодСрТащих частиц Π² Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ срСдС
        • 4. 1. 1. 3. ΠšΠΈΡΠ»ΠΎΡ‚Π½Ρ‹Π΅ свойства ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ²
      • 4. 1. 2. ΠšΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свойства синтСзированных систСм
        • 4. 1. 2. 1. ΠŸΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΏΠ°Π½Π° Π½Π° ΡΠΈΠ»ΠΈΠΊΠ°Π»ΠΈΡ‚Π½Ρ‹Ρ… ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π°Ρ…
        • 4. 1. 2. 2. ΠŸΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΏΠ°Π½Π° Π½Π° ΠΌΠ΅Ρ‚аллсодСрТащих Ρ†Π΅ΠΎΠ»ΠΈΡ‚Π½Ρ‹Ρ… систСмах
        • 4. 1. 2. 3. ВлияниС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° приготовлСния ΠΈ ΡΠΎΡΡ‚Π°Π²Π° цинксодСрТащих ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² Π½Π° ΠΏΡ€ΠΎΡ†Π΅ΡΡ Π°Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠΏΠ°Π½Π°
    • 4. 2. ΠŸΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата
      • 4. 2. 1. ВлияниС условий Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΈ ΡΠΎΡΡ‚Π°Π²Π° ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° Π½Π° ΠΏΡ€ΠΎΡ†Π΅ΡΡ конвСрсии Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата
        • 4. 2. 1. 1. Π’Ρ‹Π±ΠΎΡ€ условий провСдСния Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ
        • 4. 2. 1. 2. ΠšΠΎΡ€Ρ€Π΅Π»ΡΡ†ΠΈΡ каталитичСских ΠΈ ΠΊΠΈΡΠ»ΠΎΡ‚Π½Ρ‹Ρ… свойств ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² H/ZSM-5 Ρ€Π°Π·Π½ΠΎΠ³ΠΎ состава
        • 4. 2. 1. 3. ΠšΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свойства ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»Π°ΠΌΠΈ
        • 4. 2. 1. 4. ВлияниС состава цинксодСрТащих Ρ†Π΅ΠΎΠ»ΠΈΡ‚Π½Ρ‹Ρ… ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² Π½Π° ΠΊΠ°Ρ‚алитичСскоС ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата
        • 4. 2. 1. 5. Роль Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² Ρ€Π°Π·Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π² ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠΈ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата
        • 4. 2. 1. 6. ΠšΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свойства цинксодСрТащих Ρ†Π΅ΠΎΠ»ΠΈΡ‚ΠΎΠ², ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ
        • 4. 2. 1. 7. БопоставлСниС ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ цинксодСрТащих ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ², ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ
      • 4. 2. 2. ΠŸΠΈΠ»ΠΎΡ‚Π½Ρ‹Π΅ испытания
    • 4. 3. Π’Ρ‹Π²ΠΎΠ΄Ρ‹

Π€ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС ΠΈ каталитичСскиС свойства Ρ†Π΅ΠΎΠ»ΠΈΡ‚ΠΎΠ² Ρ‚ΠΈΠΏΠ° ZSM-5, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»Π°ΠΌΠΈ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π¦Π΅ΠΎΠ»ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Ρ‹, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚Π°Π»Π»Π°ΠΌΠΈ ΠΈ ΠΈΡ… ΠΎΠΊΡΠΈΠ΄Π°ΠΌΠΈ, ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π² Π½Π΅Ρ„Ρ‚Π΅ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΉ ΠΈ Π½Π΅Ρ„тСхимичСской ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ. Π’Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ получСния Ρ‚Π°ΠΊΠΈΡ… каталитичСских ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² являСтся ΠΏΡ€ΠΎΠΏΠΈΡ‚ΠΊΠ° V. носитСля растворами солСй ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ тСрмичСским Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π²Π²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ прСкурсора. Однако этот ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π΅ Π²ΡΠ΅Π³Π΄Π° позволяСт Π΄ΠΎΠ±ΠΈΡ‚ΡŒΡΡ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ распрСдСлСния ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° Π² ΠΎΠ±ΡŠΠ΅ΠΌΠ΅ носитСля, ΠΏΡ€ΠΈ этом Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π΅Π³ΠΎ Ρ‡Π°ΡΡ‚ΡŒ оказываСтся Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π½Π° Π²Π½Π΅ΡˆΠ½Π΅ΠΉ повСрхности кристаллов Ρ†Π΅ΠΎΠ»ΠΈΡ‚ΠΎΠ², Ρ‡Ρ‚ΠΎ сниТаСт ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Ρ‚Π°ΠΊΠΈΡ… систСм. Π’ ΡΠ²ΡΠ·ΠΈ с ΡΡ‚ΠΈΠΌ, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² модифицирования Ρ†Π΅ΠΎΠ»ΠΈΡ‚Π½Ρ‹Ρ… ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ², ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ распрСдСлСниС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π°, прСдставляСт большой Π½Π°ΡƒΡ‡Π½Ρ‹ΠΉ ΠΈ ΠΏΡ€Π°ΠΊΡ‚ичСский интСрСс.

