Π”ΠΈΠΏΠ»ΠΎΠΌ, курсовая, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°
ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚

ВлияниС фосфорилирования Π½Π° структуру ΠΈ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΠ°Π»ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Hsp22

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠœΠ°Π»Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока (small heat shock proteins, sHsp) — ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСнная Π³Ρ€ΡƒΠΏΠΏΠ° Π±Π΅Π»ΠΊΠΎΠ² с ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎΠΉ массой ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π° ΠΎΡ‚ 12 Π΄ΠΎ 43 ΠΊΠ”Π°. ΠžΡ‚Π»ΠΈΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ€Ρ‚ΠΎΠΉ всСх Π±Π΅Π»ΠΊΠΎΠ² этого сСмСйства являСтся Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π² ΠΈΡ… ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π΅ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ Π°-кристаллинового Π΄ΠΎΠΌΠ΅Π½Π°, состоящСго ΠΈΠ· 80βˆ’90 аминокислотных остатков ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠ΅Π³ΠΎ своС Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΠΎΡ‚ Π±Π΅Π»ΠΊΠ° Π°-кристаллина, Π² ΡΠΎΡΡ‚Π°Π²Π΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΎΠ½ Π±Ρ‹Π»… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… сокращСний
  • I. ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
  • 1. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΌΠ°Π»Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока
  • БупСрсСмСйство вНэр
  • Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ΠΎΠ² ΠΌΠ°Π»Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока
  • ΠžΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Π½Π°Ρ структура ΠΌΠ°Π»Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока
  • ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… комплСксов ΠΌΠ°Π»Ρ‹ΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока
  • 2. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠ°Π»Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока
    • 2. 1. ШапСронная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ
      • 2. 1. 1. ВзаимодСйствиС ΠΌΠ°Π»Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ-субстратами
      • 2. 1. 2. ВзаимодСйствиС вНэр с ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½Π½ΠΎΠΉ систСмой ΠΊΠ»Π΅Ρ‚ΠΊΠΈ
    • 2. 2. УчастиС ΠΌΠ°Π»Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока Π² ΠΏΡ€ΠΎΡ‚СолитичСской Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ частично Π΄Π΅Π½Π°Ρ‚ΡƒΡ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²
    • 2. 3. УчастиС ΠΌΠ°Π»Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока Π² Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π΅ ΠΈ ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·Π΅
  • 3. РСгуляция активности ΠΌΠ°Π»Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока
  • II. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
  • ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
    • 1. 1. ЭкспрСссия Π³Π΅Π½ΠΎΠ² Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΌΡƒΡ‚Π°Π½Ρ‚ΠΎΠ² Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Нзр
    • 1. 2. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
  • ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… для химичСской трансформации
  • ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… для элСктропорации
    • 1. 3. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Нзр
  • 2. ЀосфорилированиС НБр22 ΠΈ Π΅Π³ΠΎ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΌΡƒΡ‚Π°Π½Ρ‚ΠΎΠ² ΠΏΠΎΠ΄ дСйствиСм Ρ†ΠΠœΠ€-зависимой ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·ΠΎΠΉ
  • 3. ЀосфорилированиС Нзр22 ΠΈ Π΅Π³ΠΎ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΌΡƒΡ‚Π°Π½Ρ‚ΠΎΠ² ΠΏΠΎΠ΄ дСйствиСм ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ Π•Π«Πš
