Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

Влияние арахидоновой кислоты на хеморецептивные и биофизические свойства НМДА-каналов нейрональной мембраны

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Методами пэтч-кламп регистрации ионных токов и быстрой аппликации веществ показано, что АА потенциирует ионные токи через НМДА-каналы. При этом, увеличение амплитуды пика превышает увеличение стационарного уровня тока примерно в 1,5 раза, свидетельствуя об усилении десенситизации каналов. Кинетическое моделирование привело к заключению, что АА (10 р, М) увеличивает как константу скорости… Читать ещё >

Содержание

  • I. ВВЕДЕНИЕ
  • II. ОБЗОР ЛИТЕРАТУРЫ
  • 1. Арахидоновая кислота как эндогенный биорегулятор
  • 2. Возможные механизмы действия АА
  • 3. Влияние АА на ионные каналы
  • 1. Потенциалуправляемые каналы
  • 2. Рецепторуправляемые каналы а) НМДА-каналы
  • — Место НМДА каналов в классификации глутаматных рецепторов
  • — Локализация и свойства НМДА-рецепторов
  • — Роль НМДА-каналов в физиологических процессах
  • — Молекулярная структура НМДА-каналов
  • — Активация НМДА-каналов
  • — Десенситизация НМДА-рецепторов
  • — Блокада НМДА-каналов
  • — Потенциация НМДА-каналов
  • — Влияние, А А на НМДА-каналы б) АМПА- и каинатные каналы
  • 4. Производные жирных кислот как липидные биорегуляторы
  • III. МЕТОДИКА ИССЛЕДОВАНИЙ
  • IV. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ
  • 1. Влияние АА на токи через НМДА-каналы
  • 2. Действие АА на КМБА каналы не связано с продуктами ее окислительного метаболизма
  • 3. Кинетика потенциации НМДА-каналов
  • 4. Кинетика потенциации НМДА-каналов в постоянном присутствии агониста
  • 5. Потенциалнезависимость эффекта АА
  • 6. Агонист-независимость и коагонист-независимость эффекта эффекта АА
  • 7. Влияние внеклеточного рН
  • 8. Влияние растворителей
  • 9. Неконкурентность действия АА с эозином и цинком
  • 10. Действие спермина на НМДА-каналы в присутствии и отсутствии АА
  • 11. Влияние дитиотрейтола на потенциацию НМДА-каналов, вызванную АА
  • 12. Блокада протеин-киназы С не устраняет потенциирующее действие АА
  • 13. Моделирование влияния Аа на физические свойства мембраны
  • 14. Влияние других жирных кислот и производных АА на НМДА-токи
  • 15. Численное моделирование эффектов АА
  • 16. Влияние АА на блокаду НМДА каналов а) Кинетика блокады тетрапентиламмонием в присутствии АА б) Модулирующее действие АА на Т-блокаду НМДА каналов
  • V. ВЫВОДЫ
  • VI. БЛАГОДАРНОСТИ

Влияние арахидоновой кислоты на хеморецептивные и биофизические свойства НМДА-каналов нейрональной мембраны (реферат, курсовая, диплом, контрольная)

ВЫВОДЫ.

1. Методами пэтч-кламп регистрации ионных токов и быстрой аппликации веществ показано, что АА потенциирует ионные токи через НМДА-каналы. При этом, увеличение амплитуды пика превышает увеличение стационарного уровня тока примерно в 1,5 раза, свидетельствуя об усилении десенситизации каналов. Кинетическое моделирование привело к заключению, что АА (10 р, М) увеличивает как константу скорости открывания НМДА-каналов, так константу скорости входа в состояние десенситизации. Соответственно, вероятность открытого состояния НМДА-канала увеличивается примерно в 2,7 раза, а вероятность десенситизации — примерно в 1,3 раза.

2. Потенциация пикового тока возрастает с концентрацией АА (ЕС5о = 2,2 |лМ). Временной ход развития АА потенциации может быть описан моноэкспоненциальной функцией с постоянной времени топ, которая уменьшается от 17,2 до 2,1 сек с увеличением концентрации АА от 5 до 20 цМ. При отмывании клетки от АА восстановление тока происходит с постоянной времени г0№ ~ 30 сек, не зависящей от концентрации АА. Процессы потенциации/восстановления не зависят от частоты периодической стимуляции НМДА-каналов импульсами агониста, и, следовательно, от того, в каком состоянии, закрытом или открытом, находятся каналы. Кинетика потенциации/восстановления хорошо описывается в рамках бимолекулярной реакции.

3. Построена модель, описывающая встраивание АА в липид мембраны и воздействие на механо-рецептор НМДА-канала. Результаты моделирования показали, что модель хорошо описывает кинетику потенциации АА НМДА-токов только при низких концентрациях, А А (< 10 цМ).

4. Потенциация НМДА-токов АА не зависит от мембранного потенциала, концентраций агониста (аспартата) и коагониста (глицина) — не изменяется при действии на клетку блокатора протеин-киназы С кальфостина С, БН-агента дитиотрейтола, цинка или эозина. Таким образом, действие АА не опосредовано активацией протеин-киназы С или участками связывания агониста, коагониста, цинка, эозина, «редокс» -участка НМДА-рецептора.

5. Потенциация НМДА-токов АА зависит от величины внеклеточного рН: повышение рН с 6,5 до 7,0 увеличивает пик модифицированного тока, а дальнейшее подщелачивание среды уменьшает его так, что при рН 8.0 потенцирующий эффект АА полностью исчезает и сменяется обратным — ингибированием. АА изменяет потенциирующее действие полиамина спермина на НМДА-токи на блокирующее. Эти результаты свидетельствуют в пользу непосредственного взаимодействия АА с белковой молекулой НМДА-рецептора.

6. Ненасыщенные жирные кислоты (АА, олеиновая и у-линоленовая) потенциируют НМДА-токи, насыщенная пальмитиновая и функциональные производные АА (АА-Ев, АА-ЕА, АА-8Е, АА-ЭА) не оказывают на НМДА-токи существенного влияния, в то время как лизофосфолипид ЬРО блокирует их. Эти данные невозможно объяснить в рамках «конусной» теории, что свидетельствует о том, что потенциирующее влияние липофильных веществ на НМДА-токи зависит от наличия СООН-группы и ненасыщенности гидрофобного «хвоста» .