Π’ ΡΡ‚ΠΎΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ пСрспСктивным прСдставляСтся Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ синтСза цСолитадля этой Ρ†Π΅Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈΠ·ΠΎΠΌΠΎΡ€Ρ„Π½ΠΎΠ³ΠΎ замСщСния ΠΈ ΠΈΠ½ΠΊΠ°ΠΏΡΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ. ΠŸΠ΅Ρ€Π²Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ позволяСт Π²ΡΡ‚Ρ€Π°ΠΈΠ²Π°Ρ‚ΡŒ Π°Ρ‚ΠΎΠΌΡ‹ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΌΠ΅Ρ‚Π°Π»Π»Π° Π² Ρ†Π΅ΠΎΠ»ΠΈΡ‚Π½Ρ‹ΠΉ каркас, Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ случаС происходит Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ высокодиспСрсной Ρ„Π°Π·Ρ‹ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° Π² ΠΊΡ€ΠΈΡΡ‚Π°Π»Π»Ρ‹ Ρ†Π΅ΠΎΠ»ΠΈΡ‚Π°. Однако, Ссли ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠ·ΠΎΠΌΠΎΡ€Ρ„Π½ΠΎΠ³ΠΎ замСщСния Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ достаточно Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ ΠΈΠ½Ρ„ормация ΠΎ ΠΌΠ΅Ρ‚аллсодСрТащих Ρ†Π΅ΠΎΠ»ΠΈΡ‚Π½Ρ‹Ρ… систСмах, ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ инкапсулирования, Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ встрСчаСтся ΠΊΡ€Π°ΠΉΠ½Π΅ Ρ€Π΅Π΄ΠΊΠΎ. Π­Ρ‚ΠΎ обуславливаСт Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠΉ Π½Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² приготовлСния Π±ΠΈΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² ΠΏΡƒΡ‚Π΅ΠΌ инкапсулирования.

Π’ Π½Π°ΡΡ‚оящСй Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ каталитичСскиС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ с ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π°ΠΌΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ², Π²Π½Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΌΠΈ Π² Ρ†Π΅ΠΎΠ»ΠΈΡ‚. Они Π±Ρ‹Π»ΠΈ испытаны Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ°Ρ… Π°Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠΏΠ°Π½Π° ΠΈ ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΡ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата Π² Π²Ρ‹ΡΠΎΠΊΠΎΠΎΠΊΡ‚Π°Π½ΠΎΠ²Ρ‹Π΅ Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°. Π­Ρ‚ΠΈ процСссы Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π² ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½Ρ‹Ρ… ΠΌΠ°ΡΡˆΡ‚Π°Π±Π°Ρ…, ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ, ΠΊΠ°ΠΊ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ², Π΄ΠΎΠ»ΠΆΠ½ΠΎ привСсти ΠΊ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ экономичСскому эффСкту.

2. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«.

4.3. Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ синтСза Ρ†Π΅ΠΎΠ»ΠΈΡ‚ΠΎΠ² Ρ‚ΠΈΠΏΠ° ZSM-5, основанный Π½Π° ΠΊΡ€ΠΈΡΡ‚Π°Π»Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π°Π»ΡŽΠΌΠΎΡΠΈΠ»ΠΈΠΊΠ°Ρ‚Π½ΠΎΠ³ΠΎ гСля Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ². Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π° ΠΌΠ΅Ρ‚Π°Π»Π»Π°-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° (Zn, Π‘ΠΎ, Ni, Fe) влияСт Π½Π° ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡŽ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ кристаллов Ρ†Π΅ΠΎΠ»ΠΈΡ‚ΠΎΠ².

2. ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ РЀА, БЭМ, EXAFS, ВГА, Π’ΠŸΠ’ Н2, Π’ΠŸΠ” NH3 ΠΈ Π˜ΠšΠ‘ адсорбированных ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»-Π·ΠΎΠ½Π΄ΠΎΠ² установлСно, Ρ‡Ρ‚ΠΎ свСТСсинтСзированныС Ρ†Π΅ΠΎΠ»ΠΈΡ‚Ρ‹ содСрТат высокодиспСрсныС частицы ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² Zn, Π‘ΠΎ, Ni, Π° Π² ΡΠ»ΡƒΡ‡Π°Π΅ модифицирования FeоксидныС частицы. ΠŸΠΎΡΡ‚ΡΠΈΠ½Ρ‚Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ приводят ΠΊ ΠΏΠΎΠ»Π½ΠΎΠΌΡƒ (Π‘ΠΎ) Π»ΠΈΠ±ΠΎ частичному (Zn, Ni) ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΡŽ ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² Π² ΠΎΠΊΡΠΈΠ΄.

3. Показано, Ρ‡Ρ‚ΠΎ срСди ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ†Π΅ΠΎΠ»ΠΈΡ‚ΠΎΠ² Zn-coΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΠΈΠΉ ΠΎΠ±Ρ€Π°Π·Π΅Ρ† являСтся Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивным ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠΌ прСвращСния Π°Π»ΠΊΠ°Π½ΠΎΠ². НайдСно ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ содСрТаниС Ρ†ΠΈΠ½ΠΊΠ°, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ 2 мас.% ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅Π΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Ρ‹Ρ…ΠΎΠ΄ ароматичСских ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠ².

4. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ модифицирования Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ†ΠΈΠ½ΠΊΠ° ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π±ΠΎΠ»Π΅Π΅ высокой сСлСктивности Π’ Π°Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠΏΠ°Π½Π° ΠΈ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΠ΅Ρ‚ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ прСвращСния Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата Π² Π²Ρ‹ΡΠΎΠΊΠΎΠΎΠΊΡ‚Π°Π½ΠΎΠ²Ρ‹ΠΉ Π±Π΅Π½Π·ΠΈΠ½.

5. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… скоростСй установлСна коррСляция ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΈΡΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΊΠ°Ρ‚алитичСской Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Π² ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠΈ основных ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата. Показано, Ρ‡Ρ‚ΠΎ процСсс Π°Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π΅Ρ‚ Π½Π° Π»ΡŒΡŽΠΈΡΠΎΠ²ΡΠΊΠΈΡ… Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ… срСднСй силы, Π° Π·Π° ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΏΠ°Π½-Π±ΡƒΡ‚Π°Π½ΠΎΠ²ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‚ прСимущСствСнно ΡΠΈΠ»ΡŒΠ½Ρ‹Π΅ брСнстСдовскиС кислотныС Ρ†Π΅Π½Ρ‚Ρ€Ρ‹.

6. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ получСния высокооктановых Ρ‚ΠΎΠΏΠ»ΠΈΠ² ΠΈΠ· Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата ΠΈ ΠΏΡ€ΡΠΌΠΎΠ³ΠΎΠ½Π½ΠΎΠ³ΠΎ Π±Π΅Π½Π·ΠΈΠ½Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ Π±Π΅Π½Π·ΠΈΠ½ АИ-92 ΠΈ ΠΠ˜-80 с Π²Ρ‹Ρ…ΠΎΠ΄ΠΎΠΌ ΠΆΠΈΠ΄ΠΊΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ 50−60 ΠΈ 60−75%, соотвСтствСнно. Π’ Ρ…ΠΎΠ΄Π΅ ΠΏΠΈΠ»ΠΎΡ‚Π½Ρ‹Ρ… испытаний ΠΌΠ΅ΠΆΡ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ±Π΅Π³ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° составил 300−450 часов.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. vanBekkum Н., Flanigen Π•.М., Jacobs P.A., Jansen J.Π‘., Introduction to the Zeolite science and practice. Vol. 137. 2001: Elsevier. 747−819.
  2. Dai L., Hashimoto Y., Tominaga H., Tatsumi Π’., Reforming ofhexane with Pt/zeolite catalysts. Catalysis Letters, 1997. 45: p. 107−112.
  3. Derouane E. and Vanderveken D.J., Structural recognition andpreorganization in Zeolite catalysis: Direct aromatization of n-hexane on Zeolite L-based catalysts. Applied Catalysis, 1988.45:p.L15.
  4. Fukunaga T. and Ponec V., The nature of the high sensitivity of Pt/KL catalysts to sulfur poisoning. Journal of Catalysis, 1995.157: p. 550−558.
  5. Zheng J., Shcmauke Π’., Rodunder E., Dong J.L., Xu Q.H., The influence ofFe on the dispersion, electronic state, sulfur-resistance and catalysis of platinum supported on KL zeolite. Journal of Molecular Catalysis A: Chemical, 2001. 171: p. 181−190.
  6. Jongpatiwut S., Sackamduang P., Rirksomboon Π’., Sulfur- and water-tolerance of Pt/KL aromatization catalysts promoted with Ce and Yb. Applied Catalysis A: General, 2002. 230: p.177−193.
  7. Brueva T.R., Mishin I.V., Kapustin G.I., Distribution of acid-site strengths in hydrogen zeolites and relationship between acidity and catalytic activity. Thermochimica Acta, 2001. 379: p. 15−23.
  8. Chatterjee A., Bhattacharya D., Chatterjee M., Iwasaki Π’., Suitability of using MF1 over other medium pore zeolites for n-hexane aromatization a density functional study. Microporous and Mesoporous Materials, 1999. 32: p. 189−198.
  9. Meier W.M., Olson D.H., Baerlocher C.e., Atlas of zeolite structure types. 1996: Elsevier.
  10. Weisz P.B., Molecular shape selective catalysis. Pure Appl. Chem., 1980. 52: p. 20 912 103.
  11. Nagamori Y. and Kawase M., Converting light hydrocarbons containing olefins to aromatics (Alpha Process). Microporous and Mesoporous Materials, 1998. 21: p. 439 445.
  12. Π“. Π‘., Π‘Π°Ρ€ΠΈΠ»ΡŒΡ‡ΡƒΠΊ М. Π’., Π’Π°Ρ€Π°Π±Ρ€ΠΈΠ½Π° Π•. И., ΠšΠ»Ρ‹Ρ‡ΠΌΡƒΡ€Π°Π΄ΠΎΠ² A.M., Новая тСхнология ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ олСфинсодСрТащих Π³Π°Π·ΠΎΠ² каталитичСского ΠΊΡ€Π΅ΠΊΠΈΠ½Π³Π°. Π₯имия ΠΈ Ρ‚Схнология Ρ‚ΠΎΠΏΠ»ΠΈΠ² ΠΈ ΠΌΠ°ΡΠ΅Π», 1999. 2: Ρ€. 9−10.
  13. Bhattacharya D. and Sivasanker S., Aromatization of n-hexane over H-MFI: Influence of promoters and added gases. Applied Catalysis A: General, 1996. 141: p. 105−115.
  14. АхмСтов А.Π€. and ΠšΠ°Ρ€Π°Ρ‚ΡƒΠ½ O.H., ΠœΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ пСнтасилсодСрТащиС ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Ρ‹ для Π°Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… Π³Π°Π·ΠΎΠ². Π₯имия ΠΈ Ρ‚Схнология Ρ‚ΠΎΠΏΠ»ΠΈΠ² ΠΈ ΠΌΠ°ΡΠ΅Π», 2001. 5: Ρ€. 33−37.
  15. Dehertog W. J.H. and Fromen G.F., A catalytic route for aromatics production from LPG. Applied Catalysis A: General, 1999. 189: p. 63−75.