  • 4. ЀлуорСсцСнтная спСктроскопия
  • 5. БпСктроскопия ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΡ…Ρ€ΠΎΠΈΠ·ΠΌΠ°
  • 6. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ»ΠΈΠ·Π°
  • 7. АналитичСскоС ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
  • 8. Π“Π΅Π»ΡŒ-Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΡ
  • 9. Π₯имичСскоС «ΡΡˆΠΈΠ²Π°Π½ΠΈΠ΅» ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ димСтилсубСримидата
  • 10. Π₯имичСскоС «ΡΡˆΠΈΠ²Π°Π½ΠΈΠ΅» ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ Π³Π»ΡƒΡ‚Π°Ρ€ΠΎΠ²ΠΎΠ³ΠΎ альдСгида
  • 11. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½Π½ΠΎΠΉ активности
    • 11. 1. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½Π½ΠΎΠΉ активности с ΠΈΠ½ΡΡƒΠ»ΠΈΠ½ΠΎΠΌ
    • 11. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½Π½ΠΎΠΉ активности с Ρ€ΠΎΠ΄Π°Π½Π°Π·ΠΎΠΉ
  • АналитичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
  • Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Π· Π² ΠΏΠΎΠ»ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°ΠΌΠΈΠ΄Π½ΠΎΠΌ Π³Π΅Π»Π΅
  • Π—Π‘Π—-элСктрофорСз
  • Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Π· Π² Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… условиях
  • Π˜Π·ΠΎΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΠΊΡƒΡΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
  • ΠžΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°ΠΌΠΈΠ΄Π½Ρ‹Ρ… Π³Π΅Π»Π΅ΠΉ сСрСбром
  • Авторадиография
  • БпСктрофотомСтричСскоС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠ°
  • III. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅
  • 1. ЭкспрСссия Π³Π΅Π½ΠΎΠ² Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Нэр22 Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π•. соН
  • 2. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ β„–Ρ€
  • 3. ЀосфорилированиС Π¨Ρ€22 ΠΈ Π΅Π³ΠΎ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΌΡƒΡ‚Π°Π½Ρ‚ΠΎΠ² ΠΏΠΎΠ΄ дСйствиСм Ρ†ΠΠœΠ€-зависимой ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹
  • 4. ЀосфорилированиС Нвр22 ΠΈ Π΅Π³ΠΎ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΌΡƒΡ‚Π°Π½Ρ‚ΠΎΠ² ΠΏΠΎΠ΄ дСйствиСм ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ Π•Π―Πš
  • 5. ВлияниС фосфорилирования ΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… фосфорилированиС, Π½Π° ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρƒ Нзр
    • 5. 1. ВлияниС фосфорилирования ΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… фосфорилированиС, Π½Π° Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΡƒΡŽ структуру Нзр
    • 5. 2. ВлияниС фосфорилирования Π½Π° Ρ‚Ρ€Π΅Ρ‚ΠΈΡ‡Π½ΡƒΡŽ структуру Нвр
      • 5. 2. 1. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ собствСнной Ρ‚Ρ€ΠΈΠΏΡ‚ΠΎΡ„Π°Π½ΠΎΠ²ΠΎΠΉ флуорСсцСнции
      • 5. 2. 2. ΠžΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ»ΠΈΠ·
    • 5. 3. ВлияниС фосфорилирования Π½Π° Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈΡ‡Π½ΡƒΡŽ структуру Нэр
      • 5. 3. 1. Π₯имичСскоС «ΡΡˆΠΈΠ²Π°Π½ΠΈΠ΅» ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ димСтилсубСримидата ΠΈ Π³Π»ΡƒΡ‚Π°Ρ€ΠΎΠ²ΠΎΠ³ΠΎ альдСгида
      • 5. 3. 2. Π“Π΅Π»ΡŒ-Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΡ
      • 5. 3. 3. АналитичСскоС ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
  • 6. ШапСроноподобная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Нзр
    • 6. 1. ШапСроноподобная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Нзр22 с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ инсулина Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ модСльного Π±Π΅Π»ΠΊΠ°-субстрата
    • 6. 2. ШапСроноподобная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ€ΠΎΠ΄Π°Π½Π°Π·Ρ‹ Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ модСльного Π±Π΅Π»ΠΊΠ°-субстрата