7. Увеличение НМДА-токов, вызываемое АА, не изменяется в присутствии блокаторов метаболического распада АА, индометацина и пара-бром-фенацила. Это свидетельствует о том, что АА действует на НМДА-рецепторы сама, а не продукты ее метаболического распада.

8. АА увеличивает видимую эффективность, 1С5о, блокаторов, препятствующих закрыванию канала (ТРегиА), и не влияет на эффективность «трэппинг-блокаторов» (Mg2+, ТРА и А-7), не взаимодействующих с воротной системой НМДА-канала.

9. Кинетическое моделирование блокады НМДА-каналов ТРА, Mg и А-7 в присутствии АА показало, что эти блокаторы устраняют вызванное АА увеличение вероятности открытого и десенситизированного состояний, т. е. демодифицируют НМДА-каналы.

БЛАГОДАРНОСТИ.

Автор благодарит профессора Бориса Израилевича Ходорова за чуткое руководство работой, А. И. Соболевского и Е. А. Вальдман как соавторов публикаций по материалам диссертации. Выражаю благодарность рук. лаборатории общей патологии нервной системы НИИ Общей патологии и патофизиологии Г. Н. Крыжановскому за большую помощь и постоянную поддержку. Я благодарна L.P. Wollmuth, В. В. Безуглову и Е. А. Вальдман за предоставленные вещества, С. Г. Кошелеву за техническую поддержку, а также И. Н. Шароновой и C.B. Ревенко за критическое обсуждение диссертации.

Работа поддержана Российским фондом фундаментальных исследований (гранты № 00−15−97 916, 99−04−48 770 и 01−04−6 018), а также грантом INTAS.

1. Безуглов В. В., Маневич Е. М., Арчаков А. В., Бобров М. Ю., Куклев Д. В., Петрухина Г. Н., Макаров В. А., Бузников Г. А. (1997) Искусственно функционализированные полиеновые жирные кислоты новые липидные биорегуляторы, Биоорганичвская хгшш, 23: № 3:211−220.

2. Вальдман Е. А., Воронина Т. А., Неробкова J1.H. (1999) Противопаркинсоническая активность нового производного адамантана. Эксп. клал, фрмакология 62(4):3−6.

3. Геннис Р. (1997) Биомембраньт. Молекулярная структура и функции, (изд. Мир, Москва), стр. 80−83, 232−233.

4. Когтева Г. С., Безуглов В. В. (1998) Ненасыщенные жирные кислоты как эндогенные биорегуляторы, Биохимия, 63: № 1: 6−15.

5. Кошелев С. Г, Ходоров Б. И, (1995) Тетрабутиламмоний, такрин и 9-аминоакридин, блокируя NMDA-каналы, препятствуют их закрыванию и десенситизиции. Биологические мембраны, 12(1):89−104.

6. Неробкова JI.H., Вальдман Е. А., Воронина Т. А., Маркина Н. В., Шаркова JI.M. (2000) Эксперииентачъная и клиническая фармакология, 63(2), 3−6.

7. Черномордик Л. В, Меликян Г. Б., Чизмаджев Ю. А. (1987) Плоские липидные бислои как модель для изучения слияния биологических мембран. Биологические мембраны. т.4(2): 117−163.

8. Aizenman Е., Lipton S. A. and Loring R. Н. (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2: 1257−1263.

9. Almeida Т., Cunha R.A., Ribeiro J.A. (1999) Facilitaion by arachidonic acid of acetylcholine release from the rat hippocampus. Brain Research 826:104−111.

10. Anel A. A., Richieri G.V., Kleinfield A.M. (1993) Membrane partition of fatty acids and inhibition ofT cell function. Biochemistry 32:530−536.

11. Anderson M.P., and Welsh M.J. (1990) Fatty acids inhibit apical membrane chloride channels in airway epithelia. Proc.Natl.Acad.Sci. USA 87:7334−7338.

12. Andreasen T.J. and M.G. McNamee (1980) Inhibition of ion permeability control properties of acetylcholine receptor from Torpedo californica by long-chain fatty acids. Biochemistry, 19:4719−4726.

13. Antonov S. M., Gmiro V. E. and Johnson J. W. (1998) Binding sites for permeant ions in the channel of NMDA receptors and their effects on channel block. Nat. Neurosci. 1: 451−456.

14. Antonov S. M. and Johnson J. W. (1996) Voltage-dependent interaction of open-channel blocking molecules with gating of NMDA receptors in rat cortical neurons. J. Physiol. 493: 425−445.

15. Antonov S. M., Johnson J. W., Lukomskaya N. Y., Potapyeva N. N., Gmiro V. E. and Magazanik L. G. (1995) Novel adamantane derivatives act as blockers of open ligand-gated channels and as anticonvulsants. Mol. Pharmacol. 47: 558−567.

16. Arai K., Nishiyama N., Kudo I., Nakatani Y., Ikegaya I., Matsuki N. (2000) Arachidonic acid metabolites mediate ischemic neuronal death in rat hippocampal slice culture. Society for Neuroscience Abstracts, 26.2:1882.

17. Araki K., Meguro H., Kushiya E., Takayama C., Inoue Y. and Mishina M. (1993) Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 197: 1267−1276.

18. Asztely, F. and Gustafsson, B. (1996) Ionotropic glutamate receptors: Their role in the expression of hippocampal synaptic plasticity. Mol. Neurobiol. 12: 1−11.

19. Attwell D., Miller В., Sarantis M. (1993) Arachidonic acid as a messenger in the central nervous system. Seminars in the Neurosci. 5:159−169.

20. Bazan N.G. (1976) Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Advances in Experimental Medicine and Biology 72:317 335.

21. Bazan N.G. (1989) Arachidonic acid in the modulation of excitable membrane function and at the onset of brain damage. Annals of the New York Academy of Sciences 559:1−16.

22. Barrett C.F., Liu L. and Rittenhouse A.R. (2000) Arachidonic acid enhances N-type calcium activity in rat sympathetic neurons. Society for Neuroscience Abstracts, 26.1:623.

23. Beck C., Wollmuth L.P., Seeburg P.H., Sakmann B. and Kuner T. (1999) NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron 22: 559−570.

24. Behe, P., Stern, P., Wyllie, D. J. A., Nassar, M., Schoepfer, R. and Colquhoun, D. (1995) Determination of NMDA NR1 subunit copy number in recombinant NMDA receptors. Proc. R. Soc. Lond. B 262: 205−213.