  16. Zeshan H., Yonggang S., Chuanghui L., Songyang C., Modification of HMFI by metal surfactant for aromatization. Microporous and Mesoporous Materials, 1998. 25: p. 201 206.
  17. Ishaq M., Khan M. A., Yashima Π’., Transformation of n-butane over HMFI and other MFI type zeolites. Fuel Processing Technology, 1998. 56: p. 169−181.
  18. Choudhary V.R., Mantri K., Sivadinarayana C., Influence of zeolitic factors affecting zeolitic acidity on the propane aromatization activity and selectivity of Ga/H-MFI. Microporous and Mesoporous Materials, 2000. 37: p. 1−8.
  19. Choudhary V.R., Panjala D., Banerjee S., Aromatization of propane and n-butane over H-galloaluminosilicate (MFI) Zeolite. Applied Catalysis A: General, 2002. 231: p. 243 251.
  20. Halasz J., Konya Z., Fudala A., Beres A., Kiricsi I., Indium and gallium containing MFI zeolites: acidity and catalytic activity in propane transformation. Catalysis Today, 1996. 31: p. 293−304.
  21. П., КолСсников А. Π“., ΠšΡ€Π°Ρ…ΠΌΠ°Π»Π΅Π²Π° И. Π‘., Π‘ΠΎΠΊΠΎΠ²ΠΈΠΊΠΎΠ²Π° Π’. Н., Π”Π²Π°Π΄Π½Π΅Π½ΠΊΠΎ М. Π’., ΠžΠ²Ρ‡ΠΈΠ½Π½ΠΈΠΊΠΎΠ² П. Π€., ΠžΠ±Π»Π°Π³ΠΎΡ€Π°ΠΆΠΈΠ²Π°Π½ΠΈΠ΅ прямогонных Π±Π΅Π½Π·ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ Π½Π° ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ†Π΅ΠΎΠ»ΠΈΡ‚Π°Ρ…. Π₯имия ΠΈ Ρ‚Схнология Ρ‚ΠΎΠΏΠ»ΠΈΠ² ΠΈ ΠΌΠ°ΡΠ΅Π», 2001. 5: Ρ€. 3739.
  22. Kanazirev V.I. and Price G.L., Propane conversion on Cu-MFIzeolites. Journal of Molecular Catalysis A: Chemical, 1996. 96: p. 145−154.
  23. Brabec L., Jeschke M., Klik R., Novakova J., Fe in MFI metallosilicates, characterization and catalytic activity. Applied Catalysis A: General, 1998. 170: p. 105 116.
  24. JI.M., Антонова H.B., ВосмСриков A.B., Π•Ρ€ΠΎΡ„Π΅Π΅Π² Π’. И., Π€ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС ΠΈ ΠΊΠ°Ρ‚алитичСскиС свойства ТСлСзосодСрТащих Ρ†Π΅ΠΎΠ»ΠΈΡ‚ΠΎΠ². Π–ΡƒΡ€Π½Π°Π» физичСской Ρ…ΠΈΠΌΠΈΠΈ, 1997. 71(1): Ρ€. 60−63.
  25. Hagen A., Roessner F., Weingart I., Spliethoff Π’., Synthesis of iron-containing MFI type zeolites and its application to the conversion of ethane into aromatic compound. Zeolites, 1995.15: p. 270−275.
  26. Lubango L. M. and Scurrell M. S., Light alkanes aromatization to BTXover Zn-ZSM-5 catalysts Enhancements in BTX selectivity by means of a second transition metal ion. Appl. Catal. A: General, 2002. 235(1−2): p. 265−272.
  27. Berndt H., Lietz G., Lucke Π’., Volter J., Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics .1. Acidity and activity. Applied Catalysis a-General. 1996. 146(2): p. 351−363.
  28. Berndt H., Lietz G., Volter I., Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics. 2. Nature of the active sites and their activation. Appl.Catal. A: General, 1996. 146(2): p. 365−379.
  29. Scurrell M. S., Factors affecting the selectivity of the aromatization of light alkanes on modified ZSM-5 catalysts. Appl. Catal., 1988. 41: p. 89−98.
  30. Guisnet M., Gnep N.S., Alario F., Aromatization of short chain alkanes on zeolite catalysts. Appl. Catal. A: General, 1992. 89: p. 1−30.
  31. Kanai J. and Kawata N., Aromatization of n-hexane over galloaluminosilicate and gallosilicate. Applied Catalysis, 1989. 55: p. 115.
  32. Hagen A., Roessner F., Weingart I., Spliethoff Π’., Synthesis of iron-containing MFI type zeolites and its application to the conversion of ethane into aromatic compounds. Zeolites, 1995. 15: p. 270−275.
  33. Sahoo S.K., Viswanadham N., Ray N., Gupta J.K., Singh I.D., Studies on acidity, activity and coke deactivation of MFI during n-heptane aromatization. Applied Catalysis A: General, 2001.205: p. 1−10.
  34. Morales A., Salazar A., Ovalles C., Filgueiras E., Hydroconversion of heavy crude oils using soluble metallic compounds in the presence of hydrogen or methane. Studies in Surface Science and Catalysis, 1996. 101: p. 1215−1221.
  35. Π‘Ρ‚Π΅ΠΏΠ°Π½ΠΎΠ² Π’.Π“. and ИонС К. Π“., Π¦Π΅ΠΎΡ„ΠΎΡ€ΠΌΠΈΠ½Π³ пСрспСктивный процСсс производства нСэтилированных Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π½Π·ΠΈΠ½ΠΎΠ². Π₯имия ΠΈ Ρ‚Схнология Ρ‚ΠΎΠΏΠ»ΠΈΠ² ΠΈ ΠΌΠ°ΡΠ΅Π», 2000. 1: Ρ€. 8−12.
