Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

Железобетонные и каменные конструкции многоэтажного промышленного здания

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

При расчете рамы целесообразно использовать перераспределение усилий с целью уменьшения расхода арматурной стали. Максимальный изгибающий момент в опорном сечении ригеля получают при расположении временной нагрузки в двух смежных пролетах (загружение 1+4). Можно ограничить армирование опорных сечений ригеля так, чтобы в результате образования пластического шарнира было обеспечено необходимое… Читать ещё >

Железобетонные и каменные конструкции многоэтажного промышленного здания (реферат, курсовая, диплом, контрольная)

Введение

Значение железобетонных и каменных конструкций в современном строительстве.

Каменные конструкции применяют в качестве несущих конструкций для внецентренно сжатых элементов с ограниченным эксцентриситетом приложения внешних сил. Армокаменные конструкции расширяют область применения каменных конструкций, приближая их к железобетонным. Каменные конструкции недостаточно совершенны для зданий и сооружений, подвергающихся динамическим воздействиям для строительства в сейсмических районах, в условиях воздействия агрессивной среды, систематических технологических температур выше 100? С, в зонах вечной мерзлоты, просадочных и набухающих грунтов и на подрабатываемых территориях. Наряду с искусственными каменными материалами (кирпич, пустотелые керамические или бетонные камни, сплошные камни и блоки из легких и ячеистых бетонов) рекомендуется применять природные каменные материалы (известняк, туф), выпиливаемые из массивов горных пород.

Железобетонные конструкции широко используются в капитальном строительстве при воздействии температур не выше 50? С и не ниже 70? С. В каждой отрасли промышленности и жилищно-гражданском строительстве имеются экономичные формы конструкций из сборного, монолитного или сборного, монолитного железобетона.

Во многих случаях конструкции из железобетона (особенно предварительно напряженного) целесообразнее каменных или стальных. К ним относятся: атомные реакторы, мощные прессовые устройства, морские сооружения, мосты, аэродромы, дороги, фабрично-заводские, складские и общественные здания и сооружения; тонкостенные пространственные конструкции, силосы, бункера и резервуары, напорные трубопроводы, фундаменты под прокатные станы и под машины с динамическими нагрузками, башни, высокие дымовые трубы, сваи, кессонные основания, подпорные стены и многие другие массивные сооружения.

Большое применение железобетон находит при устройстве набережных, тепло и гидроэлектрических станций, плотин, шлюзов, доков и других и гидротехнических сооружений. Железобетон является незаменимым строительным материалом в санитарно-техническом и подземном строительстве. Он в значительной степени вытеснил древесину и металл при горных разработках. В строительстве железобетонных судов и плавучих доков еще до войны СССР достиг значительных результатов. На изготовление железобетонных линейных конструкций расходуется в 2… 3 раза, а на изготовление плит, настилов, труб в 10 раз меньше металла, чем на стальные конструкции.

Методика проектирования.

В реальном проектировании строительного объекта работы ведутся в три этапа:

1 этап: технико-экономическое обоснование строительства тех или иных объектов.

2 этап: вариантное проектирование.

3 этап: разработка рабочих чертежей по выбранному варианту.

В учебном проекте мы разрабатываем 3 этап, то есть по заданному варианту разрабатываем рабочие чертежи.

При реальном проектировании конструкции рассчитываются по II группе предельных состояний, то есть на образование трещин, ширине раскрытия трещин, на прогибы.

В данном курсовом проекте расчет выполняется по I группе предельных состояний, подбираются размеры поперечного сечения и требуемая площадь арматуры.

В данном курсовом проекте мы конструируем:

В монолитном перекрытии:

· плиту;

· второстепенную балку.

В сборном перекрытии:

· плиту;

· ригель;

· колонну;

· фундамент ;

· колонны.

Для наружной несущей стены под монолитное перекрытие проектируем простенок первого этажа.

1. Расчет монолитной плиты Необходимо определить арматуру монолитной балочной плиты для перекрытия, компоновка которого приведена на рисунке 1, при следующих нагрузках:

— временная (полезная, по заданию) — 5 кН/м2;

— пол асфальтобетонный толщиной 20 мм;

— звуко, — гидроизоляция из шлакобетона толщиной 50 мм.

Для определения расчетных пролетов плиты и второстепенных балок, а также нагрузок от их собственной массы производят предварительное назначение основных геометрических размеров сечений перекрытия:

— толщина плиты примем 70 мм;

— сечение второстепенной балок :

мм примем 400 мм.

bpb = (0,3? 0,5) hpb = 0,5 400 = 200 мм.

— сечение главных балок

мм

bmb = (0,4? 0,5) hmb = 0,5 600 = 300 мм

— заделка плиты в стену принимается не менее высоты ее сечения и в кирпичных стенах кратной размеру кирпича (а = 120 мм).

Вычисление расчетных пролетов плиты

l0f, 1 = lf 1 — 0,5 bpb — 250 + 0,5a = 2400 — 0,5 · 200 — 250 + 0,5 · 120 = 2110 мм

l0f, 2 = l0f, 3 = … = lf 2 — bpb = 2400 — 200 = 2200 мм;

Расчетный пролет плиты в перпендикулярном направлении

l0f, 2 = lр — bpb = 5600 — 300 = 5300 мм Проверяем соотношение расчетных пролетов плиты

5300: 2400 = 2,21 > 2, т. е. плита рассчитывается как балочная.

Рисунок № 1 1-условная полоса шириной 1 м для расчета плиты

Таблица 1.1

Вид нагрузки

Нормативная нагрузка, кН/м2

Коэффициент надежности по нагрузке, f

Расчетная нагрузка, кН/м2

Постоянная (g):

4,85

от собственного веса плиты, =70 мм, =2500 кг/м3;

1,75

1,1

1,93

слоя керамзитобетона, =60 мм, =1600 кг/м3;

0,96

1,2

1,16

слоя цементного раствора =20 мм, =2200 кг/м3;

0,44

1,2

0,53

керамических плиток =20 мм, =1800 кг/м3;

0,36

1,1

0,40

Перегородок

0,75

1,1

0,83

Временная (v):

5,0

1,2

Полная расчетная нагрузка (g + v) = 4,85 + 6 = 10,85 кН/м2.

Для расчета многопролетной плиты условно выделяем полосу шириной 1 м, при этом расчетная нагрузка на 1 м длины плиты 10,85 кН/м. С учетом коэффициента надежности по назначению здания (n=0,95) нагрузка на 1 м плиты будет 10,85 · 0,95 = 10,31 кН/м.

Расчетные изгибающие моменты определяем с учетом перераспределения усилий вследствие пластических деформаций:

в средних пролетах и на средних опорах М = (g + v) l02 / 16 = 10,31 · 2,22 / 16 = 3,12 кНм;

в первом пролете и на первой промежуточной опоре М = (g + v) l012 / 11 = 10,31 · 2,112 / 11 = 4,17 кНм.

Характеристики прочности бетона и арматуры.

Бетон тяжелый класса В 20:

Призменная прочность Rb = 11,5 МПа;

Прочность при осевом растяжении Rbt = 0,9 МПа;

Коэффициент условий работы бетона b2 = 0,90 .

Арматура рабочая — обыкновенная проволока периодического профиля класса Вр_I диаметром 5 мм в сварной рулонной сетке:

расчетное сопротивление арматуры растяжению RS = 360 МПа.

Определение площади сечения рабочей арматуры.

Площадь арматуры в плите определяют, как для изгибаемого элемента прямоугольного сечения (ширина b = 100 см м высота h = 7 см), с помощь параметров. Рабочая высота сечения h0 = h — a = 7−1,5 =5,5 см (где, а — расстояние от равнодействующей усилий в арматуре до ближайшей грани сечения).

В средних пролетах и на средних опорах вычисляют табличный коэффициент:

m = M / (b2 · Rb · b · h02) = 312 000 / (0,9 · 11,5 · 100 · 5,52 (100)) = 0,100.

Здесь и далее введен множитель (100) для того, чтобы привести к одним единицам знаменатель и числитель.

Находим соответствующие значения коэффициентов и по. [мандриков таб.2.12]

=; =

Площадь сечения рабочей арматуры определяют по формуле:

АS = M / (RS· ·h0) = 312 000 / (360· 0,947·5,5 · (100)) = 1,66 см².

Коэффициент армирования = АS / (b· h0) = 1,66 / (100· 5,5) = 0,0030 больше минимально допустимого min = 0,0005.

В первом пролете и на первой промежуточной опоре М = 4,17 кНм.

Вычисляем:

m = M / (b2· Rb· b· h02) = 417 000 / (0,9· 11,5·100·5,5 2 · (100)) = 0,133;

=; =

АS = M / (RS· ·h0) = 417 000 / (360· 0,931·5,5·(100)) = 2,26 см².

Армирование многопролетной балочной плиты осуществляется сварными сетками. При непрерывном армировании основную сетку С-1 подбирают по требуемой площади рабочей арматуры АS в среднем пролете, а в первом пролете и над первой промежуточной опорой устанавливают дополнительную сетку С-2 с площадью рабочей арматуры, равной АS. (см. рис.1.3)

Для средних пролетов и над средними опорами принимаем сетку С-1 с продольной рабочей арматурой 9 5 Вр-I с шагом 100 мм и АS = 1,77 см² на 1 м.

Марка основной сетки

С-1

В крайних пролетах и над первыми промежуточными опорами укладывают дополнительную сетку С-2 с площадью сечения рабочей арматуры на 1 м

АS = 2,26 — 1,77 = 0,49 см². Принимаем 3 5 Вр-I с шагом 200 мм и АS=0,589 см². Тогда общая площадь сечения арматуры в крайнем пролете:

АS = 1,77+ 0,589 = 2,359 > 2,26 см².

Дополнительную сетку заводят за первую промежуточную опору на ¼ пролета плиты (250/4=60 см). Марка дополнительной сетки:

С-2

Расчет второстепенной балки

1. Определение расчетных пролетов.

Расчетная схема представляет собой неразрезную многопролетную балку, загруженную равномерно распределенной нагрузкой (см. рис. 1.4). Предварительно приняты размеры сечения:

второстепенной балки h = 40 см, b = 20 см;

главной балки h = 60 см, b = 30 см.

Расчетные пролеты второстепенной балки равны (см. рис. 1.4):

расстоянию в свету между главными балками:

l0 = l — bг.б. = 5,6 — 0,20 = 5,4 м;

расстоянию от оси опоры на стене до грани главной балки:

l01 = l — bг.б./2 + а/2 — с = 5,6 — 0,20/2 + 0,20/2 — 0 = 5,4 м,

где, а — длина опорного конца балки на стене, с — привязка разбивочной оси к внутренней грани стены.

2. Сбор нагрузки на балку.

Расчетная нагрузка на 1 м балки при ширине грузовой полосы bf = 2,4 м:

постоянная 4,85 кН/м2;

от собственного веса плиты, пола, перегородок 4,85 · 2,4 = 11,64 кН/м;

от веса балки сечением 0,2(0,40 — 0,07)=0,066

при = 2500 кг/м3, f = 1,1 — 1,93+0,066= 2 кН/м

суммарная постоянная нагрузка на балку

g = 11,64 + 2 = 13,64 кН/м.

С учетом коэффициента надежности по назначению здания n=0,95;

g = 13,64· 0,95 = 12,96 кН/м;

временная с учетом n = 0,95; v = 6· 2,4·0,95 = 13,68 кН/м, где 6 — расчетная временная нагрузка в кН/м2;

полная нагрузка q = g + v = 12,96 + 13,68 = 26,64 кН/м.

3. Определение расчетных усилий.

Второстепенные балки с равными пролетами рационально рассчитывать со следующим распределением изгибающих моментов:

в первом пролете М1 = q· l012/11 = 26,64 · 5,42/11 = 70,62 кНм;

на первой промежуточной опоре М2 = q· l012/14 = 26,64 · 5,42/14 = 55,5 кНм;

в среднем пролете и на средних опорах Мс = q· l02/16 =26,64 · 5,42/16 = 48,55 кНм.