25. Benveniste M., Clements J., Vyklicky L. Jr., Mayer M. L. (1990b) A kinetic analysis of the modulation of N-methyl-d-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J. Physiol. 428: 333−357.

26. Benveniste M. and Mayer M. L. (1991a) Structure-activity analysis of binding kinetics for NMDA receptor competitive antagonists: the influence of conformational restriction. Br. J. Pharmacol. 104: 207−221.

27. Benveniste M. and Mayer M. L. (1991b) Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys. J. 59: 560−573.

28. Benveniste M. and Mayer M. L. (1992) Effect of Extracellular pH on the potency of N-methyl-D-aspartic acid receptor competitive antagonists. Mol. Pharmacol. 42: 679−686.

29. Benveniste M. and Mayer M. L. (1993) Multiple effect of spermine on N-methyl-D-aspartic acid receptor responses of rat cultured hippocampal neurones. J. Physiol. 464: 131−163.

30. Benveniste M. and Mayer M. L. (1995) Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. J. Physiol. 483: 367−384.

31. Benveniste M., Mienville J.-M., Sernagor E. and Mayer M. L. (1990a) Concentration-jump experiments with NMDA antagonists in mouse cultured hippocampal neurons. J. Neurophysiol. 63: 1373−1384.

32. Bliss T.V.P. and Collingridge G.L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31−39.

33. Blomquist C.H., Lindemann N.J., Hakanson E.Y. (1985) Inactivation of soluble 17-beta-hydroxysteroid dehydrogenase of human placenta by fatty acids. J. Steroid Biochem. 23:357−363.

34. Bringmann A., Skatchkov S.N., Biedermann B., Faude F., Reichenbach A. (1998) Alteration of potassium channel activity in retinal Muller glial cells induced by arachidonic acid. Neurosci. 86.4:1291−1306.

35. Brisson, A. and Unwin, P. N. T. (1985) Quaternary structure of the acetylcholine receptor. Nature 315: 474−477.

36. Brose N., Gasic G. P., Vetter D. E., Sullivan J. M. and Heinemann S. F. (1993) Protein chemical characterization and immunocytochemical localization of the NMDA receptor subunit NMDA Rl. J. Biol. Chem. 268: 22 663−22 671.

37. Burnashev N. (1993). Recombinant ionotropic glutamate receptors: functional distinctions imparted by different subunits. Cell Physiol. Biochem. 3: 318−331.

38. Burnashev N., Schoepfer R., Monyer H., Ruppersberg J. P., Gunther W., Seeburgh P. H. and Sakmann B. (1992) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257: 1415−1419.

39. Burnashev N., Zhou Z., Neher E. and Sakmann B. (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA, and kainate receptor types. J. Physiol. 485:403−418.

40. Carruthers A. and Melchior D.L. (1988) in Lipid Domains and Relathionship to Membrane Function (Aloia R.C., Curtain C.C. and Gordon L.M., eds) pp.201−225.

41. Casado, M. and Ascher, P. (1998) Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. J. Physiol. 513:317−330.

42. Chen L. and Huang L-YM (1992) Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature (Lond) 356:521−523.

43. Chen L., Gu Y. and Huang L.-Y. M. (1995) The mechanism of action for the block of NMDA receptor channels by the opioid peptide dynorphin. J. Neurosci. 15: 4602−4611.

44. Chen H.-S. V. and Lipton S. A. (1997) Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J. Physiol. 499: 27−46.

45. Chen N., Moshaver A. and Raymond L. A. (1997) Differential sensitivity of recombinant N-methyl-d-aspartate receptor subtypes to zinc inhibition. Mol. Pharmacol. 51: 1015−1023.

46. Chen H.-S. V. and Lipton S. A. (1997) Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J. Physiol. 499: 27−46.

47. Chen N., Moshaver A. and Raymond L. A. (1997) Differential sensitivity of recombinant N-methyl-d-aspartate receptor subtypes to zinc inhibition. Mol. Pharmacol. 51: 1015−1023.

48. Chernomordik L. V., Melikyan G. B. and Chizmadzhev Y. A. (1987) Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim. Biophys. Acta 906: 309−352.

49. Chizmakov I.V., Kiskin N.I. and Krishtal O.A. (1992) Two types of steady-state desensitization of NMDA receptor in isolated hippocampal neurones of rat. J. Physiology, 448: 453−472.

50. Chu B., Anantharam V. and Treistman S. N. (1995) Ethanol inhibition of recombinant heteromeric NMDA channels in the presence and absence of modulators. J. Neurochem. 65: 140−148.

51. Colquhoun, D. and Hawkes A. G. (1995) Desensitization of N-methyl-d-aspartate receptors: a problem of interpretation. Proc. Nat. Acad. Sci. USA 92: 10 327−10 329.

52. Costa A. C. S. and Albuquerque E. X. (1994) Dynamics of the actions of tetrahydro-9-aminoacridine and 9-aminoacridine on glutamatergic currents: Concentration-jump studies in cultured rat hippocampal neurons. J. Pharmacol. Exp. Ther. 268: 503−514.

53. Cunha R.A., Sebastiao A.M., Ribeiro J.A. (2000) Arachidonic acid inhibits presynaptic kainate receptors in the rat hippocampus. Society for Neuroscience Abstracts, 26.2:1882.

54. Danysz W., Parsons C. G., Bresink I. and Quack G. (1995) Glutamate in CNS disorders. Drug News Perspect. 8: 261−277.

55. Danysz, W. and Parsons, C. G. (1998) Glycine and N-methyl-D-aspartate receptors: Physiological significance and possible therapeutic applications. Pharmacol. Rev. 50: 597 664.

56. DeCoster M.A., Rodriguez de Turco E.B., Jackson F.R., Bazan N.G. (2000) Release of free Arachidonic acid (20:4) by secretory phospholipase A2 from neurons. Society for Neuroscience Abstracts, 26.2:1848.

57. Di Marzo V., Melck D., Biscogno T. & De Petrocellis L., (1998) Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action, Trends Neuroscience, 21: 521−528.

58. Dingledine R., Borges K., Bowie D. and Traynelis S. F. (1999) The glutamate receptor ion channels. Pharmacol. Rev. 51: 7−61.

59. Durand G. M., Bennett M. V. and Zukin R. S. (1993) Splice variants of the N-methyl-D-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. Proc. Nat. Acad. Sci. USA 90: 6731−6735.