  36. Π’.Π’., ЦыбулСвский A.M., ΠœΡƒΡ€ΠΈΠ½ Π’. И., ΠŸΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π³Π°Π·Π° ΠΈ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата Π² Ρ…ΠΈΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΡŽ. 1992: Π’ΠΠ˜Π˜Π­Π³Π°Π·ΠΏΡ€ΠΎΠΌ.
  37. Chen N.Y. and Yan T.Y., М2 forming a process for aromatization of light hydrocarbons. Ind. Eng. Chem. Process Des. Dev., 1986. 25: p. 151−155.
  38. Olah G.A., Carbocations and Electrophilic Reactions. Angewandte Chemie-International Edition in English, 1973. 12(3): p. 173−212.
  39. Sommer J., Jost R., Hachoumy M., Activation of small alkanes on strong solid acids: mechanistic approaches. Catalysis Today, 1997. 38(3): p. 309−319.
  40. Guisnet M. and Gnep N.S., Mechanism of short-chain alkane transformation over protonic zeolites. Alkylation, disproportionation and aromatization. Applied Catalysis a-General, 1996. 146(1): p. 33−64.
  41. Stefanadis C., Gates B.C., Haag W.O., Rates of Isobutane Cracking Catalyzed by Hzsm-5 the Carbonium-Ion Route. Journal of Molecular Catalysis, 1991. 67(3): p. 363−367.
  42. Guisnet M., Gnep N.S., Aittaleb D., Doyemet Y. J., Conversion of Light Alkanes into Aromatic-Hydrocarbons. 6. Aromatization of C2-C4 Alkanes on H-ZSM-5 Reaction-Mechanisms, Applied Catalysis a-General, 1992. 87(2): p. 255−270.
  43. Narbeshuber T.F., Vinek H., Lercher J. A., Monomolecular conversion of light alkanes over H-ZSM-5. Journal of Catalysis, 1995.157(2): p. 388−395.
  44. Bandiera J. and Bentaarit Y., Catalytic Investigation of the Dehydrogenation Properties of Pentasil Type Zeolites as Compared with Their Cracking Properties. Applied Catalysis, 1990. 62(2): p. 309−316.
  45. Shigeishi R., Garforth A., Harris I., Dwyer J., The Conversion of Butanes in HZSM-5. Journal of Catalysis, 1991. 130(2): p. 423−439.
  46. Hagen A. and Roessner F., Ethane to aromatic hydrocarbons: Past, present, future. Catalysis Reviews-Science and Engineering, 2000. 42(4): p. 403−437.
  47. Rollmann L.D. and Walsh D.E., Shape Selectivity and Carbon Formation in Zeolites. Journal of Catalysis, 1979. 56(1): p. 139−140.
  48. Giannetto G., Monque R., Galiasso R., Transformation of LPG into Aromatic-Hydrocarbons and Hydrogen over Zeolite Catalysts. Catalysis Reviews-Science and Engineering, 1994. 36(2): p. 271−304.
  49. Meriaudeau P., Sapaly G., Naccache C., Framework and Nonframework Gallium in Pentasil-Like Zeolite as Studied in the Reaction of Propane. Journal of Molecular Catalysis, 1993. 81(2): p. 293−300.
  50. Ono Y., Transformation of Lower Alkanes into Aromatic-Hydrocarbons over ZSM-5 Zeolites. Catalysis Reviews-Science and Engineering, 1992. 34(3): p. 179−226.
  51. Meriaudeau P. and Naccache C., The Role of Ga203 and Proton Acidity on the Dehydrogenating Activity of Ga20i-HZSM-5 Catalysts Evidence of a Bifunctional Mechanism. Journal of Molecular Catalysis, 1990. 59(3): p. L31-L36.
  52. Bayense C.R., Vanderpol A., Vanhooff J.H.C., Aromatization of Propane over MFI-Gallosilicates. Applied Catalysis, 1991. 72(1): p. 81−98.
  53. Meitzner G.D., Iglesia E., Baumgartner J.E., Huang E.S., The Chemical-State of Gallium in Working Alkane Dehydrocyclodimerization Catalysts Insitu Gallium K-Edge X-Ray Absorption-Spectroscopy. Journal of Catalysis, 1993.140(1): p. 209−225.
  54. Iglesia E., Baumgartner J.E., Price G.L., Kinetic Coupling and Hydrogen Surface Fugacities in Heterogeneous Catalysis .1. Alkane Reactions on Te/NaX, H-ZSM5, and Ga/H-ZSM5. Journal of Catalysis, 1992. 134(2): p. 549−571.
  55. Yao J., Levanmao R., Dufresne L., Conversion ofN-Butane into BTXAromatics on New Hybrid Catalysts. Applied Catalysis, 1990. 65(2): p. 175−188.
  56. Lukyanov D.B., Gnep N.S., Guisnet M.R., Kinetic Modeling of Propane Aromatization Reaction over HZSM-5 and GaHZSM-5. Industrial & Engineering Chemistry Research, 1995. 34(2): p. 516−523.
  57. Lukyanov D.B., Gnep N.S., Guisnet M.R., Kinetic Modeling of Ethene andPropene Aromatization over HZSM-5 and GaHZSM-5. Industrial & Engineering Chemistry Research, 1994. 33(2): p. 223−234.