Отрицательные моменты в средних пролетах определяют по огибающей эпюре моментов. Они зависят от отношения временной нагрузки к постоянной v/g. В расчетном сечении в месте обрыва надопорной арматуры отрицательный момент при отношении v/g = 13,68/12,96 = 1,05 < 3, тогда отрицательный момент в среднем пролете М=0,4 · М2=0,4· 55,5= 22,2 кНм.

Поперечные силы равны:

на крайней опоре Q = 0,4· q·l01 = 0,4· 26,64·5,4 = 57,54 кН;

на первой промежуточной опоре слева Q = 0,6· q·l01 = 0,6· 26,64·5,4 = 84,31 кН;

на первой промежуточной опоре справа и на всех средних опорах

Q = 0,5· q·l0 = 0,5· 26,64·5,4 =71,93 кН.

4. Выбор бетона и арматуры

Как и для плиты, принимается бетон класса В20 с расчетными характеристиками:

призменная прочность Rb = 11,5 МПа;

прочность при осевом растяжении Rbt = 0,9 МПа;

коэффициент условия работы бетона b2=0,90.

Для каркасов, устанавливаемых в пролетах второстепенной балки, принимается арматура продольная класса А-III с RS = 355 МПа и поперечная класса Вр_I диаметром 5 мм с RSW = 260 МПа (с учетом S1 и S2). Для сеток, укладываемых над опорами, принимается рабочая арматура класса Вр-I диаметром 5 мм с RS = 360 МПа.

5. Определение высоты сечения балки.

Высоту сечения балки уточняют по моменту на первой промежуточной опоре при = 0,35, поскольку на опоре момент определяют с учетом образования пластического шарнира.

По таблице 2. при = 0,35 находят m = 0,289. На опоре момент отрицательный, полка ребра в растянутой зоне (см. рис. 1.6). Сечение работает как прямоугольное с шириной ребра b = 20 см.

см.

Полная высота сечения h = h0 + a = 30,5 + 3 = 33,5 см. Принимаем h = 40 см, b = 20 см. Тогда рабочая высота сечения на опоре h0 = 40 — 3 = 37 см.

6. Расчет прочности по сечениям, нормальным к продольной оси балки.

В пролетах расчетное сечение тавровое, полка в сжатой зоне (см. рис. 1.6а). Расчетная ширина полки при hf'/h = 7/40 = 0,175 > 0,1 равна:

bf' = 2bf1' + b = 2· 90 + 20 = 200 см Здесь bf1' - ширина свеса полки. Ширину свеса полки в каждую сторону от ребра таврового сечения принимают не более 1/6 пролета балки и не более ½ пролета между гранями второстепенных балок:

bf1' l/6 = 560/6 = 93 см;

bf1' с/2 = 220/2 = 110 см Сечение в первом пролете М1 = 70,62 кНм.

Коэффициент m = М/(b2 · Rb·bf'·h02) = 7 062 000/(0,9· 11,5·200·372·(100)) = 0,025.

по прил. = 0,025; = 0,987

Высота сжатой зоны бетона х = · h0 = 0,025· 37 = 0,925 см < hf' = 7 см; нейтральная ось проходит в сжатой полке, и пролетное сечение балки рассматривается как прямоугольное с размерами bf’h.

Площадь рабочей арматуры каркасов:

АS = М/(RS· ·h0) = 7 062 000/(355· 0,987·37·(100)) = 5,45 см².

Принято 2 20 А-III c AS =6,28 см² [Байков, прил. 6].

Коэффициент армирования = 6,28/(37· 20) = 0,0084 > min = 0,0005.

Сечение в среднем пролете М = 48,55 кНм.

Коэффициент m = М/(b2 · Rb·bf'·h02) = 4 855 000/(0,9· 11,5·200·372·(100)) = 0,02.

по прил. 2 = 0,02; = 0,99

АS = М/(RS· ·h0) = 4 855 000/(355· 0,99·37·(100)) = 3,73 см².

Принято 2 16 А-III c AS = 4,02 см²; = 4,02/(37· 20) = 0,0054 > ?min = 0,0005

На отрицательный момент М = 22,2 кНм сечение работает, как прямоугольное с размерами b = 20 см и h0 = 37 cм.

Коэффициент m= М/(b2 · Rb·bf'·h02) = 2 220 000/(0,9· 11,5·20·372·(100)) = 0,078.

по прил. 2 = 0,961

АS = М/(RS· ·h0) = 2 220 000/(355· 0,961·37·(100)) = 1,75 см².

Принято 2 12 А-III c AS = 2,26 см²; = 2.26/(37· 20) =0,003.

В опорных сечениях второстепенной балки рабочей арматурой являются поперечные стержни сварных рулонных сеток, раскатываемых вдоль главных балок.

Сечение на первой промежуточной опоре М =55.5 кНм.,

Коэффициент m = М/(b2 · Rb·bf'·h02) = 5 550 000/(0,9· 11,5·20·372·(100)) = 0,196. = 0,890

Площадь рабочей арматуры на расчетной длине bf', равной 2 м, АS = М/(RS· ·h0) = 5 550 000/(360· 0,890·37·(100)) = 4,68 см².

При двух надопорных сетках площадь рабочей арматуры в одной сетке на 1 м длины балки должна составить АS = 4,68/(2· 2)=1,2 см².

Принимаем 2 сетки марки

C-3, АS = 1,57 см².

Расположение сеток показано на рис. 1.7.лист, А 4 или, А 3.

Сечение на средних опорах М = 48,55 кНм.

m = М/(b2 · Rb·bf'·h02) =4 855 000/(0,9· 11,5·20·372·(100)) = 0,172. = 0,905

АS = М/(RS· ·h0) = 4 855 000/(360· 0,905·37·(100)) = 4,03 см².

При двух надопорных сетках площадь рабочей арматуры в одной сетке на 1 м длины балки должна составить АS = 4,03/(2· 2) = 1,01 см².

Принимаем 2 сетки марки

C-4, АS=1,37 см².

7. Расчет прочности второстепенной балки по сечениям, наклонным к продольной оси.

Расчет изгибаемых элементов по наклонным сечениям должен проводиться для обеспечения прочности на действие:

1) поперечной силы по наклонной трещине;

2) поперечной силы по наклонной полосе между наклонными трещинами;

3) изгибающего момента по наклонной трещине.

1) Расчет наклонных сечений по поперечной силе не требуется, если выполняется условие Q b3· Rbt·b·h0. Поперечная арматура в этом случае назначается по конструктивным требованиям.

Проверим это условие, если наибольшая поперечная сила в опорном сечении балки Q = 84,31 кН (на первой промежуточной опоре слева), b3 = 0,6 (для тяжелого бетона). Rbt = 0,9

Q = 84,31 кН > b3· Rbt·b·h0 = 0,6· 0,9·0,75·20·37·(100) =29,97кН.

Следовательно, необходим расчет наклонного сечения балки на действие поперечной силы.

Прочность элемента по наклонному сечению на действие поперечной силы считается обеспеченной, если соблюдается условие Q Qb + Qsw. Поперечная сила

Q определяется от внешней нагрузки, расположенной по одну сторону от рассматриваемого сечения. Поперечное усилие Qb, воспринимаемое бетоном над трещиной, определяется по эмпирической формуле

Qb = b2(1 + f + n) Rbt· b·h02/c = Mb/c,

где с — длина проекции наиболее опасного наклонного сечения на продольную ось элемента;

b2 — коэффициент, учитывающий влияние вида бетона, принимаемый для тяжелого бетона равным 2,0;

f — коэффициент, учитывающий влияние сжатых полок в тавровых и двутавровых элементах;

nкоэффициент, учитывающий влияние продольных сил от внешних нагрузок (для изгибаемых элементов без предварительного обжатия n= 0).

Поперечное усилие Qsw, воспринимаемое поперечными стержнями в наклонном сечении, определяется из выражений:

Qsw = Rsw· Asw, Qsw = qsw· c,

где qsw — погонное усилие в поперечных стержнях,

Asw — площадь сечения хомутов в одной плоскости.

Рассмотрим наклонное сечение у первой промежуточной опоры слева, Q = 84,31 кН.

Вычисляем проекцию расчетного наклонного сечения на продольную ось балки. Для этого определяем сначала величину Мb:

Мb = Qb· c = b2(1 + f + n) Rbt· b·h02.

f = 0,75(3hf?) hf?/(b· h0) = 0,75· (3·7)·7/(20·37) = 0,15 < 0,5.

Мb = 2· (1 + 0,15+0)· 0,9·0,75·20·372·(100) = 42,5· 105 Н· см.

Предполагаем, что поперечная сила Q воспринимается поровну поперечной арматурой и бетоном, т. е. в расчетном наклонном сечении Qb = Qsw = Q/2. Тогда с = Мb/(0,5· Q) = 42,5· 105/(0,5·84 310) = 101 см < 2h0 = 2· 37 = 74 см.

Полученное значение с принимается не более 2h0. Принимаем с = 74 см, тогда Qb = Мb/c = 42,5· 105/74 = 57· 103 Н.

Поперечная сила, воспринимаемая поперечной арматурой в расчетном наклонном сечении

Qsw= Q — Qb = 84,31 — 57 = 27,31 кН.

Погонное усилие в поперечных стержнях, отнесенное к единице длины, равно:

qsw = Qsw/c = 27 310/74 =369 Н/см.

Диаметр поперечных стержней для сварных каркасов назначают по технологическим требованиям сварки. При диаметре продольных стержней 20 мм диаметр поперечных стержней должен быть более или равен 6 мм.

Принимаем поперечную арматуру dsw = 6 мм класса А-II с Rsw= 225 МПа. Число каркасов 2, Asw = 2· 0,283 = 0,566 см². Расстояние между поперечными стержнями на приопорных участках определяют по условию:

s Rsw· Asw/qsw = 225· 0,566·(100)/369 = 34,5 см

и по конструктивным требованиям при высоте сечения балки h 40 см

s h/2= 40/2 = 20 см, s 15 см.

Для всех приопорных участков балки, при равномерной нагрузке равных ¼ пролета, принимаем шаг поперечных стержней 15 см.

В средней части пролета (на расстоянии l/2) шаг поперечных стержней должен быть при h > 30 см

s (¾) · h = (¾) · 40 = 30 см, но не более 500 мм.

Принимаем в средней части пролета балки шаг поперечных стержней 30 см.

2) Расчет на действие поперечной силы для обеспечения прочности по наклонной полосе между наклонными трещинами должен производиться из условия:

Q 0,3· w1·b1·Rb·b·h0.

Коэффициент w1, учитывающий влияние поперечной арматуры, определяют по формуле

w1 = 1+5· ·w 1,3,

где коэффициент армирования w = Asw/(b· s) = 0,566/(20· 15) = 0,0019.

Коэффициент приведения арматуры к бетону = Es/Eb = 170 000/27000 = 6,3

Тогда w1 = 1+5· 6,3·0,0019 = 1,06 < 1,3.

2. СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ПЕРЕКРЫТИЯ ЗДАНИЯ.

Компоновка конструктивной схемы сборного перекрытия.

Здание имеет размеры в плане 21,6 44,8 м и сетку колонн 7,2 5,6 м. Принимается поперечное расположение ригелей. Пролет ригелей — 7,2 м, шаг — 5,6 м. Плиты перекрытий — ребристые предварительно напряженные. Ширина основных плит — 1,5 м (по 4 плиты в пролете); по рядам колонн размещаются связевые плиты с номинальной шириной 1,2 м.

Компоновка конструктивной схемы сборного перекрытия показана на рис. 2.1.

Рисунок 2.1 Раскладка панелей перекрытия

Расчет ребристой плиты с напрягаемой арматурой по предельным состояниям первой группы.

Расчет прочности ребристой панели включает расчет продольного ребра и полки на местный изгиб. При расчете ребра панель рассматривается как свободно лежащая балка таврового сечения, на которую действует равномерно распределенная нагрузка.