60. Dzubay J. A. and Jahr C. E. (1996) Kinetics of NMDA channel opening. J. Neurosci. 16: 4129−4134.

61. Edmonds B. and Colquhoun D. (1992) Rapid decay of averaged single-channel NMDA receptor activations recorded at low agonist concentration. Proc.ESoc.Lond.B (1992), 250: 279−286.

62. Edlund C., Holmberg K., Dallner G., Norrby E. and Kristensson K. (1994) Ubiquinone-10 protects neurons from virus-induced degeneration. J. Neurochemistry 63:634−639.

63. Ehlers M. D., Zhang S., Bernhardt J. P. and Huganir R. L. (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84: 745−755.

64. Ferrer-Montiel A. V. and Montal M. (1996) Pentameric subunit stoichiometiy of a neuronal glutamate receptor. Proc. Nat. Acad. Sci. USA 93: 2741−2744.

65. Fink M., Lesage F., Duprat F., Heurteaux C., Reyes R., Fosset M., and Lazdunski M. (1998) A neuronal two domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. The EMBO Journal 17.12:3297−3308.

66. Firestone L.L., Alifimoff J.K., Miller K.W. (1994) Does general anesthetic-induced desensitization of the Torpedo acetylcholine receptor correlate with lipid disordering? Mol. Pharm. 46:508−515.

67. Foldes R. L., Rampersad V. and Kamboj R. K. (1993) Cloning and sequence analysis of cDNAs encoding human hippocampus N-methyl-D-aspartate receptor subunits: evidence for alternative RNA splicing. Gene 131: 293−298.

68. Fraser D.D., Hoehn K., Weiss S. and MacVicar B.A. (1993) Arachidonic acid inhibits sodium currents and synaptic transmission in cultured striatal neurons. Neuron 11:633−644.

69. Gallgher M. J., Huang H., Grant E. R. and Lynch D. R. (1997) The NR2B-specific interactions of polyamines and protons with the N-methyl-d-aspartate receptor. J. Biol. Chem. 272: 24 971−24 979.

70. Gallgher M. J., Huang H., Pritchett D. R. and Lynch D. R. (1996) Interactions between ifenprodil and the NR2B subunit of the N-methyl-d-aspartate receptor. J. Biol. Chem. 271: 9603−9611.

71. Galli C. and Petroni A., (1990) Modulation of Arachidonic acid activation in the ischemic brain. New Trends Lipid Mediators Res. Basel, Karger, 4:18−35.

72. Giaume C., Randriamampita C. and Trautmann A. (1989) Arachidonic acid closes gap junction channels in rat lacrimal glands. Pfliigers Arch. 413:273−279.

73. Gibb A.J. and Colquhoun D. (1992) Activation of NMDA receptors by glutamate in cells dissociated from adult rat hippocampus. J. of Physiology, 456: 143−179.

74. Greenamyre J. and Young A.(l991) NMDA receptors in development and disease. In: Neurobiology of the NMDA receptor from chemistry to the clinic (Kozikowski A., Ed.), pp. 173−186. VCH Publishers, Inc.

75. Grenningloh G., Rienitz A., Schmitt B., Methfessel C., Zensen M., Beyreuther K., Gundelfinger E. D. and Betz H. (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328: 215−220.

76. Gozlan H. and Ben-Ari Y. (1995) NMDA receptor redox sites: are they targets for selective neuronal protection? TiPS 16: 368−374.

77. Hauser H., Guyer W" Howell K. (1979) Biochemistry 18:3285.

78. Haydon D.A., Hendiy B.M., Levinson S.R. (1977) Nature (London) 268:356.

79. Hillered L., Chan P. H. (1988) Role of arachidonic acid and other free fatty acids in mitochondrial dysfunction in brain ischemia. Journal of Neuroscience Research 20:451 456.

80. Hollmann, M. and Heinemann, S. (1993) Cloned glutamate receptors. Annu. Rev. Neurosci. 17:31−108.

81. Hollmann, M., Boulter, J., Maron, C., Beasley, L., Sullivan, J., Pecht, G. and Heinemann, S. (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10: 943−954.

82. Horber J.K., Mosbacher J., Haberle W., Ruppersberg J.P., Sakmann B. (1995) A look at Membrane Patches with a scanning force micriscope. Biophysical J. 68:1687−1693.

83. Jahr C. E. (1992) High probability opening of NMDA receptor channels by L-glutamate. Science 255: 470−472.

84. Jahr C. E. and Stevens C. F. (1987) Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325: 522−525.

85. Jahr C. E. and Stevens C. F. (1990a) A quantitative description of NMDA receptor channel kinetic behavior. J. Neurosci. 10: 1830−1837.

86. Jahr C. E. and Stevens C. F. (1990b) Voltage dependence of NMDA-activated macroscopic conductances predicted by single channel kinetics. J. Neurosci. 10: 3178−3182.

87. Johnson J. W. and Ascher P. (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325: 529−531.

88. Kamp F. and Hamilton J.A. (1993) Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry 32:11 074−11 086.

89. Kapus A., Susztak K. and Ligeti E. (1993) Regulation of the alectrogenic H+ channel in the plasma membrane of neurophils: Possible role of phospholipase A2, internal and external protons. Biochem. J. 292:445−450.

90. Karp S. J., Masu M., Eki T., Ozawa K. and Nakanishi S. (1993) Molecular cloning and chromosomal localization of the key subunit of the human N-methyl-D-aspartate receptor. J. Biol. Chem. 268: 3728−3733.

91. Kashiwagi K., Fukushi J.-I., Chao J., Igarashi K. and Williams K. (1996) An aspartate residue in the extracellular loop of the N-methyl-D-aspartate receptor controls sensitivity to spermine and protons. Mol. Pharmacol 49: 1131−1141.

92. Kato K., Uruni K., Saito K. and Kato H. (1991) Both arachidonic acid and l-oleoyl-2-acetyl glycerol in low magnesium solution induce long-term potentiation in hippocampal CA-1 neurons in vitro. Brain Research 563:94−100.

93. Kato K., Clark G.D., Bazan N.G. and Zorumski C.F. (1994) Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 367:175−179.

94. Katsuki H. and Okuda S. (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Progress in Neurobiology 46:607−636.

95. Keller B.U., Konnerth A. and Yaary Y. (1991) Patch clamp analysis of exitatory synaptic currents in granule cells of rat hippocampus. J. of Physiology, 435: 275−293.