  58. Jacobs G., Alvarez W.E., Resasco D.E., Study of preparation parameters of powder and pelletized Pt/KL catalysts for n-hexane aromatization. Applied Catalysis a-General, 2001.206(2): p. 267−282.
  59. Lee D.K. and Ihm S.K., Metal Loading Effects on Co Hydrogenation of Co/YZeolite Prepared by Ion-Exchange and Carbonyl Complex Impregnation. Journal of Catalysis, 1987. 106(2): p. 386−393.
  60. Blomsma E., Martens J. A., Jacobs P. A., Isomerization and hydrocracking of heptane over bimetallic bifunctional PtPd/H-beta and PtPd/USYzeolite catalysts. Journal of Catalysis, 1997. 165(2): p. 241−248.
  61. Hensen E.J.M. and van Veen J.A.R., Encapsulation of transition metal sulfides in faujasite zeolite for hydroprocessing applications. Catalysis Today, 2003. 86(1−4): p. 87 109.
  62. Mile Π’., Stirling D., Zammitt M.A., Lovell A., Webb M., TPR Studies of the Effects of Preparation Conditions on Supported Nickel-Catalysts. Journal of Molecular Catalysis, 1990. 62(2): p. 179−198.
  63. Wang X., Chen H.Y., Sachtler W.M.H., Catalytic reduction of NOx by hydrocarbons over Co/ZSM-5 catalysts prepared with different methods. Applied Catalysis B-Environmental, 2000. 26(4): p. L227-L239.
  64. Romero M.D., deLucas A., Calles J.A., Rodriguez A., Bifunctional catalyst Ni/HZSM-5: Effects of the nickel incorporation method. Applied Catalysis a-General, 1996. 146(2): p. 425−441.
  65. Lambert J.F., Hoogland M., Che M., Control of the Ni-II/surface interaction in the first steps of supported catalyst preparation: The interfacial coordination chemistry of Ni (en)2(H20)2+. Journal of Physical Chemistry B, 1997. 101(49): p. 10 347−10 355.
  66. Romero M.D., Calles J.A., Rodriguez A., Influence of the preparation method and metal precursor compound on the bifunctional Ni/HZSM-5 catalysts. Industrial & Engineering Chemistry Research, 1997. 36(9): p. 3533−3540.
  67. Ming H. and Baker B.C., Characterization of Cobalt Fischer-Tropsch Catalysts. 1. Unpromoted Cobalt-Silica Gel Catalysts. Applied Catalysis a-General, 1995. 123(1): p. 23−36.
  68. Tatsumi Π’., Taniguchi M., Yasuda S., Ishii Y., Murata Π’., Hidai M., Zeolite-supported hydrodesulfurization catalysts prepared by ion exchange with Mo and Mo-Ni sulfide clusters. Applied Catalysis a-General, 1996. 139(1−2): p. L5-L10.
  69. Sachtler W.M.H., Zeolite-Supported Transition-Metal Catalysts by Design. Catalysis Today, 1992. 15(3−4): p. 419−429.
  70. Kim J.C., Park Y.K., Woo S.I., Catalytic Properties, Size and Location of Cobalt Clusters Prepared by the Reduction of Cobalt Ion-Exchanged Nay. Journal of the Chemical Society-Faraday Transactions, 1992. 88(10): p. 1489−1495.
  71. Godelitsas A. and Armbruster Π’., HEU-type zeolites modified by transition elements and lead. Microporous and Mesoporous Materials, 2003. 61(1−3): p. 3−24.
  72. Kucherov A.V. and Slinkin A.A., Solid-State Reaction as a Way to Transition-Metal Cation Introduction into High-Silica Zeolites. Journal of Molecular Catalysis, 1994. 90(3): p. 323−354.
  73. Schoonheydt R.A., Transition-Metal Ions in Zeolites Siting and Energetics of Cu-2+. Catalysis Reviews-Science and Engineering, 1993. 35(1): p. 129−168.
  74. Biscardi J.A., Meitzner G.D., Iglesia E., Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts. Journal of Catalysis, 1998. 179(1): p. 192 202.
  75. Ismagilov Z.R., Yashnik S.A., Anufrienko V.F., Larina T.V., Vasenin N.T., Bulgakov N.N., Vosel S.V., Tsykoza L.T., Linear nanoscale clusters ofCuO in Cu-ZSM-5 catalysts. Applied Surface Science, 2004. 226(1−3): p. 88−93.
  76. Long R.Q. and Yang R.T., Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. Journal of Catalysis, 2000.194(1): p. 80−90.
  77. Sarkany J., Ditri J.L., Sachtler W.M.H., Redox Chemistry in Excessively Ion-Exchanged Cu/Na-Zsm-5. Catalysis Letters, 1992. 16(3): p. 241−249.
  78. Guzman-Vargas A., Delahay G., Coq Π’., Catalytic decomposition ofN20 and catalytic reduction o/A^O and N2O+NO by NH3 in the presence of Πž 2 over Fe-zeolite. Applied Catalysis B-Environmental, 2003.42(4): p. 369−379.
  79. El-Malki E.M., van Santen R.A., Sachtler W.M.H., Active sites in Fe/MFI catalysts for NOx reduction and oscillating N2O decomposition. Journal of Catalysis, 2000. 196(2): p. 212−223.
  80. Marturano P., Drozdova L., Kogelbauer A., Prins R., Fe/ZSM-5 prepared by sublimation ofFeCls: The structure of the Fe species as determined by IR, Al-27 MAS NMR, and EXAFS spectroscopy. Journal of Catalysis, 2000. 192(1): p. 236−247.