Рис. 2.2 Поперечные сечения ребристой плиты: а) основные размеры б) к расчету прочности

Конструктивное и расчетное сечения

h0 = h — a = 350 — 40 = 310 мм (а = 30? 50 мм)

> 0,1, т. е. можно учитывать в расчетах всю ширину плиты

мм (аз = 20 — половина ширины зазора между плитами)

Для определения расчетного пролета плиты предварительно задаются размерами сечения ригеля: h = l/10 = 720/10 = 72 см; b = 0,4· h = 0,4· 72=28,8 см; принимаем

h = 75 см; b = 30 см (кратно 5 см).

Расчетный пролет плиты l0, принимают равным расстоянию между осями ее опор. При опирании на ригель поверху расчетный пролет плиты

l0 = l — b/2 = 5,6 — 0,3/2 = 5,45 м.

Подсчет нагрузок на 1 м² перекрытия приведен в табл. 2.1.

бетон арматура балка плита

Таблица 2.1 Нагрузка на 1 м² перекрытия

Вид нагрузки

Нормативная нагрузка, кН/м2

Коэффициент надежности по нагрузке, f

Расчетная нагрузка, кН/м2

Постоянная :

Ребристая ж/б плита

(с заливкой швов) Керамзитобетон,

=60 мм, =1600 кг/м3;

Цементный раствор

=15 мм, =2200 кг/м3;

Керамические плитки

=10 мм, =1800 кг/м3;

Перегородки

2,78

0,96

0,33

0,18

0,75

1,1

1,2

1,2

1,1

1,1

3,06

1,15

0,4

0,2

0,83

Итого

5,64

Временная (по заданию) В том числе:

Длительная Кратковременная

4,0

1,5

1,2

1,2

1,2

4,8

1,8

Полная В том числе:

Длительная Кратковременная

10,5

1,5

-;

-;

-;

12,6

-;

-;

Расчетная нагрузка на 1 м длины при ширине плиты 1,5 м с учетом коэффициента надежности по назначению здания n = 0, 95:

постоянная — g = 5,64· 1,5·0,95 = 8,04 кН/м;

полная — q = (g + v) В = 12,6· 1,5·0.95 = 18 кН/м.

Нормативная нагрузка на 1 м длины плиты:

постоянная — q = (g + v) В = 5· 1,5·0.95 = 7,5 кН/м;

полная — q = (g + v) В = 10,5· 1,5·0.95 = 15 кН/м.

в том числе:

постоянная и длительная — 9· 1,5·0,95 = 12,83 кН/м, кратковременная — 1,5· 1,5·0,95 = 2,28 кН/м.

Определение усилий от расчетных и нормативных нагрузок.

Изгибающий момент от расчетной нагрузки в середине пролета

М = (g + v) · l02/8 = 18· 5,452/8 = 66,8 кНм.

Поперечная сила от расчетной нагрузки на опоре

Q = (g + v) · 10/2 = 18· 5,45/2 = 49,05 кН.

Усилия от нормативной полной нагрузки

М = 15· 5,452/8 = 55,7 кНм.

Q = 15· 5,45/2 = 41 кН.

Изгибающий момент от нормативной постоянной и длительной временной нагрузки

М = 12,83· 5,452/8 = 47,64 кНм.

В расчетах по предельным состояниям первой группы расчетное сечение тавровое (см. рис. 2.2.б):

расчетная толщина сжатой полки таврового сечения hf = 5 см,

расчетная ширина ребра b = 2· 8 = 16 см.

Отношение hf/h = 5/35 = 0,143 > 0,1, при этом в расчет вводится вся ширина полки bf'- 146 см.

Выбор бетона и арматуры, определение расчетных характеристик материалов.

Ребристая предварительно напряженная плита армируется стержневой арматурой класса А-VI с электротермическим натяжением на упоры форм.

Изделие подвергается тепловой обработке при атмосферном давлении.

Бетон тяжелый класса В40 (по указаниям СНиП 52.01−2003 (7))

нормативное сопротивление бетона сжатию Rbn = Rb, ser = 29,0 МПа,

здесь Rb, ser — расчетное сопротивление бетона сжатию для предельных состояний второй группы;

расчетное сопротивление бетона сжатию для предельных состояний первой группы Rb — 22,5 МПа;

коэффициент условий работы бетона b2 = 0,9;

нормативное сопротивление при растяжении Rbtn = Rbt, ser = 2,1 МПа;

расчетное сопротивление при растяжении Rbt = 1,4 МПа;

начальный модуль упругости бетона Еb = 32 500 МПа.

Передаточная прочность бетона Rbp устанавливается так, чтобы при обжатии отношение напряжений 0,75 bp/Rbp, кроме того Rbp 0,5 В.

Для напрягаемой арматуры класса А-VI:

нормативное сопротивление растяжению Rsn = 980 МПа;

расчетное сопротивление растяжению Rs = 815 МПа;

начальный модуль упругости Еs = 190 000 МПа.

Предварительное напряжение арматуры принимается равным

sp = 0,6· Rsn = 0,6· 980 = 588 МПа.

Рекомендуется назначать sp с учетом допустимых отклонений р так, чтобы выполнялись условия

sp + р < Rs, ser, sp — р > 0,3· Rs, ser.

Значение р при электротермическом способе натяжения арматуры определяется по формуле (в МПа)

р = 30 + 360/l

l — длина натягиваемого стержня, м.

Проверяем выполнение условий, если

р = 30 + 360/5,6 = 94 МПа:

sp + р = 588 + 94 = 682 < Rs, ser = 980 МПа,

sp — р = 588- 94 = 494 > 0,3Rs, ser = 0,3· 980 = 294 МПа.

Условия выполняются.

Значение предварительного напряжения в арматуре вводится в расчет с коэффициентом точности натяжения арматуры sp: sp = 1sp.

Вычисляем предельное отклонение предварительного напряжения:

здесь n = 2 — число напрягаемых стержней в сечении плиты.

При проверке по образованию трещин в верхней зоне плиты при обжатии принимается sp = 1 + 0,14 = 1,14;

при расчете по прочности плиты sp = 1 — 0,14 = 0,86.

Предварительное напряжение с учетом точности натяжения

sp = 0,86· 588 = 505,7 МПа.

Расчет прочности плиты по сечению, нормальному к продольной оси.

Максимальный изгибающий момент от расчетной нагрузки

М = 66,8 кН· м.

Расчетное сечение тавровое с полкой в сжатой зоне. Предполагаем, что нейтральная ось проходит в полке шириной 146 см. Вычисляем коэффициент m:

m = М/(Rb· bf'·h02) = 6 680 000/(0,9· 22,5·146·312· (100)) = 0,024

Из табл. находим = 0,026, = 0,987

Высота сжатой зоны х = · h0 = 0,024· 31 = 0,744 < 5 см — нейтральная ось проходит в пределах сжатой полки. Вычисляем характеристику сжатой зоны :

= 0,85 — 0,008· Rb = 0,85−0,008· 0,9·22,5 = 0,688.

Определяем граничную относительную высоту сжатой зоны бетона R по формул

Здесь SR — напряжение в растянутой арматуре, принимаемое для арматуры классов А-IV, А-V, А-VI.

SR = Rs + 400 — sp = 815 + 400 — 354 = 861МПа:

SC, U — предельное напряжение в арматуре сжатой зоны.

SC, U = 500 МПа, так как b2 < 1;

предварительное напряжение с учетом полных потерь

sp = 0,7· 505,7 = 354 МПа.

Коэффициент условий работы арматуры s6, учитывающий сопротивление напрягаемой арматуры выше условного предела текучести, определяется по формуле:

s6 = - (- 1) · (2/R — 1) <

s6 = 1,1 — (1,1 — 1) · (2· 0,026/0,67 — 1) = 1,19 > = 1,10.

Здесь — коэффициент, принимаемый для арматуры класса А-VI равным 1,10.(прим.по СНиП2.03.01−84)

Следовательно, s6 = = 1,1.

Вычисляем площадь сечения напрягаемой растянутой арматуры:

Аsp = М/(s6· Rs··h0) = 6 680 000/(1,1· 815·0,987·31· (100))=2,45 см².

Принимаем 2 14 А-VI с Аsp = 3,08 см².

Проверяем процент армирования:

= Аsp· 100/(b·h0) = 3,08· 100/(16·31) = 0,62% > min = 0,05%.

Расчет полки плиты на местный изгиб.

Полка работает на местный изгиб как частично защемленная на опорах плита пролетом l01, равным расстоянию в свету между ребрами.

Расчетный пролет при ширине ребер вверху 10 см составит

l01 = 146 — 2· 10 = 126 см.

Расчетная нагрузка на 1 м полки может быть принята (с небольшим превышением) такой же, как и для плиты:

q = (g + v) n = 12,6· 0,95 = 11,97 кН/м.

Изгибающий момент для полосы шириной b = 1 м определяется с учетом перераспределения усилий:

М = q· l012/11 = 11,97· 1,262/11 = 1,73 кНм.

Рабочая высота сечения полки h0 = 5 — 1,5 = 3,5 см.

Полка армируется сварными сетками из проволоки класса Вр-I с Rs = 360 МПа.

Вычисляем коэффициент m:

m = М/(Rb· b·h02) = 173 000/(0,9· 22,5·100·3,52·(100)) = 0,069;

Из табл. находим = 0,965

Определяем площадь рабочей арматуры в полке на 1 м длины:

Аs = М/(Rs· ·h) = 173 000/(360· 0,965·3,5·(100)) = 1,42 см²

Принимается сетка с площадью рабочих стержней на 1 м длины, равной 1,57 см² (8 5 Вр-I).

Марка сетки с поперечной рабочей арматурой:

Расчет прочности ребристой плиты по сечению, наклонному к продольной оси.

При изгибе плиты вследствие совместного действия поперечных сил и изгибающих моментов возникают главные сжимающие mc и главные растягивающие mt напряжения. Разрушение может произойти при mc > Rb или mt > Rbt. Для обеспечения прочности наклонных сечений изгибаемых элементов должен производиться расчет: 1) на действие поперечной силы по наклонной полосе между наклонными трещинами; 2) на действие поперечной силы по наклонной трещине.

Поперечная сила от расчетной нагрузки Q =49,05 кН.

1. Для обеспечения прочности на сжатие бетона в полосе между наклонными трещинами в элементах с поперечной арматурой должно соблюдаться условие:

Q 0,3· w1·b1·Rb·b·h

Коэффициентw1, учитывающий влияние поперечной арматуры, определяется по формуле:

w1 = 1 + 5· ·w 1,3.

Коэффициент армирования w равен:

w = Аsw/(b· s) = 0,392/(16· 15) = 0,0016,

здесь Аsw = 2· 0,196 = 0,392 см2 — площадь поперечного сечения двух стержней диаметром 5 мм: s = 15 см; b = 2· bp = 2· 8 = 16 см.

Коэффициент приведения арматуры к бетону при модуле упругости арматуры класса Вр-I Еs = 170 000 МПа равен:

= Еs/Еb = 170 000/32500 = 5,23.

Коэффициент w1 = 1 + 5· 5,23·0,0016 = 1,04 < 1,3.

Коэффициент b1, учитывающий влияние вида бетона, определяется по формуле

b1 = 1 — 0,01· Rb = 1 — 0,01· 0,9·22,5 = 0,80.

Величина внутреннего усилия, воспринимаемого сечением.

0,3· w1·b1·Rb·b·h0 = 0,3· 1,04·0,80·0,9·22,5·16·31·(100) = 250,7 кН.

Условие Q = 49,05 кН < 250,7 кН выполняется. Следовательно, размеры сечения ребер достаточны.

2. Наклонная трещина в элементе не образуется, если главные растягивающие напряжения mt < Rbt. Для железобетонных конструкций этому условию соответствует приближенная опытная зависимость:

q b3· (1 + f + n)· Rbt·b·h0.

Коэффициент f учитывающий влияние сжатых полок в тавровых и двутавровых сечениях, определяется по формуле

f = 0,75· (bf' - b)· hf'/(b·h0) 0,5

Коэффициент n, учитывающий влияние продольных сил N, определяется по формуле

n = 0, 1· N/(Rbt·b·h0) 0,5:

для предварительно напряженных элементов в формулу вместо N подставляется усилие предварительного обжатия Р.