96. Kemp J. A. and Priestley T. (1991) Effects of (+)-HA-966 and 7-chlorokynurenic acid on the kinetics of N-methyl-D-aspartate receptor agonist responses in rat cultured cortical neurons. Mol. Pharmacol. 39: 666−670.

97. Keyser D.O. and Alger B.E. (1990) Arachidonic acid modulates hippocampal calcium current via protein kinase C and oxygen radicals. Neuron 5:545−553.

98. Kirber M.T., Ordway R.W., Clapp L.H., Walsh J.V. & Singer J.J. (1992) FEBS Lett., 297: 2428.

99. Kohr G., Eckardt S., Luddens H., Monyer H. and Seeburg P. H. (1994) NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron 12: 1031−1040.

100. Komuro, H. and Pakic, P. (1993) Modulation of neuronal migration by NMDA receptors. Science 260: 95−97.

101. Konnerth A., Keller B.U., Ballanyi K. and Yaari Y. (1990) Voltage sensitivity of NMDA-receptor mediated postsynaptic currents. Exp. Brain Res., 81:209−212. study NMDA channels of the neuronal membrane. Biol Memb 9:1365−1369.

102. Kovalchuk Y., Miller B., Sarantis M., Attwell D. (1994) Arachidonic acid depress non-NMDA receptor currents Brain Research 643:287−295.

103. Krupp J. J, Vissel B., Heinemann S. F. and Westbrook G. L. (1996) Calcium-dependent inactivation of recombinant N-methyl-D-aspartate receptors is NR2 subunit specific. Mol. Pharmacol. 50: 1680−1688.

104. Krupp J. J., Vissel B., Thomas C. G., Heinemann S. F. and Westbrook G. L. (1999) Interactions of calmodulin and a-actinin with the NR1 subunit modulate Ca2±dependent inactivation of NMDA receptors. J. Neurosci. 15: 1165−1178.

105. Kuner T. and Schoepfer R. (1996) Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. J. Neurosci. 16: 3549−3558.

106. Kuner T, Wollmuth LP, Karlin A, Seeburg PH, Sakmann B (1996) Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17:343−352.

107. Kupper J., Ascher P. and Neyton J. (1996) Probing the pore region of recombinant N-methyl-d-aspartate channels using external and internal magnesium block. Proc. Natl. Acad. Sci. USA 93: 8648−8653.

108. Kupper J., Ascher P. and Neyton J. (1998) Internal Mg2+ block of recombinant NMDA channels mutated within the selectivity filter and expressed in Xenopus oocytes. J. Physiol. 507: 1−12.

109. Kutsuwada T., Kashiwabuchi N., Mori H., Sakimura K., Kushiya E., Araki K., Meguro H., Masaki H., Kumanishi T., Arakawa M. and Mishina M. (1992) Molecular diversity of the NMDA receptor channel. Nature 358: 36−41.

110. Kyrozis A., Albuquerque C., Gu J. and MacDermott A. B. (1996) Ca2±dependent inactivation of NMDA receptors: fast kinetics and high Ca2+ sensitivity in rat horn neurons. J. Physiol. 495: 449−463.

111. Meves H. (1994) Modulation of ion channels by arachidonic acid. Progress in Neurobiology 43:175−186.

112. MacDermott A.B., Mayer M.L., Westbrook G.L., Smith S.J. and Barker J.L. (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519−522.

113. Maren S and Baudry M. (1995) Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory. Neurobiol. Learn. Mem. 63: 1−18.

114. Maricq A. V., Peterson A. S., Brake A. J., Myers R. M. and Julius D. (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254: 432−437.

115. Markin V.S., Martinac B. (1991) Mechanosensitive ion channels as reporters of bilayer expansion. Biophysical J. 60:1120−1127.

116. Marsh D., and Watts A. (1988) in Lipid Domains and Relathionship to Membrane Function (Aloia R.C., Curtain C.C. and Gordon L.M., eds) pp. 163−200.

117. Mayer M. L., MacDermott A. B., Westbrook G. L., Smith S. J. and Barker J. L. (1987) Agonistand voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp measured using arsenazo III. J. Neurosci. 7: 3230−3244.

118. Mayer M. L., Vyklicky L., Benveniste M., Patneau D. K. and Williamson L. (1991) Desensitization at NMDA and AMPA-kainate receptors. In: Excitatory Amino Acids and Synaptic Transmission, edited by H. Wheel and A. Thompson. London: Academic, pp.123−140.

119. Mayer M. L., Vyclicky Jr. L. and Westbrook, G. L. (1989) Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones. J. Physiol. 415: 329−350.

120. Mayer M. L. and Westbrook G. L. (1985) The action of N-methyl-d-aspartic acid on mouse spinal neurones in culture. J. Physiol. 361: 65−90.

121. Mayer M. L. and Westbrook G. L. (1987) Permeation and block of N-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J. Physiol. 394: 501−527.

122. Mayer M. L., Westbrook G. L. and Guthrie P. B. (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309: 261−263.

123. Mayer M. L., Westbrook G. L. and Vyclicky Jr. L. (1988) Sites of antagonist action on N-methyl-D-aspartic acid receptors studied using fluctuation analysis and a rapid perfusion technique. J. Neurophysiol. 60: 645−663.

124. McBain C. J. and Mayer M. L. (1994) N-methyl-d-aspartic acid receptor structure and function. Physiol. Rev. 74: 723−760.

125. McGurk J. F., Bennett M. V. and Zukin R. S. (1990) Polyamines potentiate responses of N-methyl-d-aspartate receptors expressed in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 87: 9971−9974.

126. McLarnon J.G. and Curry K. (1990) Single channel properties of the NMDA receptor channel using NMDA and NMDA agonists: on-cell recordings. Exp. Brain Res., 82: 82−88.

127. Meguro H., Mori H., Araki K., Kushiya E., Kutsuwada T., Yamazaki M., Kumanishi T., Arakawa M., Sakimura K. and Mishina M. (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357: 70−74.

128. Miller, B., Sarantis, M., Traynelis, S. F. and Attwell, D. (1992) Potentiation of NMDA receptor currents by arachidonic acid. Nature 355: 722−725.

129. Monaghan D. (1991) Anatomical organization and apparent heterogeneity of NMDA receptors. In: Neurobiology of the NMDA receptor from chemistry to the clinic (Kozikowsky A., Ed.), pp. 149−172. VCH Publishers, Inc.

130. Monyer H., Burnashev N., Laurie D. J., Sakmann B. and Seeburg P. H. (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529−540.