  81. Battiston A. A., Bitter J.H., Koningsberger D.C., XAFS characterization of the binuclear iron complex in overexchanged Fe/ZSM5 structure and reactivity. Catalysis Letters, 2000. 66(1−2): p. 75−79.
  82. Wichterlova Π’., Dedecek J., Sobalik Z., Vondrova A., Klier K., On the Π‘ΠΈ site in ZSM-5 active in decomposition of NO: Luminescence, FTIR study, and redox properties. Journal of Catalysis, 1997.169(1): p. 194−202.
  83. Kucherov A.V. and Slinkin A.A., Change of Cu (II) Cation Coordination in H-Zsm-5 Channels Upon the Sorption ofNormal-Hexane and Xenon Esr Spectroscopic Evidence. Journal of Physical Chemistry, 1989. 93(2): p. 864−867.
  84. Kazansky V.B. and Serykh A.I., Unusual localization of zinc cations in MIFIzeolites modified by different ways ofpreparation. Physical Chemistry Chemical Physics, 2004. 6(13): p. 3760−3764.
  85. Shpiro E.S., Grunert W., Joyner R.W., Baeva G.N., Nature, Distribution and Reactivity of Copper Species in over-Exchanged Cu-Zsm-5 Catalysts an Xps/Xaes Study. Catalysis Letters, 1994.24(1−2): p. 159−169.
  86. Joly J.F., Ajot H., Merlen E., Raatz F., Alario F., Parameters Affecting the Dispersion of the Gallium Phase of Gallium H-MFI Aromatization Catalysts. Applied Catalysis, 1991. 79(2): p. 249−263.
  87. Jentys A., Lugstein A., Vinek H., Co-containing zeolites prepared by solid-state ion exchange. Journal of the Chemical Society-Faraday Transactions, 1997. 93(22): p. 40 914 094.
  88. Beran S., Wichterlova Π’., Karge H.G., Solid-State Incorporation of Mn2+ Ions in H-Zsm-5 Zeolite. Journal of the Chemical Society-Faraday Transactions, 1990. 86(17): p. 30 333 037.
  89. Price G.L. and Kanazirev V., Ga203/Hzsm-5 Propane Aromatization Catalysts -Formation of Active-Centers Via Solid-State Reaction. Journal of Catalysis, 1990. 126(1): p. 267−278.
  90. Fu Z.H., Yin D.L., Yang Y.S., Guo X.X., Characterization of Modified Zsm-5 Catalysts for Propane Aromatization Prepared by a Solid-State Reaction. Applied Catalysis a-General, 1995.124(1): p. 59−71.
  91. Batista M.S., Morales M.A., Baggio-Saitovich E., Urquieta-Gonzalez Π•.А., Iron species present in Fe/ZSM-5 catalysts Influence of the preparation method. Hyperfine Interactions, 2001. 134(1−4): p. 161−166.
  92. Bowes C.L., Malek A., Ozin G.A., Chemical vapor deposition topotaxy in porous hosts. Chemical Vapor Deposition, 1996. 2(3): p. 97−103.
  93. Marturano P., Drozdova L., Pirngruber G.D., Kogelbauer A., Prins R., The mechanism of formation of the Fe species in Fe/ZSM-5 prepared by CVD. Physical Chemistry Chemical Physics, 2001. 3(24): p. 5585−5595.
  94. Yoo J.W., Lee C. W., Chang J.S., Park S.E., Ко J., Characterization and catalytic properties ofTi-ZSM-5 prepared by chemical vapor deposition. Catalysis Letters, 2000. 66(3): p. 169−173.
  95. Seidel A., Rittner F., Boddenberg Π’., Chemical vapor deposition of zinc in zeolite HY. Journal of Physical Chemistry B, 1998.102(37): p. 7176−7182.
  96. Sprang Π’., Seidel A., Wark M., Rittner F., Boddenberg Π’., Cadmium ion exchange in zeolite Y by chemical vapour deposition and reaction. Journal of Materials Chemistry, 1997. 7(8): p. 1429−1432.
  97. Wang X., Chen H.Y., Sachtler W.M.H., Selective reduction of NOx with hydrocarbons over Co/MFIprepared by sublimation of CoBr2 and other methods. Applied Catalysis B-Environmental, 2001. 29(1): p. 47−60.
  98. El-Malki E.M., van Santen R.A., Sachtler W.M.H., Introduction ofZn, Ga, and Fe into HZSM-5 cavities by sublimation: Identification of acid sites. Journal of Physical Chemistry B, 1999. 103(22): p. 4611−4622.
  99. Dossi Π‘., Psaro R., Sordelli L., Bellatreccia M., Zanoni R., Chemical vapor deposition of platinum hexafluoroacetylacetonate inside HL zeolite: Role of metal-proton interactions. Journal of Catalysis, 1996. 159(2): p. 435−440.
  100. Garcia-Sanchez M., Magusin P., Hensen E.J.M., Thune P.C., Rozanska X., van Santen R.A., Characterization ofGa/HZSM-5 and Ga/HMOR synthesized by chemical vapor deposition of trimethylgallium. Journal of Catalysis, 2003. 219(2): p. 352−361.
  101. Hibino Π’., Niwa M., Murakami Y., Sano M., Structure of Germanium Oxide on Cvd Zeolites by ExtendedX-Ray Absorption Fine-Structure andX-Ray Photoelectron-Spectroscopy. Journal of the Chemical Society-Faraday Transactions 1,1989. 85: p. 2327−2334.