Значение 1 + f + n во всех случаях принимается не более 1,5.

Коэффициент b3 принимается равным для тяжелого бетона 0,6.

Проверим условие (2) считая 1 + f + n = 1,5:

Q = 49,05 0,6· 1,5·1,4·0,9·16·31·(100) = 56 246,4 Н = 56,25 кН.

Условие (2) соблюдается.

Условие соблюдается. Следовательно, поперечная арматура устанавливается конструктивно.

По конструктивным требованиям при высоте сечения h < 45 см:

S < h/2 = 35/2 = 17,5 см, S < 15 см.

На приопорных участках? пролета принимаем шаг поперечных стержней S1 = 150 мм.

В средней части пролета шаг поперечных стержней назначают из условий:

S < (¾)· h = (¾)· 350 = 262,5 мм и S? 500 мм.

Принимаем S1 =150мм и S2 = 250 мм для поперечной арматуры 5 Вр-I.

Поперечные стержни ребер объединяют в каркас специальными монтажными продольными стержнями o 10 класса А-II.

Расчет ребристой плиты по предельным состояниям второй группы.

К расчетам по второй группе предельных состояний относят расчет трещиностойкости и перемещений элементов.

Трещиностойкостью элементов называют сопротивление образованию трещин в стадии I или сопротивление раскрытию трещин в стадии II напряженно-деформированного состояния.

К трещиностойкости конструкций предъявляются требования соответствующих категорий в зависимости от условий, в которых они работают, и от вида применяемой арматуры:

1-я категория — не допускается образование трещин;

2-я категория — допускается ограниченное по ширине непродолжительное раскрытие трещин аcrc1 при условии обеспечения их последующего надежного закрытия;

3-я категория — допускается ограниченное по ширине непродолжительное аcrc1 и продолжительное аcrc2 раскрытие трещин.

При эксплуатации конструкции в закрытом помещении и применении стержневой арматуры класса А-VI к трещиностойкости предъявляются требования 3-й категории:

аcrc1 = 0,3 мм; аcrc2= 0,2 мм.

Вычисление геометрических характеристик сечения.

Чтобы определить напряжения в сечениях предварительно напряженных железобетонных элементов в стадии I до образования трещин, рассматривают приведенное сечение, в котором площадь сечения арматуры заменяют эквивалентной площадью сечения бетона. Исходя из равенства деформаций арматуры и бетона приведение выполняют по отношению модулей упругости двух материалов = Еs/Еb.

Отношение модулей упругости

= Еs/Еb. = 190 000/32500 = 5,85

Ared = А + · Аsp = (146· 5 + 16· 30) + 5,85· 3,08 = 1228,02 см² ,

где, А — площадь сечения бетона, см2.

Статический момент приведенного сечения относительно нижней грани (оси 1−1)

Sred = Аi уi = 146· 5·32,5 + 16· 30·15 + 5,85· 3,08·4,0 = 30 997 см³,

где Аi — площадь i-й части сечения; уi — расстояние от центра тяжести i-й части сечения до оси 1−1.

Расстояние от центра тяжести приведенного сечения до нижней грани

у0 = Sred/Ared = 30 997/1228,02? 25 см .

h — y0 = 35,0 — 25,0 = 10,0 см;

Момент инерции приведенного сечения относительно оси, проходящей через центр тяжести приведенного сечения,

Jred = (Ji + Ai· (y0 — yi)2) см2

где Ji — момент сечения i-й части сечения относительно оси, проходящей через центр тяжести этой части сечения.

Момент сопротивления приведенного сечения по нижней грани

Wred = Jred/у0, = 134 529,24/25 = 5381,16 см³.

по верхней ;

Wred' = Jred/(h — у0) = 134 529,24/(35−25) = 13 452,92 см³.

Расстояние от ядровой точки, наиболее удаленной от растянутой зоны, до центра тяжести приведенного сечения

r = · Wred/Ared = 0,85· 5381,16/1228,02 = 3,72 см.

наименее удаленной ;

rinf = · Wred'/Ared = 0,85· 13 452,92/1228,02 = 9,31 см.

Здесь коэффициент, учитывающий влияние неупругих деформаций бетона сжатой зоны, = 1,6 — b/Rb, ser = 1,6 — 0,75 = 0,85.

b — максимальные напряжения в сжатом бетоне от внешней нагрузки и усилия предварительного обжатия.

Отношение напряжения в бетоне от нормативных нагрузок и усилия обжатия к расчетному сопротивлению бетона для предельных состояний второй группы предварительно принимаем равным 0,75.

Упругопластический момент сопротивления приведенного сечения по растянутой зоне в стадии эксплуатации

Wpl = · Wred = 1,75· 5381,16 = 9417,03 см³.

Здесь коэффициент учитывает влияние неупругих деформаций бетона растянутой зоны, = 1,75 для таврового сечения с полкой в сжатой зоне

Упругопластический момент сопротивления по растянутой зоне в стадии изготовления и обжатия элемента

Wpl' = · Wred' = 1,5· 13 452,92 = 20 179,38 см³.

Здесь = 1,5 для таврового сечения с полкой в растянутой зоне при

bf/b = 146/16=9,12 > 2 и hf/h = 5/35 = 0,14<0,2.

Определение потерь предварительного напряжения арматуры.

Расчет потерь производится в соответствии с табл. 5 СНиПа 2.03.01−84, коэффициент точности натяжения арматуры при этом sp = 1.

При электротермическом способе натяжения арматуры на упоры следует учитывать:

а) первые потери — от релаксации напряжений в арматуре: от быстронатекающей ползучести бетона:

б) вторые потери — от усадки и ползучести бетона.

Предварительные напряжения в арматуре и определение их потерь.

Величина начальных (предварительных) напряжений в напрягаемой арматуре sp регламентирована выполнением неравенств (п. 1.15 [СНиП2.03.01−84])

;

где р — допустимое отклонение, величина которого зависит от способа натяжения.

Для принятого в примере механического натяжения арматуры р = 0,05 sp и поэтому принимаем

МПа.

Коэффициент точности натяжения арматуры

(см. требования п. 1.18 [СНиП2.03.01−84])

Значение (для механического способа натяжения)

; - в зависимости от характера влияния предварительного напряжения на рассматриваемый вид предельного состояния («+» — при неблагоприятном; «-» — при благоприятном)

Первые потери.

Определение первичных (loss, 1) потерь предварительного напряжения потери от релаксации

МПа;

потери от разности температур бетона и упорных устройств 2 = 0 (форма с упорами прогревается одновременно с арматурой);

потери от деформаций анкеров (в виде опрессованных шайб)

МПа

потери от трения об огибающие приспособления 4 = 0, т.к. отгиб напрягаемой арматуры не производится.

потери от деформации стальных форм 5 = 30 МПа, т.к. данные об их конструкции отсутствуют.

потери от быстронатекающей ползучести 6 вычисляют в следующей последовательности:

определяем усилие обжатия Р1 с учетом всех вышеупомянутых потерь

Н 179,5 кН

Точка приложения усилия Р1 находится в центре тяжести сечения напрягаемой арматуры и поэтому

мм.

Напряжение на уровне растянутой арматуры (y = e0p = 210 мм) с учетом собственной массы плиты

;

кНм

(gpl = 3,06 по табл. 1.2 — нагрузка от собственной массы плиты)

МПа

МПа.

Назначаем передаточную прочность бетона Rbp с учетом требований п. 2.3 [СНиП2.03.01−84]

Rbp = 15,5 МПа.

Определяем расчетный уровень обжатия бетона усилием напрягаемой арматуры

< 0,8

(условие табл. 4 п. 6 удовлетворяется)

Тогда, потери от быстронатекающей ползучести с учетом условий твердения (пропаривания) равны

МПа.

Проверяем допустимый (табл. 4 п. 6 [6]) уровень максимального обжатия бетона при отпуске арматуры с упоров

< 0,95,

т.е. условие удовлетворяется.

Суммарная величина первичных потерь

МПа

Определение вторичных потерь

(loss, 2) потери от усадки бетона (табл. 4 [5]) 8 = 40 МПа (для бетона класса В40, подвергнутого тепловой обработке) потери от ползучести 9 зависят от уровня длительного обжатия, определяемого по аналогии с расчетом потерь 6 (от быстронатекающей ползучести) при действии усилия

кН

МПа

Так как

< 0,75, то

МПа

(= 0,85 табл. 4 для бетона, подвергнутого тепловой обработке)

МПа

МПа > 100 МПа

(100 МПа — минимальное значение потерь предварительного натяжения).

Расчет по образованию трещин, нормальных к продольной оси панели.

Расчет по образованию трещин производится для выяснения необходимости проверки по раскрытию трещин. При этом для элементов, к трещиностойкости которых предъявляются требования 3-й категории, принимаются значения коэффициента надежности по нагрузке f = 1. Максимальный изгибающий момент от нормативной полной нагрузки М = 55,7 кНм. Этот расчет заключается в проверке условия о том, что трещины в сечениях, нормальных к продольной оси элемента, не образуются, если момент внешних сил М не превосходит момента внутренних усилий в сечении перед образованием трещин Мcrc, т. е. М<�Мcrc.

Вычисляем момент образования трещин по приближенному способу ядровых моментов:

Mcrc = Rbt, ser· Wpl + Mrp = 2,1· 9417,03·(100) +3 491 515 = 54,7 кНм,

где Мrp — момент усилия обжатия Р относительно оси, параллельной нулевой линии и проходящей через ядровую точку, наиболее удаленную от растянутой зоны, трещинообразование которой проверяется.

Ядровый момент усилия обжатия при sp = 0,77

Mrp = sp· P2·(eop + r) = 0,77· 176,3·(22 + 3,72) = 3491,52кН· см.

еор = у0 — а = 25 — 3 = 22 см

Так как М = 55,7 кН· м > Мcrc = 54,7 кН· м, трещины в растянутой зоне от эксплуатационной нагрузки образуются. Следовательно, необходим расчет по раскрытию трещин.

Проверим, образуются ли начальные трещины в верхней зоне плиты при ее обжатии при значении коэффициента точности натяжения sp = 1,23.

Изгибающий момент от веса плиты Мpl = 17,04кНм .

Расчетное условие имеет вид:

sp· P1·(eop — rinf) — M Rbtp· Wpl';

sp· P1·(eop-rinf)-M = 1,23· 179 500·(22- 9,31) — 1 704 000 =1 097 761,65 Нсм;

Rbtp· Wpl' = 1· 20 179,38·(100) = 2 017 938 Нсм.

Здесь Rbtp = 1 МПа — сопротивление бетона растяжению в момент обжатия, соответствующее передаточной прочности бетона Rbp = 12,5МПа.

1 097 761,65 Н· см < 2 017 938 Н· см — условие удовлетворяется, т. е. начальные трещины в верхней зоне сечения не образуются.

Расчет по раскрытию трещин, нормальных к продольной оси.

Расчет по раскрытию трещин заключается в проверке условия аcrc [acrc].

Предельная допустимая ширина раскрытия трещин: непродолжительная — аcrc1 = [0,3 мм], продолжительная — аcrc2 = [0,2 мм]. Ширина раскрытия трещин, нормальных к продольной оси элемента, определяется по формуле,

где — коэффициент армирования сечения (без учета сжатых свесов полок),

? = Аsp/(b· h0) = 3,08/(16· 31) = 0,0062 < 0,02

— коэффициент, принимаемый равным для изгибаемых элементов 1,0.

— коэффициент, зависящий от вида и профиля продольной растянутой арматуры, принимаемый для стержневой арматуры периодического профиля равным 1,0;

l — коэффициент, учитывающий длительность действия нагрузки, при учете кратковременных нагрузок и непродолжительного действия постоянных и длительных нагрузок 1 = 1,0, при учете продолжительного действия постоянных и длительных нагрузок 1 = 1,6 — 15· ;

sприращение напряжений от действия внешней нагрузки после погашения обжатия в растянутой арматуре; d — диаметр продольной арматуры, d = 14 мм.