131. Mori H. and Mishina M. (1995) Structure and function of the NMDA receptor channel. Neuropharmacology 34: 1219−1237.

132. Moriyoshi K., Masu M., Ishii T., Shigemoto R., Mizumo N. and Nakanishi S. (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354: 31−37.

133. Mott D.D., Doherty J.J., Zhang S., Washburn M.S., Fendley M.J., Luboslavsky P., Traynelis S.F., Dingledine R. (1998) Phenylethanolamines inhibit NMDA receptors by enchancing proton inhibition. Nature Neurosci. l (8):659−667.

134. Murphy E.J., Horrocks L.A. (1990) Mechanisms of action of CDPcholine and CDPethanolamine on fatty acid release during ischemia of brain. New Trends Lipid Mediators Res. Basel, Karger, 4:67−84.

135. Needleman P., Turk J., Jakschik B.A., Morrison A.R., Lefkowith J.B. (1986) Arachidonic acid metabolism. A. Rev. Biochem. 55:69−102.

136. Nowak, L., Bregestovski, P., Ascher, P., Herbert, A. and Prochiantz, A. (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307: 462−465.

137. Nojima H., Sasaki T., Kimura I. (1999) Arachidonic acid and prostaglandin D2 cooperatively accelerate desensitization of nicotinic acetylcholine receptor channel in mouse skeletal muscles. Brain Research 852:233−238.

138. Okuda S., Saito H. and Katsuki H. (1994) Arachidonic acid: toxic and trophic effects on cultured hippocampal neurons. Neuroscience 63:691−699.

139. Ordway R.W., Singer J.J. and Walsh J.V. (1991) Direct regulation of ion channels by fatty acids TINS 14.3:96−100.

140. Palmer A.M. (1991) Exitatory amino acid neurons and receptors in Alzheimer’s disease. In: Neurobiology of the NMDA receptor from chemistry to the clinic (Kozikowski A., Ed.), pp. 173−186. VCH Publishers, Inc.

141. Paoletti P. and Ascher P. (1994) Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neuron 13: 645−655.

142. Paoletti P., Ascher P. and Neyton J. (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci. 17: 5711−5725.

143. Paoletti P, Neyton J. and Ascher P. (1995) Glycine-independent and subunit-specific potentiation of NMDA responses by extracellular Mg2+ Neuron 15:1109−1120.

144. Parsons, C. G., Danysz, W. and Quack, G. (1998) Glutamate in CNS disorders as a target for drug development: An update. Drug News Perspect. 11: 523−569.

145. Parsons C. G., Danysz W. and Quack G. (1999) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist a review of preclinical data. Neuropharmacology 38: 735−767.

146. Parsons C. G., Gruner R., Rozental J., Millar J. and Lodge D. (1993) Patch clamp studies on the kinetics and selectivity of NMDA receptor antagonism by memantine. Neuropharmacology 32: 1337−1350.

147. Petrou S., Ordway R.W. Singer J. J, and Walsh Jr. (1993) A putative fatty acid-binding domain of the NMDA receptor. Trends Neurosci., 18:41−42.

148. Patneau D. K. and Mayer M. L. (1990) Structure-activity relationships for amino-acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J. Neurosci. 10: 2385−2399.

149. Peoples R.W., White G., Lovinger D.M. & Weight F.F., (1997) Ethanol inhibition ofNMDA-activated current in mouse hippocampal neurones: whole cell patch-clamp analysis, Br.J. of Pharmacology 122:1035−1042.

150. Peoples R. W. and Weight F. F. (1998) Inhibition of excitatory amino acid-activated currents by trichloroethanol and trifluoroethanol in mouse hippocampal neurones. Br. J. Pharmacol. 124: 1159−1164.

151. Peoples R. W. and Weight F. F. (1999) Differential alcohol modulation of GABAa and NMDA rceptors. NeuroReport 10: 97−101.

152. Planells-Cases R., Sun W., Ferrer-Montiel A. and Montal M. (1993) Molecular cloning, functional expression, and pharmacological characterization of an N-methyl-D-aspartate receptor subunit from the human brain. Proc. Nat. Acad. Sci. USA 90: 5057−5061.

153. Premkumar, L. S. and Auerbach, A. (1997) Stoichiometry of recombinant N-methyl-D-aspartate receptor channels inferred from single-channel current patterns. J. Gen. Physiol., 110: 485−502.

154. Priestley T. and Kemp J. A. (1993) Agonist response kinetics of NMDA receptors in neurons cultured from rat cerebral cortex and cerebellum: evidence for receptor heterogeneity. Mol. Pharmacol. 44: 1252−1257.

155. Rich M.R. (1993) Conformational analysis of arachidonic and related fatty acids using molecular dynamics simulations. Biochimica et Biophysica Acta 1178:87−96.

156. Richieri G.V., Mescher M.F., Kleinfeld A. M (1990) Short term exposure to cis unsaturated free fatty acids inhibits degranulation of ctotoxic T lymphocytes. J. Immunology, 144:671 -677.

157. Rosenmund C. and Westbrook G.L. (1993) Calcium-induced actin depolimerization reduces NMDA channel activity. Neuron, 10: 805−814.

158. Rosenmund C., Feltz A. and Westbrook G.L. (1995,a) Synaptic NMDA receptor channels have a low open probability. J. ofNeurosciense, 15(4): 2788−2795.

159. Rosenmund C., Feltz A. and Westbrook G.L. (1995,b) Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurones. J. of Neurophysiology, 73: 427−430.

160. Rousaire-Dubois B" Gerard V. & Dubois J.M. (1991) Pflugers Arch., 419:467−471.

161. Sackin H., (1994) Stretch-activated ion channels in «Cellular and Molecular physiology of cell volume regulation» CRC press, 215−240.

162. Sather W., Dieudonne S., MacDonald J. F. and Ascher P. (1992) Activation and desensitization of NMDA receptors in nucleated outside-out patches from mouse neurons. J. Physiol. 450: 643−672.

163. Sather W., Johnson J. W., Henderson G. and Ascher P. (1990) Glycine-insensitive desensitization of NMDA responses in cultured mouse embryonic neurons. Neuron 4: 725−731.

164. Schwartz R.D. and Yu X. (1992) Inhibition of GABA-gated chloride channel function by arachidonic acid. Brain Research 585:405−410.