ВлияниС фосфорилирования Π½Π° структуру ΠΈ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΠ°Π»ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Hsp22 (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠœΠ°Π»Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока (small heat shock proteins, sHsp) — ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСнная Π³Ρ€ΡƒΠΏΠΏΠ° Π±Π΅Π»ΠΊΠΎΠ² с ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎΠΉ массой ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π° ΠΎΡ‚ 12 Π΄ΠΎ 43 ΠΊΠ”Π°. ΠžΡ‚Π»ΠΈΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ€Ρ‚ΠΎΠΉ всСх Π±Π΅Π»ΠΊΠΎΠ² этого сСмСйства являСтся Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π² ΠΈΡ… ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π΅ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ Π°-кристаллинового Π΄ΠΎΠΌΠ΅Π½Π°, состоящСго ΠΈΠ· 80−90 аминокислотных остатков ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠ΅Π³ΠΎ своС Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΠΎΡ‚ Π±Π΅Π»ΠΊΠ° Π°-кристаллина, Π² ΡΠΎΡΡ‚Π°Π²Π΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΎΠ½ Π±Ρ‹Π» Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½. sHsp склонны ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… комплСксов, Ρ€Π°Π·ΠΌΠ΅Ρ€ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Ρ‚ΡŒ 600−700 ΠΊΠ”Π°.

ВсС Ρ‡Π»Π΅Π½Ρ‹ сСмСйства ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, Ρ‚. Π΅. способны ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒ частично Π΄Π΅Π½Π°Ρ‚ΡƒΡ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ, прСпятствуя ΠΈΡ… Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅ΠΉ Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ. Помимо этого ΠΌΠ°Π»Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока ΠΌΠΎΠ³ΡƒΡ‚ ΡƒΡ‡Π°ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ протСолитичСской Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ Π΄Π΅Π½Π°Ρ‚ΡƒΡ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ², Ρ‚Π΅ΠΌ самым защищая ΠΊΠ»Π΅Ρ‚ΠΊΡƒ ΠΎΡ‚ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΎΠ² ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ². ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, считаСтся, Ρ‡Ρ‚ΠΎ sHsp ΠΌΠΎΠ³ΡƒΡ‚ ΡƒΡ‡Π°ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° ΠΈ Ρ†ΠΈΡ‚оскСлСта, ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ подвиТности, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² Π·Π°Ρ‰ΠΈΡ‚Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΎΡ‚ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ стрСсса, рСгуляции процСссов ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°Π»Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ способами, Π² Ρ‡Π°ΡΡ‚ности, ΠΏΡƒΡ‚Π΅ΠΌ фосфорилирования, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π°ΠΌΠΈ. ЀосфорилированиС ΠΌΠΎΠΆΠ΅Ρ‚ Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ состояниС sHsp, ΠΈΡ… Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅ с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ-ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€Π°ΠΌΠΈ ΠΈ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ.

Π’ Π½Π°ΡΡ‚оящСС врСмя Π² Π³Π΅Π½ΠΎΠΌΠ΅ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π½Π°ΠΉΠ΄Π΅Π½ΠΎ 10 Π³Π΅Π½ΠΎΠ², ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠ°Π»Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока, ΠΈ ΡΠ²ΠΎΠΉΡΡ‚Π²Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… прСдставитСлСй этого сСмСйства Π±Π΅Π»ΠΊΠΎΠ² (аАи Π°Π’-кристаллины, Hsp27) достаточно ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π΅Π΄Π°Π²Π½ΠΎ описанный Π±Π΅Π»ΠΎΠΊ Hsp22 (HspB8, HI 1 ΠΊΠΈΠ½Π°Π·Π°, ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ Π³Π΅Π½Π° E2IG1) Π½Π° Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… этапах исслСдования относили ΠΊ ΠΊΠ»Π°ΡΡΡƒ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΏΠΎΠ·Π΄Π½Π΅Π΅ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π² Π΅Π³ΠΎ структурС Π°-кристаллинового Π΄ΠΎΠΌΠ΅Π½Π° ΠΈ ΠΎΡ‚сутствиС ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π½ΠΎΠΉ активности. Π”Π°Π½Π½Ρ‹Π΅ Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ элСктрофорСза ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… Hsp22, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ являСтся Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΌ прСдставитСлСм сСмСйства ΠΌΠ°Π»Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока, ΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² Ρ„осфорилированном состоянии. Π’ ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… in vivo Π² Ρ€Π°Π·Π½Ρ‹Ρ… тканях Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°Ρ‚ΡŒΡΡ остатки Ser24 ΠΈ Thr/Ser87 Hsp22.