Изгибающие моменты от нормативных нагрузок: постоянной и длительной временной — М = 47,64 кНм, полной — М = 55,7 кНм.

Приращение напряжений в растянутой арматуре от действия постоянной и длительной нагрузок после погашения обжатия определяется по формуле

s = [М — P2· (z1 — esp)]/Ws = [ 176 300· (28,5 — 0)-4 764 000)]/[87,78· (100)] = 29,68 МПа.

где z1 плечо внутренней пары сил.

z1 = h0 — 0,5· hf' = 31 — 0,5· 5 = 28,5 см

esp = 0, так как усилие обжатия Р, приложено в центре тяжести площади нижней напрягаемой арматуры;

hf'- расчетная толщина сжатой полки таврового сечения;

Ws — момент сопротивления сечения по растянутой арматуре.

Ws = Asp· z1 = 3,08· 28,5 = 87,78 см³.

Приращение напряжений в арматуре от действия полной нагрузки

s = [5 570 000 -176 300· (28,5−0)]/[87,78·(100)] = 62,14 МПа.

Ширина раскрытия трещин:

— от непродолжительного действия всей нагрузки при 1 = 1,0

аcrc1 = 20· (3,5 — 100· 0,0062)·1·1·1·(62,17/190 000)·= 0,045 мм,

— от непродолжительного действия постоянной и длительной временной нагрузок при 1 = 1,0

аcrc2 = 20· (3,5 — 100· 0,0062)·1·1·1·(29,68/190 000)·= 0,020 мм,

— от продолжительного действия постоянной и длительной нагрузок

при 1 = 1,6 — 15 = 1,6 — 15· 0,135 = 1,4;

аcrc3 = 20· (3,5 — 100· 0,0062)·1·1·1,4·(29,68/190 000)·= 0,030 мм,

Непродолжительная ширина раскрытия трещин

аcrc = аcrc1 — аcrc2 + аcrc3 = 0,045 — 0,020 + 0,030 = 0,055 мм < [0,3 мм],

продолжительная ;

аcrc = аcrc3 = 0,055 мм < [0,2 мм].

Расчет прогиба сборной плиты.

Прогиб плиты. устанавливаемый по эстетическим требованиям, не должен превышать [f] = 25 мм при пролете 1 = 5,6 м (5 < l < 10). Прогиб определяется от нормативного значения постоянной и длительной нагрузок по формуле:

где 1/r — кривизна элемента.

Так как при действии нагрузки раскрываются трещины, то кривизна панели должна проверяться как для элемента с трещинами в растянутой зоне по формуле:

где М — момент относительно оси, нормальной к плоскости действия момента и проходящей через центр тяжести площади сечения арматуры S, от всех внешних сил, расположенных по одну сторону от рассматриваемого сечения, и от усилия предварительного обжатия Р;

z — расстояние от центра тяжести площади сечения арматуры S до точки приложения равнодействующей усилий в сжатой зоне сечения над трещиной;

принимаем z z1 = h0 — hf'/2 = 31 — 5/2 = 28,5 см;

b — коэффициент, учитывающий неравномерность распределения деформаций крайнего сжатого волокна бетона по длине участка с трещинами, b = 0,9 (для тяжелого бетона);

s — коэффициент, учитывающий работу растянутого бетона на участке с трещинами;

— коэффициент, характеризующий упругопластическое состояние бетона сжатой зоны и принимаемый = 0,15;

Ntot — равнодействующая продольной силы N и усилия предварительного обжатия Р.

Вычисляем параметры, необходимые для определения прогиба плиты с учетом трещин в растянутой зоне.

Заменяющий момент равен изгибающему моменту от постоянной и длительной нагрузок М = 47,64кН· м; суммарная продольная сила равна усилию предварительного обжатия с учетом всех потерь и при sp = 1, Ntot = Р2 = 176,3 кН;

эксцентриситет:

es, tot = М/Ntot = 4 764 000/176300 = 27 см

Коэффициент s для элементов из тяжелого бетона определяется по формуле:

В этой формуле ls — коэффициент, учитывающий длительность действия нагрузки, принимается ls = 0,8;

коэффициент m = Rbt, ser· Wpl/(M — Mrp) 1;

момент усилия Р2 при sp = 1:

Мrp = Р2 (eop + r) = 176,3· (22 + 3,72) =4534,44 кН· см;

m = 2,1· 9417,03/(4 764 000 -4 534 440) = 0,09 < 1.

Коэффициент, учитывающий работу растянутого бетона на участке с трещинами

Вычисляем кривизну оси при изгибе плиты:

где Аb = (f +)· b·h0 = bf'· hf' = 146· 5 = 730 см² при допущении, что = hf'/ h0 и Аs'=0.

Вычисляем прогиб от продолжительного действия постоянных и длительных нагрузок:

=

Прогиб панели меньше допустимого значения.

Расчет и конструирование трехпролетного неразрезного ригеля.

Ригель и колонна являются элементами многоэтажной рамы здания с неполным каркасом. Неполный каркас здания, в котором ригели опираются на наружные стены без защемления, рассчитывают только на вертикальные нагрузки, а горизонтальные нагрузки передают на систему несущих каменных стен.

Приближенный метод расчета многоэтажной рамы, имеющей однообразную расчетную схему с равными пролетами и одинаковой высотой этажей, заключается в расчленении ее на ряд одноэтажных рам.

Расчетная схема трехпролетной рамы средних этажей и варианты расположения нагрузок на ригеле изображены на рис. 2.4.

Для расчета трех пролетных рам приведены таблицы вспомогательных коэффициентов. Ими можно пользоваться при расчете многопролетных рам, считая, что изгибающие моменты во всех средних пролетах одинаковы и равны моментам в среднем пролете трехпролетной рамы.

При расчете рамы целесообразно использовать перераспределение усилий с целью уменьшения расхода арматурной стали. Максимальный изгибающий момент в опорном сечении ригеля получают при расположении временной нагрузки в двух смежных пролетах (загружение 1+4). Можно ограничить армирование опорных сечений ригеля так, чтобы в результате образования пластического шарнира было обеспечено необходимое перераспределение (выравнивание) изгибающих моментов между опорными и пролетными сечениями без увеличения максимальных моментов в пролетах.

Для упрощения расчета разрешается приближенный учет перераспределения усилий, заключающийся в том, что в качестве выровненных принимаются эпюры изгибающих моментов, полученные при расположении временной нагрузки через пролет, т. е. учитываются схемы загружения 1+2 и 1+3.

Расчетный пролет ригеля l0, принимают равным расстоянию между осями колонн, а в крайних пролетах — расстоянию от линии действия опорной реакции на стене до оси колонны. l 0 = l = 7,2 м.

Нагрузка на ригель от ребристых плит (при числе ребер в пролете ригеля более четырех) считается равномерно распределенной. Ширина грузовой полосы на ригель равна шагу поперечных рам l 1 = 5,6 м.

Подсчет нагрузки на 1 м² перекрытия приведен в таблице 1.2.

Вычисляют расчетную нагрузку на 1 м длины ригеля:

постоянная ;

g = g1· l1·n + g2 = 5,64· 5,6·0,95 + 0,3· 0,70·25·1,1·0,95 = 35,5 кН/м;

временная ;

v = v1· l 1· n = 6· 5,6·0,95 = 31,92 кН/м.

в том числе длительная — 4,8· 5,6·0,95 = 25,54 кН/м и кратковременная — 1,8· 5,6·0,95 = 9,57 кН/м:

полная — g + v = 35,5 + 31,92 = 67,42 кН/м;

здесь g1 и v1 — расчетные постоянная и временная нагрузки на 1 м² перекрытия; g2 = b· h··f·n — нагрузка от собственного веса ригеля сечением bh = 0,30,75 м².

Определение изгибающих моментов и поперечных сил в расчетных сечениях ригеля.

Опорные моменты определяют по Формуле М = (g+ v)· l 2, где и — коэффициенты, зависящие от схемы загружения ригеля постоянной g и временной v нагрузкой, а также от отношения погонных жесткостей ригеля и колонны к = В· lcol /(Вcol· l).

Сечение ригеля принято равным 3070, пролет l = 720 см; сечение колонны 4040 см, длина l col = 4,6 м (равна высоте этажа по заданию).

Отношение погонных жесткостей ригеля и колонны

к = 30· 703·460/(40·403·720) = 3

Коэффициенты и определяют по таблице (прил. 5) для ригелей, соединенных с колоннами на средних опорах — жестко и на крайних — шарнирно.

Вычисление опорных моментов ригеля от постоянной нагрузки и различных схем загружения временной нагрузкой приведено в табл. 1.3.

Таблица 1.3

Опорные моменты ригеля при различных схемах загружения

Схемы загружения

Опорные моменты, кНм

М21

М23

— 0,111· 35,9·7,22 = -207

— 0,093· 35,9·7,22 = -173

— 0,083· 31,92·7,22 = -137

— 0,028· 31,92·7,22 = -46

— 0,028· 31,92·7,22 = -46

— 0,065· 31,92·7,22 = -108

Основные сочетания

1+2

— 344

— 219

1+3

— 254

— 281

Изгибающиеся моменты в пролетных сечениях ригеля определяют «подвешиванием» к концам ординат (выражающих собой значение опорных моментов) параболы, которая является функцией изменения изгибающих моментов в сечениях простой балки от равномерно распределенной нагрузки.

Для первого пролета ригеля где вместо полной нагрузки q = g + v для незагруженных пролетов следует учитывать только постоянную нагрузку g. Для следующих пролетов используют эту же формулу, подставляя соответствующие значения изгибающих моментов в левом и правом опорных сечениях ригеля.

Поперечную силу определяют как производную:

При сочетаниях 1+2 и 1+3 нагрузка симметричная, поэтому М21 = М34; М23 = М32.

Для среднего пролета ригеля:

опорные моменты М23 = М32 = -281 кНм (при схеме 1+3).

М23 = М32 = -219 кНм (при схеме 1+2);

максимальный пролетный момент (при схеме загружения 1+3)

Мmax = М23 + (g+v)· l 2/8 = -281 + 67,82· 7,22/8 = 158,5 кНм, минимальный пролетный момент (при схеме загружения 1+2)

Мmin = М23 + g· l 2/8 = -219 + 35,9· 7,22/8 = 13,6 кНм поперечные силы, (в опорных сечениях)

Qmax = 0,5· (g+v)·l = 0,5· 67,82·7,2 =244 кН (при схеме 1+3).

Qmin = 0,5· g·l = 0,5· 35,9·7,2 = 129 кН (при схеме 1+2).

Для крайнего пролета ригеля:

опорные моменты М12 = 0 и М21 = -344 кНм (при схеме 1+2):

максимальный момент в сечении на расстоянии у1 от крайней опоры Мmax = М12 + (М21 — М12)· y1/ l + q· y1(l — y1)/2 = 0 + (-344−0)· у1/7,2 + 67,82· у1·(7,2 — у1)/2;

неизвестное расстояние у1 находят из условия Q (y) = dM (y1)/dy = 0; т. е.

Q (y) = dM (y1)/dy = -344/7,2 + 67,82· (7,2 — 2· у1)/2 = 196,4 — 67,82· у1 = 0,

откуда у1 = 2,9 м;

Мmax = -344· 2,9/7,2 + 67,82· 2,9·(7,2−2,9)/2 = 284 кНм:

минимальный момент в пролете при М21 = -254 кНм q = g = 35,9 кН (при схеме загружения 1+3)

Мmin = -254· у2/7,2 + 35,9· у2·(7,2 — у2)/2;

Q (y2) = dM (y2)/dy = 0; -254/7,2 + 35,9· (7,2 — 2у2)/2 = 0:

93,96−35,9· у1 = 0,

у2 = 2,6 м:

Мmin = -254· 2,6/7,2 + 35,9· 2,6·(7,2- 2,6)/2 = 123 кНм:

поперечные силы

Q1max = (g + v)· у1 = 67,82· 2,9 = 197 кН (при схеме 1+2);

Q1min = g· у2 = 35,9· 2,6 = 93 кН (при схеме 1+3);

Q21max = (g + v)· l — Q1max = 67,82· 7,2 — 197 = 291 кН (при схеме 1+2);

Q21min = g· l — Q1min = 35,9· 7,2 — 93 = 165 кН (при схеме 1+3).