  102. Malinowski A., Ohnishi R., Ichikawa M., CVD synthesis in static mode of Mo/H-ZSM-5 catalyst for the methane dehydroaromatization reaction to benzene. Catalysis Letters, 2004. 96(3−4): p. 141−146.
  103. Schindler G.P., Bartl P., Hoelderich W.F., Oxidative cleavage of cyclohexane derivatives over titanium-containing Yzeolites. Applied Catalysis a-General, 1998. 166(2): p. 267 279.
  104. Han S., Schmitt K.D., Schramm S.E., Reischman P.T., Shihabi D.S., Chang C.D., Isomorphous Substitution of Boron into Zeolite-ZSM-5 and Zeolite-Y with Aqueous NH4BF4. Journal of Physical Chemistry, 1994. 98(15): p. 4118−4124.
  105. Szostak R., Handbook of Molecular Sieves. 2nd Ed. Van Nostrand, NewYork, 1997: p. 198.123. U.S.Pat. 1990. 629 534.
  106. Mosel G., Ubert TH.H., Nofz M., Brenneis R., Ocher P.K., Kley G., Zn-K EXAFS investigations on ZnS/ZnO containing vitrified ashes from municipal incinerator facilities. J. Mater. Sci., 2001. 36(5017−5025).
  107. Dimitrov R. and Bonev I., Mechanism ofZinc-Sulfide Oxidation. Thermochimica Acta, 1986. 106: p. 9−25.
  108. Dunn J.G., The oxidation of sulphide minerals. Thermochimica Acta, 1997. 300(1−2): p. 127−139.
  109. Dunn J.G. and Jayaweera S.A.A., Effect of Heating Rate on the TG Curve During the Oxidation of Nickel Sulfide Concentrates. Thermochimica Acta, 1983. 61(3): p. 313−317.
  110. Π₯имичСская энциклопСдия. 1990, Москва: БовСтская энциклопСдия.
  111. Tao L.X., Zhang F.M., Li D.F., Zheng L.B., The Study of Nickel-Deposited USY Zeolites by FMR. Zeolites, 1995. 15(2): p. 176−180.tiH' 130. Pawelec Π’., Mariscal R., Navarro R.M., Campos-Martin J.M., Fierro J.L.G.,
  112. Simultaneous 1-pentene hydroisomerisation and thiophene hydrodesulphurisation over sulphided Ni/FA U and Ni/ZSM-5 catalysts. Applied Catalysis a-General, 2004. 262(2): p. 155−166.
  113. Hadjiivanov K., Mihaylov M., Klissurski D., Stefanov P., Abadjieva N., Vassileva E., Mintchev L., Characterization ofNi/Si02 catalysts prepared by successive deposition and reduction ofNi-2 ions. Journal of Catalysis, 1999. 185(2): p. 314−323.
  114. Neimark A. V., Kheifez L.I., Fenelonov V.B., Theory ofPreparation of Supported Catalysts. Industrial & Engineering Chemistry Product Research and Development, 1981.20(3): p. 439−450.
  115. Lepetit C. and Che M., Interfacial coordination chemistry. Current status and applications. Journal of Molecular Catalysis a-Chemical, 1995. 100(1−3): p. 147−160.
  116. Amara M., Bettahar M., Gengembre L., Olivier D., Preparation, Spectroscopic Characterization and Stability of Silica-Supported Copper (I) Species. Applied Catalysis, 1987. 35(1): p. 153−168.
  117. Viswanathan B. and Gopalakrishnan R., Effect of Support and Promoter in Fischer Tropsch Cobalt Catalysts. Journal of Catalysis, 1986. 99(2): p. 342−348.
  118. Sexton Π’ .A., Hughes A.E., Turney T.W., An XPS and TPR Study of the Reduction of Promoted Cobalt Kieselguhr Fischer-Tropsch Catalysts. Journal of Catalysis, 1986. 97(2): p. 390−406.
  119. Sewell G., Oconnor C., Vansteen E., Reductive Amination of Ethanol with Silica-Supported Cobalt and Nickel-Catalysts. Applied Catalysis a-General, 1995. 125(1): p. 99−112.
  120. Munteanu G., Ilieva L., Andreeva D., Kinetic parameters obtainedfrom TPR data for alpha-Fe^ and Au/alpha-Fe20s systems. Thermochimica Acta, 1997. 291(1−2): p. 171 177.
  121. Lobree L.J., Hwang I.C., Reimer J.A., Bell A.T., Investigations of the state of Fe in H-ZSM-5. Journal of Catalysis, 1999. 186(2): p. 242−253.
  122. Meloni D., Monaci R., Solinas V., Berlier G., Bordiga S., Rossetti I., Oliva C., Forni L., Activity and deactivation of Fe-MFI catalysts for benzene hydroxylation to phenol by N20. Journal of Catalysis, 2003.214(2): p. 169−178.
  123. Webb G., The formation and role of carbonaceous residues in metal-catalysed reactions of hydrocarbons. Catalysis Today, 1990. 7: p. 139−155.
  124. Zaera F., Selectivity in hydrocarbon catalytic reforming: a surface chemistry perspective. Applied Catalysis a-General, 2002. 229(1−2): p. 75−91.
  125. Arnoldy P., de Jonge J.C., Moulijn J.A., Temperature-programmed reduction of ΠœΠΎΠžΠ— and Mo02. J. Phys. Chem., 1985. 89: p. 4517−4526.
  126. Emeis C.A., Determination of Integrated Molar Extinction Coefficients for Infrared-Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 1993. 141(2): p. 347−354.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