165. Segal J. A. and Skolnick P. (1998) Polyamine-like actions of aminoglycosides and aminoglycoside derivatives at NMDA receptors. Eur. J. Pharmacol. 347: 311−317.

166. Sharma G. and Stevens C. F. (1996a) A mutation that alters magnesium block of N-methyl-d-aspartate receptor channels. Proc. Natl. Acad. Sci. USA 93: 9259−9263.

167. Sharma G. and Stevens C. F. (1996b) Interactions between two divalent ion binding sites in N-methyl-d-aspartate receptor channels. Proc. Natl. Acad. Sci. USA 93: 14 170−14 175.

168. Shirasaki, T., Nakagawa, T., Wakamori, M., Tateishi, N., Fukuda, A., Murase, K. and Akaike, N. (1990), Glycine-insensitive desensitization of N-methyl-d-aspartate receptors in acutely isolated mammalian central neurones. Neurosci. Lett. 108: 93−98.

169. Sobolevsky A.I. (1999) Two-component blocking kinetics of open NMDA channels by organic cations. Biochim Biophys Acta 1416:69−91.

170. Sobolevsky A. I. (2000) Quantative analysis of tetrapentylammonium-induced blockade of open N-methyl-D-aspartate channels. Biophysical Journal 79:1305−1319.

171. Sobolevsky A. and Koshelev S. (1998) Two blocking sites of amino-adamantane derivatives in open N-methyl-D-aspartate channels. Biophys. J. 74: 1305−1319.

172. Sobolevsky A. I. and Yelshansky M. V. (2000) The trapping block of NMDA-receptor channels in acutely isolated rat hippocampal neurones. Journal of Physiology (London), 526.3:493−506.

173. Sobolevsky A. I., Yelshansky M. V., and Khodorov B. I. (2000) Eosine-induced blockade of N-Methyl-D-Aspartate Channels in Acutely Isolated Rat Hippocampal Neurones. Molecular Pharmacology, 57: 334−341.

174. Soderberg M., Edlund C., Kristensson K. and Daliner G. (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:421−425.

175. Staubly U. and Lynch G. (1991) NMDA receptors and memory: evidence from pharmacological and correlation studies. In: Neurobiology of the NMDA receptor from chemistry to the clinic (Kozikowsky A., Ed.), pp. 149−172. VCH Publishers, Inc.

176. Stoker H., (1994) Taschenbuch der Physik. Harry Deutsch Verlag, Thun und Frankfurt/Main.

177. Subramaniam S., Donevan S. D. and Rogawski M. A. (1994) Hydrophobic interactions of n-alkyl diamines with the N-methyl-D-aspartate receptor: voltage-dependent andindependent blocking sites. Mol. Pharmacol. 45: 117−124.

178. Sugihara H., Moriyoshi K., Ishii T., Masu M. and Nakanishi S. (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem. Biophys. Res. Commun. 185: 826−832.

179. Sullivan J. M., Traynelis S. F., Chen H. S., Escobar W., Heinemann S. F. and Lipton S. A. (1994) Identification of two cystein residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13: 929−936.

180. Tang C. M., Dichter M. and Morad M. (1990) Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc. Nat. Acad. Sci. USA 87: 6445−6449.

181. Tang L.-H. and Aizenman E. (1993) The modulation of N-methyl-D-aspartate receptors by redox and alkylating reagents in rat cortical neurones in vitro. J. Physiol. 465: 303−323.

182. Tewari K.P., Malinowska D.H., Sherry A.M., Cuppoletti J. (2000) PKA and arachidonic acid activation of human recombinant C1C-2 chloride channels. Am J. Physiol. Cell Physiol. 279(l):40−50.

183. Tong G. and Jahr C. E. (1994) Regulation of glycine-insensitive desensitization of the NMDA receptor in outside-out patches. J. Neurophysiol. 72: 754−761.

184. Traynelis S. F. (1998) pH modulation of ligand gated ion channels. In: pH and Brain Function (Kaila, K. and Ransom, B. R., eds.) pp. 407−437, Wiley-Liss, Inc., New York.

185. Traynelis S. F., Burgess M. F., Zheng F., Lyuboslavsky P. and Powers J. (1998) Control of voltage independent zinc inhibition of NMDA receptors by the NR1 subunit. J. Neurosci. 18: 6163−6175.

186. Traynelis S. F. and Cull-Candy S. G. (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345: 347−350.

187. Traynelis S. F. and Cull-Candy S. G. (1991) Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J. Physiol. 433: 727−763.

188. Traynelis S. F., Hartley M. and Heinemann S. F. (1995) Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268: 873−876.

189. Ultsch A., Schuster C. M., Laube B., Betz H. and Schmitt B. (1993) Glutamate receptors of Drosophila melanogaster. Primary structure of a putative NMDA receptor protein expressed in the head of the adult fly. FEBS Lett. 324: 171−177.

190. Unwin N. (1993) Neurotransmitter action: opening of ligand-gated ion channels. Neuron 10: 31−41.

191. Usher J.R., Epand R.M., Papahadjopoulos D., (1978) Chem.Phys.Lipids 22:245.

192. Valdman E.A., Voronina T.A., Nerobkova L.N., Andjarzhanova E.A. (2000) Novel aminoadamantane derivative A-7: a potent antiparkinsonian drug. Abstracts of the 5th ECNP Regional Meeting 10(S2):S76.

193. Vorobjev V. S. (1991) Vibrodissociation of sliced mammalian nervous tissue. J. Neurosci. Methods 38: 145−150.

194. Vorobjev V. S. and Sharonova I. N. (1994) Tetrahydroaminoacridine blocks and prolongs NMDA receptor-mediated responses in a voltage-dependent manner. Eur. J. Pharmacol. 253: 1−8.

195. Vorobjev V. S., Sharonova I. N" Khodorov B. 1. and Skrebitsky V. G. (1992) Voltage-dependent blockage of open NMDA channels by ethylisopropyl amiloride in isolated hippocampal neurons. Biol. Membr. 9: 1359−1361.

196. Vorobjev V. S., Sharonova I. N., Walsh 1. B. and Haas H. L. (1993) Histamine potentiates N-methyl-d-aspartate responses in acutely isolated hippocampal neurons. Neuron 11: 837 844.

197. Vorobjev, V.S., Sharonova I.N. and Haas H.L. (1996) A simple perfusion system for patch-clamp studies. J. Neurosci. Methods 68:303−307.