По полученным экстремальным значениям М и Q строят огибающие эпюры (рис. 2.4).

Рисунок 2.4 Огибающие эпюры

Определение опорных моментов ригеля по грани колонны.

Расчетным на опоре будет сечение ригеля по грани колонны. В этом сечении изгибающий момент М1 = М — Q· hcol/2.

Необходимую схему загружения для расчетного опорного момента ригеля по грани колонны часто можно установить сравнительным анализом величин опорных моментов по табл. 1.3 и ограничить вычисления одной этой схемой. Приведем здесь вычисления по схемам 1+2 и 1+3.

Опорный момент ригеля по грани колонны слева М (21)1 (абсолютные значения):

по схеме загружения 1+3

М (21)1 = М21 — Q21· hcol/2 = 254 -165· 0,4/2 = 221 кНм;

по схеме загружения (1+2)

М (21)1 = М21 — Q21· hcol/2 = 344 — 291· 0,4/2 = 286 кНм;

Опорный момент ригеля по грани колонны справа М (23)1:

по схеме загружения 1+3

М (23)1 = М23 — Q23· hcol/2 = 281 — 244· 0,4/2 = 232,2 кНм;

по схеме загружения 1+2

М (23)1 = М23 — Q23· hcol/2 = 219 -129· 0,4/2 = 193,2 кНм;

Следовательно, расчетный опорный момент ригеля по грани колонны равен: М1 = 286 к· Нм.

Расчет прочности ригеля по сечениям, нормальным к продольной оси.

Характеристики прочности бетона и арматуры.

Бетон тяжелый класса В20:

расчетные сопротивления при сжатии Rb = 11,5 МПа:

при растяжении Rbt =0,9 МПа;

коэффициент условий работы бетона b2 = 0,9;

модуль упругости Еb = 24 000МПа.

Арматура продольная рабочая класса А-III:

расчетное сопротивление Rs = 365 МПа;

модуль упругости Еs = 200 000 МПа.

Определение высоты сечения ригеля.

Высоту сечения подбираем по опорному моменту при = 0,35, поскольку на опоре момент определен с учетом образования пластического шарнира. Принятое же сечение ригеля следует проверить по пролетному моменту (если он больше опорного) так, чтобы относительная высота сжатой зоны была R и исключалось переармированное неэкономичное сечение.

По таблице (ІІІ.1. 2) при = 0,35 находим значение = 0,289, определяем граничную относительную высоту сжатой зоны бетона по формуле

Здесь = 0,85 — 0,008· Rb = 0,85 — 0,008· 0,9·11,5 = 0,77; SR = Rs = 365 МПа;

SC, U = 500 МПа при b2 = 0,9 < 1 (предельное напряжение в арматуре сжатой зоны).

Вычисляем:

см

полная высота сечения h = h0 + а = 57+ 5 = 62 см.

Принимаем h = 70, b = 30.

Проверка принятого сечения по опорному моменту в данном случае производится, так как М1 = 284 кН· м < М = 286 кН· м.

Подбор сечений арматуры в расчетных сечениях ригеля.

Сечение продольной рабочей арматуры ригеля подбирают по М в трех нормальных сечениях: в первом и среднем пролетах, на средней опоре.

Сечение в первом пролете: М = 284 кН· м, h0 = h — а = 70 — 7 = 63 см (арматура расположена в два ряда)

Вычисляем

m = М/(Rb· b·h02) = 28 400 000/(0,9· 11,5·30·632·(100)) = 0,262;

Находим соответствующее значение по таблицы (ІІІ.1.2) =0,845

Аs = М/(Rs· ·h0) = 28 400 000/(365· 0,845·63·(100)) = 14,41 см².

Принято 4 22 А-III с Аs = 15,20 см².

Сечение в среднем пролете: М = 195 кНм, h0 = 70 — 6 = 64 см.

m = М/(Rb· b·h02) = 15 850 000/(0,9· 11,5·30·642·(100)) = 0,124;

=0,934

Аs = М/(Rs· ·h0) = 15 850 000/(365· 0,934·64·(100)) = 7,26 см².

Принято 4 16 А-III с Аs = 8,04 см².

Сечение на средней опоре: М = 286 кНм. h0 = 70 — 5 = 65 см (арматура расположена в один ряда).

m = М/(Rb· b·h02) = 28 600 000/(0,9· 11,5·30·652·(100)) = 0,219;

=0,875

Аs = М/(Rs· ·h0) = 28 600 000/(365· 0,875·65·(100)) = 13,77 см².

Принято 3 25 А-III с Аs = 14,73 см².

По мере удаления от расчетных сечений ординаты огибающей эпюры М уменьшаются, поэтому в целях экономии арматуры целесообразно часть рабочей арматуры оборвать (до 50% от расчетной) в соответствии с изменением ординат огибающей эпюры моментов. Для этого строят эпюру арматуры, позволяющую наглядно контролировать место теоретического обрыва рабочих стержней.

Расчет прочности ригеля по сечениям, наклонным к продольной оси. Расчет на действие поперечной силы по наклонной трещине.

На средней опоре поперечная сила Qmax = 291 кН (слева).

Проверка прочности бетона на растяжение:

Q b3· (1 + f + n)· Rbt·b·h0.

Здесь b3 = 0,6 (для тяжелого бетона): f = n = 0;

Rbt = 0,9 МПа; b = 30 см; h0 =65 см.

0,6· 0,9·30·65·(100) = 105 300 Н = 105,3 кН;

Q = 291кН > 105,3кН.

Условие прочности не соблюдается, следовательно, необходим расчет поперечной арматуры.

Вычисляем проекцию расчетного наклонного сечения с на продольную ось. Для этого определяем величину Мb= Qb/с:

Мb=b2· Rbt·b·h02 = 2· 0,9·30·652·(100) = 22,82· 106 Н· см.

Принимаем в расчетном наклонном сечении

Qb = Qsw = Q/2

Тогда с = Мb/(0,5· Q) = 22 820 000/(0,5· 291 000) = 157 см что больше 2· h0 = 2· 65 = 130 см., принимаем с= 2h0= 130 см

Принимаем с = 122 см.

Вычисляем усилия, воспринимаемые бетоном в расчетном сечении и поперечной арматурой:

Qsw = Qb = Q/2 = 291 000/2 = 145 500 Н;

усилия, воспринимаемые поперечными стержнями, заменяем равномерно распределенными:

qsw =Qsw/c = 145 500/130 = 1119 Н/см.

Диаметр поперечных стержней dsw устанавливается из условия свариваемости с продольной арматурой и принимается арматура АІ равным 10 мм с площадью Аsw = 0,785 см². Rsw=175 МПа

Число каркасов 2, поэтому Asw = 2· 0,785 = 1,57 см².

Шаг поперечных стержней

s = Rsw· Asw/qsw = 175· 1,57·(100)/1119 = 24 см.

По конструктивным условиям расстояние между поперечными стержнями должно быть не более: на приопорных участках (равных при равномерно распределенной нагрузке ¼ пролета) при h 45 см s h/3 = 70/3 = 23 см; на остальной части пролета s 3h/4 = 3· 70/4 = 52 см, но не более 50 см.

Принимаем на всех приопорных участках длиной (¼)· l шаг s = 20 см (с округлением до 5 см), в средней части — шаг s = 50 см.

В одном каркасе должно быть не более чем два шага хомутов. Поэтому и около опоры 1 на длине (¼)l принимаем s = 20 см, что идет в запас прочности.

Проверка прочности по наклонной сжатой полосе между наклонными трещинами.

Проверку прочности по наклонной сжатой полосе между наклонными трещинами выполняют по формуле

Q 0,3· w1·b1·Rb·b·h0.

Здесь w1 = 1 + 5· ·w 1,3; = Еs/Еb = 200 000/24000 = 8,3;

w = Asw/(b· s) = 1,57/(30· 20) = 0,0026;

w1 = 1 + 5· 8,3·0,0026 = 1,1;

b1 = 1 — 0,01· Rb = 1−0,01· 0,9·11,5 = 0,896;

Условие Q = 291 000 0,3· w1·b1·Rb·b·h0 = 0,3· 1,1·0,896·0,9·11,5·30·65·(100) = 597 000 Н удовлетворяется, следовательно, размеры сечения ригеля достаточны.

Расчет прочности наклонных сечений на действие изгибающего момента.

Расчет наклонных сечений на действие М заключается в проверке их прочности при известном количестве и расположении продольной арматуры, определенных из расчета прочности по нормальных сечениям.

Прочность сечения будет обеспечена, если выполняется условие

М Ms + Msw = Rs· As·zs + Rsw· Asw·zsw

где М — расчетный момент внешних сил относительно точки приложения равнодействующей усилий в сжатой зоне.

Расчет на действие изгибающего момента производится: в местах обрыва или отгиба продольной арматуры в пролете; у грани крайней свободной опоры балок, а также в местах резкого изменения конфигурации элементов.

Расчет на действие М по наклонному сечению в балках может не производиться, если обеспечена:

достаточная анкеровка продольной арматуры на свободных опорах

(l an10· d), (10· 22 = 220 < 350)

2) достаточная анкеровка арматуры, обрываемой в пролете (l an 20· d).

Конструирование арматуры ригеля.

Стык ригеля с колонной выполняется жестким на ванной сварке выпусков верхних надопорных стержней и сварке закладных деталей ригеля и опорной консоли колонны.

Ригель армируется двумя сварными каркасами, часть продольных стержней каркасов обрывается в соответствии с изменением огибающей эпюры моментов и по эпюре арматуры (материалов). Обрываемые стержни заводятся за место теоретического обрыва на длину анкеровки l an.

Эпюру арматуры строят в такой последовательности:

1) определяют изгибающие моменты М, воспринимаемые в расчетных сечениях по фактически принятой арматуре;

2) устанавливают места теоретического обрыва стержней (точки пересечения огибающей эпюры М и эпюры материалов);

3) определяют длину анкеровки обрываемых стержней

l an = Q/(2· qsw) + 5· d 20· d,

причем поперечная сила Q в месте теоретического обрыва стержней принимается соответствующей изгибающему моменту в этом сечении.

Рассмотрим сечения первого пролета.

Арматура в пролете 4 22 А-III с Аs = 15,20 см²;

=Аs/bh0 =15,20/(30· 63) = 0,0080; =· Rs/Rb = 0,0080· 365/11,5 = 0,25;

= 0,875

М = Rs· As··h0 = 365· 15,20·0,875·63·10−3 = 306 кН· м.

В месте теоретического обрыва пролетных стержней остаются

2 22 А-III с Аs = 7,6 см².

= =7,6/(30· 63) =0,0040; =· Rs/Rb = 0,0040· 365/11,5 =0,13;

= 0,935

М = Rs· As··h0 = 365· 7,6·0,935·63·10−3 = 163 кН· м.

Определим поперечную силу в этом сечении по формулам

;

;

;

;

.

;

;

qsw = Rsw· Asw/s =175· 1,57·(100)/20 =1374 Н/см

Длина анкеровки l an1 = Q1/(2· qsw)+5·d = 127 000/(2· 1374)·2,2= 46 см.

46 см > 20· 2,2= 44 см. Принимаем l an1 =46см.

l an2 = Q1/(2· qsw) + 5· d = 127 000/(2· 1374)+ 5· 2,2= 46 см

46 см > 20· d = 20· 2,2= 44 см. Принимаем l an1 =46

На средней опоре арматура 3 25-III с Аs = 14,73 см²;

= 14,73/(30· 65) = 0,0075; =· Rs/Rb = 0,0075· 365/11,5 = 0,24;

= 0,88;

М = Rs· As··h0 = 365· 14,73·0,88·65·10−3 = 308 кН· м.