Помимо этого нСсколько ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π· (ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° Π‘, ΠΊΠ°Π·Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΈ ERK1 ΠΊΠΈΠ½Π°Π·Π°) способны Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Hsp22 Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… in vitro. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π°Π½Π°Π»ΠΈΠ· ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ структуры Hsp22, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ NetPhos 2.0, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π² ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π΅ этого Π±Π΅Π»ΠΊΠ° Π΅ΡΡ‚ΡŒ остатки (Ser24 ΠΈ Ser57), располоТСнныС Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡΡ…, ΡƒΠ·Π½Π°Π²Π°Π΅ΠΌΡ‹Ρ… ΠΈ Ρ„осфорилируСмых ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·ΠΎΠΉ А. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΊ Π½Π°ΡΡ‚оящСму ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΎ большоС количСство ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Ρ‚СорСтичСских Π΄Π°Π½Π½Ρ‹Ρ…, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Hsp22 ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°Ρ‚ΡŒΡΡ фосфорилирования). Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Π½Π΅Ρ‚ Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ фосфорилированиС влияСт Π½Π° ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρƒ ΠΈ ΡΠ²ΠΎΠΉΡΡ‚Π²Π° этого Π±Π΅Π»ΠΊΠ°. Π’ ΡΠ²ΡΠ·ΠΈ с ΡΡ‚ΠΈΠΌ Π³Π»Π°Π²Π½ΠΎΠΉ Ρ†Π΅Π»ΡŒΡŽ нашСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось исслСдованиС влияниС фосфорилирования Π½Π° Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС свойства Hsp22, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° Π΅Π³ΠΎ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ.

Научная Π½ΠΎΠ²ΠΈΠ·Π½Π° ΠΈ. практичСская Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ процСсс фосфорилирования Hsp22 ΠΏΠΎΠ΄ дСйствиСм Π΄Π²ΡƒΡ… ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ†ΠΠœΠ€-зависимая ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… in vitro фосфорилируСт Ser57 Hsp22. ΠŸΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° ERK1 Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… in vitro фосфорилируСт остатки Ser24, Ser27 ΠΈ Thr87, ΠΏΡ€ΠΈ этом остатки Ser24 ΠΈ Thr87 ΠΌΠΎΠ³ΡƒΡ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² Ρ„осфорилированном состоянии Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… in vivo. Π”Π°Π½Π½Ρ‹Π΅ спСктроскопии ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΡ…Ρ€ΠΎΠΈΠ·ΠΌΠ° ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ структуры Hsp22 нСупорядочсна, ΠΏΡ€ΠΈ этом Ρ€Π°Π·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅ΠΌΡƒ Ρ€Π°Π·ΡƒΠΏΠΎΡ€ΡΠ΄ΠΎΡ‡ΠΈΠ²Π°Π½ΠΈΡŽ структуры Π±Π΅Π»ΠΊΠ°. Π­Ρ‚ΠΎΡ‚ эффСкт ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ связан с ΠΏΡ€ΠΎΠΈΡΡ…одящСй ΠΏΡ€ΠΈ Ρ€Π°Π·Π²Π΅Π΄Π΅Π½ΠΈΠΈ диссоциациСй Π΄ΠΈΠΌΠ΅Ρ€ΠΎΠ² Hsp22. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ гСль-Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π°Π½Π°Π»ΠΈΡ‚ичСского ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ, установили, Ρ‡Ρ‚ΠΎ фосфорилированиС (ΠΈΠ»ΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ фосфорилированиС) ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ образования Π΄ΠΈΠΌΠ΅Ρ€ΠΎΠ² Hsp22. ЀосфорилированиС (ΠΈΠ»ΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ фосфорилированиС) остатков, располоТСнных Π² N-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ части Hsp22 (Ser24, Ser27, Ser57), ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‚ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Hsp22, Π² Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΡ ΠΊΠ°ΠΊ фосфорилированиС Thr87, располоТСнного Π² Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ части Π±Π΅Π»ΠΊΠ°, ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ активности Hsp22. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, установлСно, Ρ‡Ρ‚ΠΎ фосфорилированиС влияСт Π½Π° ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρƒ ΠΈ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Hsp22. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚ΡŒΡΡ ΠΊ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡŽ молСкулярных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² функционирования Hsp22, Ρ‡Ρ‚ΠΎ особСнно Π²Π°ΠΆΠ½ΠΎ, учитывая ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ, которая отводится Hsp22 Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ процСссов ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ»ΠΈΠ·Π°, ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Π΅ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Hsp22 ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΡŽΡ‚ с Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π΅ΠΉΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ.

I. ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹.

Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… in vitro Ρ†ΠΠœΠ€-зависимая ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° способна Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ser57 Hsp22.

2. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° ERK1 способна Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ser24, Ser27 ΠΈ Thr87 Hsp22 in vitro, поэтому ERK1 ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ‚Π΅ΠΌ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ фосфорилируСт Hsp22 Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… in vivo.

3. ВыявлСно ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ спСктров ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΡ…Ρ€ΠΎΠΈΠ·ΠΌΠ°, происходящСС ΠΏΡ€ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠ°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ связано с Π΄ΠΈΡΡΠΎΡ†ΠΈΠ°Ρ†ΠΈΠ΅ΠΉ ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€ΠΎΠ² ΠΈ Π΄Π΅ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ структуры ΠΎΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ΠΎΠ².

4. ΠœΡƒΡ‚Π°Ρ†ΠΈΠΈ, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ фосфорилированиС, Π° Ρ‚Π°ΠΊΠΆΠ΅ фосфорилированиС Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΡƒΡŽ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΠΈΡ‡Π½ΡƒΡŽ структуру Hsp22, Ρ‡Ρ‚ΠΎ отраТаСтся Π² ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ собствСнной Ρ‚Ρ€ΠΈΠΏΡ‚ΠΎΡ„Π°Π½ΠΎΠ²ΠΎΠΉ флуорСсцСнции ΠΈ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊ ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ»ΠΈΠ·Ρƒ.

5. Π”Π°Π½Π½Ρ‹Π΅ гСль-Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π°Π½Π°Π»ΠΈΡ‚ичСского ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΈΠ΄Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ фосфорилированиС (ΠΈΠ»ΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ фосфорилированиС) ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ ассоциации ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ΠΎΠ² Hsp22.

6. ЀосфорилированиС (ΠΈΠ»ΠΈ ΠΌΡƒΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅) располоТСнных Π² N-ΠΊΠΎΠ½Ρ†Π΅ остатков Ser24, Ser27 ΠΈ Ser57 ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Hsp22, Π² Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΡ ΠΊΠ°ΠΊ ΠΌΡƒΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ располоТСнного Π² Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ части ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ Thr87 ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Hsp22.

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

.