198. Vreugdenhil M., Bruehl C., Voskuyl R.A., Kang J.X., Leaf A., and Wadman W.J. (1996) Polunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proc. Natl Acad. Sci. USA 93:12 559−12 563.

199. Vyklicky L. J. (1993) Calcium-mediated modulation of N-methyl-d-aspartate (NMDA) responses in cultured rat hippocampal neurones. J. Physiol. 470: 575−600.

200. Vyklicky L., Benveniste M. and Mayer M. (1990) Modulation of NMDA receptor desensitization by glycine in mouse cultured hippocampal neurons. J. Physiol. 428: 313 331.

201. Viklicky L., Vlachova V. and Krusek J. (1990) The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones. J. Physiol. 430: 497 517.

202. Vlachova V., Zemkova H. and Vyklicky Jr. L. (1996) Copper modulation of NMDA responses in mouse and rat cultured hippocampal neurons. Eur. J. Neurosci. 8: 2257−2264.

203. Wieland S. J., Fletcher J. E., & Q-H. Gong (1992) Differential modulation of sodium conductance in skeletal muscle by intracellular and extracellular fatty acids, Am. J. Physiol, 263: C308-C312.

204. Williams K. (1993) Ifenprodil discriminates subtypes of the N-methyl-d-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol. Pharmacol. 44: 851−859.

205. Williams K. (1994) Subunit-specific potentiation of recombinant N-methyl-d-aspartate receptors by histamine. Mol. Pharmacol. 46: 531−541.

206. Williams K. (1995a) Modulation of NMDA receptors by polyamines. In: Polyamines: Regulation and Molecular Interaction (Casero, R., ed.), RG Landes Co.

207. Williams K. (1995b) Pharmacological properties of recombinant N-methyl-d-aspartate (NMDA) receptors containing s4 (NR2D) subunit. Neurosci. Lett. 184: 181−184.

208. Williams K. (1996) Separating dual effects of zinc at recombinant N-methyl-d-aspartate receptors. Neurosci. Lett. 215: 9−12.

209. Williams K., Hanna J. L. and Molinoff P. B. (1991) Developmental changes in the sensitivity of the N-methyl-d-aspartate receptor to polyamines. Mol. Pharmacol. 40: 774−782.

210. Williams K., Kashiwagi K., Fukuchi J.-I. and and Igarashi K. (1995) An acidic amino acid in the N-methyl-d-aspartate receptor that is important for spermine stimulation. Mol. Pharmacol. 48: 1087−1098.

211. Williams K., Pahk A. J., Kashiwagi K., Masuko T., Nguyen N. D. and Igarashi K. (1998) The selectivity filter of the N-methyl-d-aspartate receptor: a tryptophan residue controls block and permeation of Mg2+. Mol Pharmacol. 53: 933−941.

212. Williams K., Russell S. L., Shen Y. M. and Molinoff P. B. (1993) Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron 10: 267−278.

213. Williams K., Zappia A. M" Pritchett D. B., Shen Y. M. and Molinoff P. B. (1994) Sensitivity of the N-methyl-d-aspartate receptor to polyamines is controlled by NR2 subunits. Mol. Pharmacol. 45: 803−809.

214. Wisden W. and Seeburg P. H. (1993) Mammalian ionotropic glutamate receptors. Curr. Opin. Neurobiol. 3: 291−298.

215. Wollmuth L.P., Kuner T. and Sakmann B. (1998a) Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+ J. Physiology 506.1:13−32.

216. Wollmuth L. P., Kuner T. and Sakmann B. (1998b) Intracellular Mg2+ interacts with structural determinants of the narrow constriction contributed by the NRl-subunit in the NMDA receptor channel. J. Physiol. 506: 33−52.

217. Wollmuth L.P., Kuner T., Jatzke C., Seeburg P.H., Heintz N., and Zuo J. (2000) The Lurcher Mutation Identifies 82 as an AMPA/Kainate Receptor-Like Channel That Is Potentiated by Ca2+. The Journal of Neuroscience 20(16):5973−5980.

218. Wood, M. W" VanDongen, H. M. A. and VanDongen, A. M. J. (1995) Structural conservation of ion conduction pathways in K channel and glutamate receptors. Proc. Nat. Acad. Sci. USA 92: 4882−4886.

219. Woodhull A. M. (1973) Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61: 687 708.

220. Yamazaki M., Mori H., Araki K., Mori K. J. and Mishina M. (1992) Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Lett. 300: 39−45.

221. Yasuda H., Kishiro K., Izumi N., Nakanishi M. (1985) Biphasic liberation of arachidonic and stearic acids during cerebral ischemia. J. Neurochemistry 45:168−172.

222. Young A.P., Brown F. F" Halsey M.J., Sigman D.S. (1978) Proc. Natl. Acad. Sci. USA 75:4563.

223. Zarei M. M. and Dani J. A. (1994) Ionic permeability characteristics of the N-methyl-d-aspartate receptor channel. J. Gen. Physiol. 103: 231−248.

224. Zarei M. M. and Dani J. A. (1995) Structural basis for explaining open-channel blockade of the NMDA receptor. J. Neurosci. 15: 1446−1454.

225. Zang L., Rzigalinski B.A., Ellis E.F., Satin L.S. (1996) Reduction of voltage-dependent Mg2+ blockade of NMDA current in mechanically injured neurons Science 274:1921;1923.

226. Zhang S., Ehlers M. D" Bernhardt J. P., Su C. T. and Huganir R. L. (1998) Calmodulin mediates calcium-dependent inactivation of N-methyl-d-aspartate receptors. Neuron 21: 443−453.

227. Zheng F., Gingrich M. B., Traynelis S. F. and Conn P. J. (1998) Tyrosine kinase potentiates NMDA receptor current by reducing tonic Zn2+ inhibition. Nat. Neurosci. 1: 185−191.

228. Zheng X., Zhang L., Durand G.M., Bennett M.V.L., and Zukin R.S. (1994) Mutagenesis rescues spermine and Zn2+ potentiation of recombinant NMDA receptors. Neuron 12:811 818.

229. Zuo J., De Jager P. L" Takahashi K.A., Jiang W., Linden D and Heintz N. (1997) Neurodegeneration in Lurcher mice caused by mutation in 82 glutamate receptor gene. Nature, 388:769−773.5''О С С :1. ТВСУДЛЯ". < г—.'.:^ I1. Ш^б С'1.

Показать весь текст
Заполнить форму текущей работой