В месте теоретического обрыва арматура 3 9 А-III с As = 1,91 см²;

= 1,91/(30· 65) = 0,0010; =· Rs/Rb = 0,0010· 365/11,5 = 0,03;

= 0,985;

М = Rs· As··h0 = 365· 1,91·0,985·65·10−3 = 44,6 кН· м.

Определим поперечную силу в этом сечении.

= ;

.

кН

Поперечные стержни 10 А-II в месте теоретического обрыва стержней 3 25 А-III сохраняем с шагом s=20 см;

Длина анкеровки l an3 = Q3/(2· qsw)+5·d = 179 000/(2· 1374)+5·2,5 = 64,84 см ?65 см 20· d = 20· 2,5 = 50 см. Принимаем l an3 = 65 см.

Схема армирования ригеля показана на рис. 2.7

3. ПРОЕКТИРОВАНИЕ ВНЕЦЕНТРЕННО СЖАТЫХ КОЛОНН

Сбор нагрузки.

Грузовая площадь от перекрытий и покрытий при сетке колонн 7,25,6 м равна

А1 = l1l2 = 7,25,6 = 40,32 м².

Постоянная нагрузка от перекрытия одного этажа с учетом коэффициента надежности по назначению здания n = 0,95 :

g1 = g1, · A1·n = 5,64· 40,32·0,95 = 216 кН;

от ригеля ;

g2 = (g2'/l2)· A1 = (5,49/5,6)· 40,32= 39,5 кН;

от стойки сечением bh = 0,40,4 м, l = 4,6 м:

g3 = b· h·l··f·n = 0,4· 0,4·4,6·25·1,1·0,95 = 19,23 кН,

здесь g1' и g2' - расчетные постоянные нагрузки на 1 м² перекрытия и на 1 м длины ригеля.

Итого: G1 = g1 + g2 + g3 = 216 + 39,5 + 19,23 = 275 кН.

Временная нагрузка от перекрытия одного этажа с учетом n = 0,95 :

v1 = v1'· A1·n = 6· 40,32·0,95 = 230 кН;

в том числе длительная 4,8· 40,32·0,95 = 184 кН;

кратковременная 1,8· 40,32·0,95 = 69 кН;

здесь v1' - расчетная временная нагрузка на 1 м² перекрытия.

Постоянная нагрузка от покрытия при весе кровли и плит g4' = 5,0 кН/м2 составит

g4 = g4'· A1·n = 5,0· 40,32·0,95 = 191,52 кН;

от ригеля: g2 = 39,5 кН;

от стойки: g3 = 19,23кН;

Итого: G2 = g4 + g2 + g3 = 191,52 + 32,5 + 19,23 = 243,25 кН.

Временная нагрузка снеговая для заданного района с учетом коэффициента надежности по назначению здания n = 0,95 :

v2 = Sr· A1·n?f =1,2· 40,32·0,95= 46 кН;

в том числе длительная 0,5· 46 = 23 кН;

кратковременная 0,5· 46 = 23 кН;

здесь принимаем по СНиП 2.01.07.85 Sr = 1,2 — вес снегового покрова на 1 м² перекрытия для II района.

Определение продольных сил от расчетных нагрузок в сечениях

колонны первого этажа.

Рассматривают две схемы загружения ригеля (1+1) и (1+2). Продольная сила в расчетном сечении колонны первого этажа от полной расчетной нагрузки при схеме загружения ригеля (1+1)

N = (G1 + v1)· n + G2 + v2 = (275 + 230)· 4 + 243,25 + 46 = 2309,25 кН.

от длительной нагрузки

Nl = (275 + 184)· 4 + 243,25 + 23= 2102,25 кН

Продольная сила, соответствующая загружению ригеля по схеме (1+2), меньше максимальной на значение временной нагрузки, отсутствующей на одном из пролетов ригеля. Продольная сила от полной нагрузки равна

N = 2309,25−230/2=2194,25

от длительной нагрузки

Nl = 2102,25−184/2= 2010,25

Изгибающие моменты в сечениях колонны определяют по разности абсолютных значений опорных моментов ригелей в узле М, которая распределяется между стойками, примыкающими к узлу снизу и сверху: в средних этажах поровну М = 0,5· М, в первом этаже М = 0,4· М, в верхнем этаже М = М.

Вычисляют опорные моменты ригеля перекрытия первого этажа рамы при загружении (1+2):

от полной нагрузки

М21 = -344м, М23 = -219 кНм;

от длительной нагрузки

М21 = (· g + · v)·l 2 = -(0,111· 35,9 + 0,083· 25,54)·7,22 = -316 кНм.

М23 = -(0,093· 35,9+ 0,028· 25,54)·7,22 = -210 кНм.

Разность абсолютных значений опорных моментов в узле рамы:

при полной нагрузке — М = 344 — 219 = 125кНм;

при длительной нагрузке — М = 316 — 210 = 106 кНм.

Изгибающий момент в верхнем сечении колонны первого этажа:

от полной нагрузки М = 0,4· М = 0,4· 125 = 50 кНм

от длительной нагрузки М1 = 0,4· М = 0,4· 106 = 42,4 кНм.

Изгибающий момент в нижнем сечении колонны первого этажа:

от полной нагрузки М = 0,2· М = 0,2· 125 = 25кНм

от длительной нагрузки М1 = 0,2· М = 0,2· 106 = 21,2 кНм.

Изгибающие моменты в верхнем сечении колонны первого этажа, соответствующие максимальным продольным силам, при загружении пролетов ригеля по схеме (1+1):

от полной нагрузки ;

М = (0,111 — 0,093)· 67,42·7,22 = 63 кНм;

М = 0,4· 63 = 25,2 кН· м

от длительной нагрузки

М = (0,111 — 0,093)· 51,04 · 7,22 = 47,62 кНм;

Мl = 0,4· 47,62 = 19,05 кНм.

Изгибающие моменты в нижнем сечении колонны:

М = 0,2· 63 = 12,6 кНм,

Мl = 0,2· 47,62 = 9,52 кНм.

Эпюра моментов колонны изображена на рис 3.1,б.

Выбор бетона и арматуры, определение расчетных характеристик материалов.

Для колонны принимается тяжелый бетон класса В20 с расчетными характеристиками: Rb = 11,5 МПа, Rbt = 0,9 МПа, b2 = 0,9, Eb = 24 000 МПа.

Продольная арматура из стали класса А-III: Rs = 365 МПа; Es = 200 000 МПа

Расчет прочности колонны первого этажа

Рассматривают две комбинации расчетных усилий:

Nmax = 2309,25 кН и соответствующий момент М = 25,2 кНм, в том числе от длительных нагрузок Nl = 2102,25 кН и Мl = 19,05 кНм.

Мmax = 50 кНм и соответствующее значение N = 2194,25 кНм, в том числе от длительных нагрузок Мl = 42,4 кНм и Nl = 2010,25 кН.

Подбор сечений симметричной арматуры Аs = Аs' выполняют по двум комбинациям усилий и принимают большую площадь сечения.

Ограничимся расчетом по второй комбинации усилий.

Рабочая высота сечения колонны h0 = h — a = 40 — 4 = 36 см, ширина сечения b = 40 см.

Расчетную длину колонны l 0 принимают равной высоте этажа 4,6 м.

Вычисляют эксцентриситет продольной силы

е0 = M/N = 5000/2194,25 = 2,28 см.

Случайный эксцентриситет принимается большим из следующих значений:

еа = h/30 = 40/30 = 1,33 см,

еа = l/600 = 460/600 = 0,76 см,

еа = 1 см.

Так как эксцентриситет силы е0 = 2,28 см больше случайного эксцентриситета еа = 1,33 см, он и принимается для расчета статически неопределимой системы.

Определяем значение моментов в сечении относительно оси, проходящей через центр тяжести наименее сжатой (растянутой) арматуры:

при полной нагрузке

М1 = М + N· (0,5·h — а) = 50 + 2194,25· (0,5·0,4−0,04) = 401,1 кНм;

при длительной нагрузке

М1l = М1 + N1· (0,5·h — а)= 42,4 + 2010,25· (0,5·0,4−0,04) = 364 кНм.

Вычисляем гибкость колонны :

= l0/i = 460/11,6 = 39,7 > 14

где i = 0,289· h = 0,289· 40 = 11,6 см — радиус ядра сечения.

При расчете гибких (>14) внецентренно сжатых элементов следует учитывать влияние прогиба на прочность путем умножения начального коэффициента е0 на коэффициент продольного изгиба, определяемый по формуле

=1/(1 — N/Ncr),

где Ncr — условная критическая сила, зависящая от геометрических характеристик, деформативных свойств материалов, эксцентриситета продольной силы, длительности действия нагрузки, количества арматуры.

Выражение для определения условной критической силы при прямоугольном сечении с симметричном армировании Аs = Аs' (без предварительного напряжения) с учетом, что

I = A· i2, Is = 1· A·(h/2 -a)2, 1 = 2As/A

имеет вид:

Коэффициент l, учитывающий длительность действия нагрузки на прогиб элемента, составляет:

l = 1+· М1l /М1 = 1 + 1· 364/401,1 = 1,9;

где = 1 для тяжелого бетона.

Значение относительного эксцентриситета е = е0/h = 2,28/40 = 0,057 сравниваем с e, min, который определяется по формуле:

e, min = 0,5 — 0,01· l0/h — 0,01· Rb = 0,5 — 0,01· 460/40 — 0,01· 0,9·11,5 = 0,282;

принимаем e = 0,25.

Коэффициент приведения арматуры к бетону

= Es/Eb = 200 000/24000 = 8,33.

Предварительно принимаем коэффициент армирования 1 = 2As/A = 0,02 и вычисляем критическую силу:

Вычисляем коэффициент продольного изгиба

= 1/(1 — 2194,25/10 613) = 1,26 < 2,5

Эксцентриситет продольной силы относительно центра тяжести наименее сжатой арматуры составляет:

е = е0· + h/2 — a = 2,28· 1,26 + 40/2 — 4 = 18,87? см.

Определяем граничную высоту сжатой зоны бетона по формуле

Здесь = 0,85 — 0,008· 0,9·11,5 = 0,767 — характеристика сжатой зоны бетона, SR — напряжение в арматуре, принимаемое для арматуры класса А_III равным Rs = 365 МПа; SC, U — предельное напряжение в арматуре сжатой зоны. SC, U = 500 МПа, так как b2 < 1;

Вычисляем:

Имеем случай малых эксцентриситетов.

Определяем площадь сечения продольной арматуры по формуле:

принимаем 325 А-III с As = 14,73 см².

Определяем коэффициент армирования:

= 2· 14,73/(40·40) = 0,018 > min = 0,004.

Для определения условной критической силы Ncr было принято значение

1 = 0,02, перерасчёт можно не делать, так как 0,005

Расчет консоли колонны.

Ригель опирается на железобетонную консоль колонны.

Опорное давление Q = 291 кН.

Расчетные данные:

бетон класса В20 (Rb =11,5 МПа, Rbt = 0,9 МПа, b2=0,9, Eb = 27 000 МПа);

арматура класса А-III (Rs = 365 МПа; Rsw=290 МПа; Es = 200 000 МПа);

ширина консоли равна ширине колонны bc = 40 см; ширина ригеля bbm = 30 см.

Принимаем длину опорной площадки l = 25 см при ширине ригеля 30 см и проверяем условие смятия под концом ригеля:

Q/(l· bbm) = 291 000/(25· 30·(100)) = 3,88 МПа < b2· Rb = 0,9· 11,5 = 10,35 МПа.

Вылет консоли с учетом зазора с = 5 см составит

l1 = l + c = 25+5 = 30 см,

при этом расстояние от грани колонны до силы Q равно:

a1 = l1 — l/2 =30 — 25/2 = 17,5 см.

Высоту сечения консоли у грани колонны принимают равной

h = 0,75· hbm; h = 0,75· 70 = 55 см.

При угле наклона сжатой грани колонны = 45о высота консоли у свободного края

h1 = 55−30 = 25 см (h1 = 25 h/3).