УстановлСно, Ρ‡Ρ‚ΠΎ Ρ†ΠΠœΠ€-зависимая ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° фосфорилируСт 8Π΅Π³57, Π° ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° Π•Π¨Π‘1 8Π΅Π³24, 8Π΅Π³27 ΠΈ Π’1Π·Π³87 Π² ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π΅ Нзр22. Π‘Π΅Π»ΠΎΠΊ Π΄ΠΈΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° прСдставлСн Π² Π²ΠΈΠ΄Π΅ равновСсной смСси ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ΠΎΠ² ΠΈ Π΄ΠΈΠΌΠ΅Ρ€ΠΎΠ². ВслСдствиС этого Ρ€Π°Π·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ сопровоТдаСтся смСщСниСм равновСсия Π² ΡΡ‚ΠΎΡ€ΠΎΠ½Ρƒ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ΠΎΠ², ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… ΠΌΠ΅Π½Π΅Π΅ упорядочСнной Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠΉ структурой. ЀосфорилированиС (ΠΈΠ»ΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ фосфорилированиС) Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Ρ€Π°Π²Π½ΠΎΠ²Π΅ΡΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ ΠΈ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π°ΠΌΠΈ Π¨Ρ€22. ИспользованиС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² флуорСсцСнтной спСктроскопии, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ»ΠΈΠ·Π°, химичСского «ΡΡˆΠΈΠ²Π°Π½ΠΈΡ», гСль-Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π°Π½Π°Π»ΠΈΡ‚ичСского ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ фосфорилированиС, ΠΈΠ»ΠΈ фосфорилированиС ΠΏΠΎΠ΄ дСйствиСм Ρ†ΠΠœΠ€-зависимой ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ ΠΈΠ»ΠΈ ΠΊΠΈΠ½Π°Π·Ρ‹ Π•ΠšΠšΠ› ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‚ΡΡ измСнСниями Ρ‚Ρ€Π΅Ρ‚ΠΈΡ‡Π½ΠΎΠΉ ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈΡ‡Π½ΠΎΠΉ структуры Π«Π·Ρ€22. ΠœΡƒΡ‚Π°Ρ†ΠΈΠΈ, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ фосфорилированиС остатков, располоТСнных Π² Π«-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ части Π±Π΅Π»ΠΊΠ° (8Π΅Π³24, 8Π΅Π³27 ΠΈΠ»ΠΈ 8Π΅Π³57), приводят ΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ активности Нзр22. Π’ Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΡ ΠΊΠ°ΠΊ мутация (ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, фосфорилированиС) Π’Π¬Π³87, располоТСнного Π² Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ части Π±Π΅Π»ΠΊΠ°, сопровоТдаСтся Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ измСнСниями структуры ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ активности Нзр22. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, фосфорилированиС влияСт Π½Π° ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρƒ Нзр22 ΠΈ Π΅Π³ΠΎ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ-субстратами.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Aquilina JA, Benesch JL, Bateman OA, Slingsby C, and Robinson CV.
  2. Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in alphaB-crystallin. Proc Natl Acad Sci USA 100: 10 611−10 616, 2003.
  3. Aquilina JA, Beiiesch JL, Ding LL, Yaron O- Horwitz J, and Robinson CV. Phosphorylation of alphaB-crystallin alters chaperone function through loss of dimeric substructure. J Biol Cheni 279: 28 675−28 680, 2004.
  4. Aquilina JA, and Watt SJ. The N-terminal domain of alphaB-crystallin is protected from proteolysis by bound substrate. Biochem Biophys Res Commim 353: 1115−1120, 2007.
  5. Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Furst DO, Saftig P, Saint R, FJeischmann BK, Hoch M, and Hohfeld J. Chaperone-assisted selective autophagy is essential for muscle maintenance. Carr Biol 20: 143−148, 2010.