Рабочая высота сечения консоли h0 = h — a = 55 — 3 = 52 см

Так как l1 = 30 см < 0,9· h0 = 0,9· 52 = 46,8 см — консоль короткая

Рабочую высоту сечения короткой консоли в опорном сечении определяют из условия Q 1,5· Rbt·b·h02/a1, где правую часть неравенства принимают не более 2,5· Rbt·b·h0.

Проверяем высоту сечения короткой консоли в опорном сечении:

1,5· Rbt·b·h02/a1 = 1,5· 0,9·40·522·(100)/17,5 = 834 377 Н;

2,5· Rbt·b·h0 = 2,5· 0,9·40·52·(100) = 468 000 Н;

Q = 291 кН < 468 кН — условие выполняется.

Изгибающий момент консоли у грани колонны:

М = Q· a1 = 291· 0,175 = 51 кНм.

Площадь сечения продольной арматуры консоли подбирают по изгибающему моменту у грани колонны, увеличенному на 25%, принимаем =0,9.

Аs = 1,25· М/(Rs··h0) = 1,25· 5 100 000/(365·0,9·52·(100)) = 3,73 см².

Принято 216 А-III с Аs = 4,02 см².

Короткие консоли высотой сечения h =55 см > 2,5а1 = 2,5· 17,5 = 43,75 см армируют горизонтальными хомутами и отогнутыми стержнями (при h < 2,5а1 консоль армируют только наклонными хомутами по всей высоте).

Горизонтальные хомуты принимаем 8 АII (как для колонны).

Шаг хомутов консоли должен быть не более 150 мм и не более

h/4 =55/4= 13,75 см; принимаем шаг s = 11 см.

Минимальная площадь сечения отогнутой арматуры

Аs, inc = 0,002· b·h0 = 0,002· 40·52 = 4,16 см²,

принимаем 218 А-III с As = 5,09 см².

Диаметр отогнутых стержней принимают не более 25 мм и не более 1/15 длины отгиба: dinc = 18 мм < 25 мм, dinc = 18 мм < linc/15 = 30· 1,41/15 = 28,2 мм — условия соблюдаются.

Конструирование арматуры колонны

Колонна армируется пространственными каркасами, образованными из плоских сварных каркасов с продольной рабочей арматурой 25 А-III.

Поперечная арматура назначается конструктивно. По условию технологии контактной точечной сварки при диаметре продольной арматуры 25 мм, наименьший диаметр поперечных стержней 8 мм. Расстояние между поперечными стержнями сварных каркасов должно быть не более 20d = 20· 25 = 500 мм (d — наименьший диаметр сжатых продольных стержней), не более стороны колонны (400 мм) и не более 500 мм.

Принимаем поперечную арматуру 8 А-II с шагом s = 500 мм.

Техническими правилами по экономному расходованию основных строительных материалов рекомендуется выполнять колонны многоэтажных зданий без стыков на несколько этажей. Из условия удобства производства работ стыки колонн назначают на 1,0 — 1,2 м выше перекрытия.

Колонна трехэтажной рамы расчленяется на 2 элемента длиной в 1,5 этажа каждый (приблизительно). Расчет колонны всех этажей выполняется аналогично. Обычно бетонное сечение колонны оставляют постоянным, а площадь сечения арматуры изменяют по этажам с соответствии с уменьшением нагрузки.

Экономичный стык колонны с минимальной затратой металла осуществляют путем ванной сварки выпусков продольной арматуры, расположенных в специальных подрезках, и последующим замоноличиванием этих подрезок. Таким образом обеспечивают прочность стыка, равную прочности колонн в стадии эксплуатации.

Концы колонн усиливаются поперечными сетками из проволоки Вр-I (косвенное армирование).

Сварные сетки конструируют, соблюдая следующие требования:

а) размеры ячеек должны быть не менее 45 мм и не более 100 мм, не более b/4;

б) шаг сеток следует принимать не менее 60 мм и не более 150 мм, не более b/3;

Принимаем 5 сеток, шаг сеток 100 мм.

Схема армирования колонны показана на рис. 2.5.

4. ПРОЕКТИРОВАНИЕ ФУНДАМЕНТА ПОД КОЛОННУ

Фундаменты передают нагрузку от опирающихся на них колонн (или стен) на основание.

Усилие в сечении колонны у заделки в фундаменте:

1) N = 2309,25 кН, M = 12,6 кНм, e = M/N = 1260/2309,25 = 0,54 см;

2) N = 2194 кН, M = 25 кНм, e = M/N = 2500/2194 = 1,14 см.

Ввиду относительно малых значений эксцентриситетов фундамент рассчитываем как центрально загруженный.

Расчетное усилие Nmax = 2309,25 кН;

усредненное значение коэффициента надежности по нагрузке f = 1,15;

нормативное усилие Nn = 2309,25/1,15 = 2008 кН.

Грунты основания с условным расчетным сопротивлением 3 кг/см2 сделаем перевод в МПа: 1 кг/см2 = 0,098 МПа =3· 0,098=0,294 МПа; Ro = 0,3 МПа (по заданию).

Фундамент выполняется из тяжелого бетона класса В15:

Rb = 8,5 МПа; Rbt = 0,75 МПа; b2 = 0,9.

Центрально нагруженные фундаменты армируют сварными сетками из арматуры класса А-II, А-III с одинаковой арматурой в двух направлениях.

Принимаем арматуру класса А-II с расчетным сопротивлением Rs = 280 МПа.

Вес единицы объема бетона фундамента и грунта на его обрезах = 18 кН/м3.

Расчет фундамента.

Расчет фундамента состоит из двух частей:

1) расчета основания (определяют форму и размер подошвы);

2) расчета тела фундамента (определяют высоту фундамента, размеры его ступеней и сечения арматуры).

Центрально напряженные фундаменты проектируют квадратными в плане. По форме они могут быть ступенчатыми или пирамидальными. Последние экономичнее по расходу материалов, но сложнее в изготовлении и применяются реже.

Размеры подошвы фундамента определяются при условии, что среднее давление под ней не превышает условного расчетного сопротивления грунта. При этом считают давление под подошвой фундамента равномерно распределенной.

Предварительно площадь подошвы фундамента определяют по формуле

A = Nn / (Ro — · H1) = 2008· 103 / (0,3· 106 — 18· 1,05·103) = 6,78 м²,

здесь H1 — глубина заложения фундамента, м.

Принимая предварительно высоту фундамента равной Н = 90 см, определяем глубину заложения фундамента

Н1 = 90+15 = 105 см.

Размер стороны квадратной подошвы

Принимаем, а = 3 м (кратным 0,3 м).

Вычисляем давление на грунт от расчетной нагрузки

p = N / A = 2309,25 / (3· 3) = 256,6 кН/м2.

Высоту фундамента определяют из условия его прочности на продавливание в предположении, что продавливание происходит по поверхности пирамиды, боковые стороны которой начинаются у колонны и наклонены под углом 450 к вертикали. В качестве расчетной продольной силы F принимают силу N за вычетом отпора грунта р, распределенного по площади нижнего основания пирамиды продавливания:

F = N — p· (hcol + 2· h0)2

Условие прочности на продавливание имеет вид:

F b· Rbt·um·h0

здесь um — среднее арифметическое между периметрами оснований пирамиды продавливания.

Рабочая высота центрально нагруженного фундамента с квадратной подошвой может быть вычислена по приближенной формуле, выведенной из последних условий:

м

Полная высота фундамента устанавливается из условия:

1) продавливания H = h0 + a = 47+ 5 = 52 см;

2) жесткой заделки колонны в фундаменте

H = 1,5· hcol + 5 + 20 = 1,5· 40 + 25 = 85 см;

3) достаточной анкеровки продольной сжатой арматуры колонны 25 А_II в бетоне В20: H = lan + 25 = 32 + 25 = 57 см.

lan=(0,5· 280/11,5 + 8)· 25 = 322 мм > 12· 25 = 300 мм > 200 мм.

Принимаем окончательно фундамент высотой H = 100 см, h0 = 95 см.

При Н? 90 см фундамент проектируют трехступенчатым с толщиной сту пеней (35+35+30).

Толщина дна стакана 20 + 5 = 25 см. (рис. 3.3).

Проверяем, отвечает ли рабочая высота нижней ступени фундамента

h02 = 35 — 5 = 30 см условию прочности по поперечной силе без поперечного армирования в наклонном сечении, начинающемся в сечении III-III для единицы ширины этого сечения (b = 1 м):

Q = 0,5· (a — hcol — 2· h0)·b·р = 0,5· (3- 0,4 — 2· 0,95)·1·256,6 = 89,81 кН.

Q = 89 810 Н < 0,6· b2·Rbt·b·h02 = 0,6· 0,9·0,75·100·30·(100) = 121 500 Н

условие прочности выполняется.

Ступени фундамента работают под воздействием реактивного давления грунта р снизу подобно консолям, заделанным в массив фундамента.

Армирование фундамента по подошве определяют расчетом по нормальным сечениям I-I и II-II; значения изгибающих моментов в этих сечениях как в консольных балках:

МI = 0,125· р·(а — hcol)2· b = 0,125· 256,6 · (3−0,4)2·3 = 650,5 кНм;

МII = 0,125· р·(а — a1)2· b = 0,125· 256,6·(3−1,3)2·3 = 278,1 кНм;

где a1 — ширина верхней ступени, b — ширина подошвы фундамента, b = a = 3 м.

Требуемую площадь сечения арматуры, воспринимающую растягивающие напряжения при изгибе в сечении I-I на всю ширину фундамента, определяют из условия MI = Rs· As1·z1, приняв z1 = 0,9· h0;

Аs1 = MI/(0,9· h0·Rs) = 650,5· 105/(0,9·95·280·(100)) = 27,17 см²

Аналогично для сечения II-II:

Аs2 = MII/(0,9· h01·Rs) = 278,1 · 105/(0,9·65·280·(100)) = 17 см².

Из двух значений выбираем большее, по которому и производят подбор диаметра и количество стержней. Вначале задают шаг стержней (150…200 мм), затем определяют их количество, на единицу больше числа шагов. Деля Аs на число стержней, получают требуемую площадь одного стержня, по которой подбирают диаметр (? 12 мм).

Задаемся шагом стержней s = 180 мм. Число шагов 18, число стержней 19, площадь одного стержня 1,46 см², площадь всех стержней 27,17 см².

Принимаем сварную сетку с одинаковой в обоих направлениях рабочей арматурой из стержней 19 14 А-II с Аs=1,54 см?, с шагом s = 18,0 см (As = 29,26 см2).

Марка сетка

Проверяем проценты армирования расчетных сечений:

1=As· 100/(b1·h0) = 29,26· 100/(130·95) = 0,24%;

2=As· 100/(b2·h01) = 29,26· 100/(210·65) = 0,21%;

что больше min=0,05% (для изгибаемых элементов).

Библиографический список

1. Бондаренко B.М., Суворкин Д. Г. Железобетонные и каменные конструкции: Учеб. для студ. вузов по спец. «Пром. и гражд. строит-во». М.: Высш. шк., 1987. 384 с.

2. Байков В. И. Сигалов Э.Е. Железобетонные конструкции. Общий курс: Учеб. для вузов. 5-е.изд. перераб. и доп. М.: Строй-издат, 1991. 767 с.

3.Мандриков А. П. Примеры расчета железобетонных конструкций Учеб.пособ. для вузов.-2-е изд.,-М.: Стройиздат, 1989.-506 с.

4.Шибакова Е. Н. Железобетонные и каменные конструкции (текст):метод.указанияУхта: УГТУ.2010.-36 с.

5. СНиП 2.03.01−84. Бетонные и железобетонные конструкции / ЦИТП Госстроя СССР. М., 1985. 79 с.

6. СНиП 2.01.07−85. Нагрузки и воздействия. Нормы проектирования. М., 1986

7. СНиП 52.01.-2003. Бетонные и железобетонные конструкции.

.ur

Показать весь текст
Заполнить форму текущей работой