  6. Assimakopoulou M, Sotiropoulou-Bonikou G, Maraziotis T, and Varakis I.
  7. Prognostic significance of Hsp-27 in astrocytic brain tumors: an immunohistochemical study. Anticancer Res 17: 2677−2682, 1997.
  8. Badri KR, Modem S, Gerard HC, Khan Bagchi M, Hudson AP, and Reddy TR.
  9. Regulation of Sam68 activity by small heat shock protein 22. J Cell Biochem 99: 1353−1362, 2006.
  10. Bagneris C, Batetnan OA, Naylor CE, Cronin N, Boelens WC, Keep NH, and? Slingsby C. Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. JMolBiol 392: 1242−1252, 2009.
  11. Baranova EV, Beblen S, Gusev NB, and Strelkov SV. The taming of small heat-shock proteins: crystallization of the alpha-crystallin domain from human Hsp27. Acta Crystallogr Sect F Struct Biol Cryst Commim 65: 1277−1281, 2009.
  12. Beall A, Bagwell D, Woodrum D, Stoming ВА, Kato K, Suzuki A, Rasinussen H, and Brophy CM. The small heat shock-related protein, HSP20, is phosphorylated on serine 16 during cyclic nucleotide-dependent relaxation. J Biol Chem 21 A: 11 344−11 351, 1999.
  13. Bellyei S, Szigeti A, Pozsgai E, Boronkai A, Gomori E, Hocsak E, Farkas R, Sumegi B, and Gallyas F, Jr. Preventing apoptotic cell death by a novel small heat shock protein. Eur J Cell Biol 86: 161−171,2007.
  14. Benesch JL, Aybiib M, Robinson CV, and Aquilina JA. Small heat shock protein activity is regulated by variable oligomeric substructure. J Biol Chem 283: 28 513−28 517, 2008.
  15. Berengian AR, Btfva MP, and Mchaourab HS. Structure and function of the conserved domain in alphaA-crystaliin. Site-directed spin labeling identifies a beta-strand located near a subunit interface. Biochemistry 36: 9951−9957, 1997.
  16. Bhattacharyya J, PadmanabhaUdupa EG, Wang J, and Sharma KK. Mini-alphaB-crystallin: a functional element of alphaB-crystallin with chaperone-like activity. Biochemistry 45: 3069−3076, 2006.
  17. Bolhuis S, and Richter-Landsberg C. Effect of proteasome inhibition by MG-132 on HSP27 oligomerization, phosphorylation, and aggresome formation in the OLN-93 oligodendroglia cell line. JNeurochem 2010.
  18. Bova MP, Ding LL, Horwitz J, and Fung BK. Subunit exchange of alphaA-crystallin. J Biol Chem 272: 29 511 -29 517, 1997.
  19. Bova MP, Huang Q, Ding L, and Horwitz J. Subunit Exchange, Conformational Stability, and Chaperone-like Function of the Small Heat Shock Protein 16.5 from Methanococcus jannaschii. J Biol Chem 277: 38 468−38 475, 2002.
  20. Brophy CM, Lamb S, and Graham A. The small heat shock-related protein-20 is an actin-associated protein. J Vase Surg 29: 326−333, 1999.
  21. Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, and Garrido C. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2: 645−652, 2000.
  22. Bukach OV, Glukhova AE, Seit-Nebi AS, and Gusev NB. Heterooligomeric complexes formed by human small heat shock pioteins HspBl (Hsp27) and HspB6 (Hsp20). Biochim BiophysActa 1794: 486−495, 2009.
  23. Bukach OV, Seit-Nebi AS, Marston SB, and Gusev NB. Some properties of human small heat shock protein Hsp20 (HspB6). Ear J Biochem 271: 291−302, 2004.
  24. Cantin GT, Yi W, Lu B, Park SK, Xu T, Lee JD, and Yates JR, 3rd. Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. JProteome Res 7: 1346−1351, 2008.
  25. Carra S. The stress-inducible HspB8-Bag3 complex induces the eIF2alpha kinase pathway: implications for protein quality control and viral factory degradation? Autophagy 5: 428−429, 2009.
  26. Carra S, Brunsting JF, Lambert H, Landry J, and Kampinga HH. HspB8 participates in protein quality control by a non-chaperone-hke mechanism that lequires eIF2 {alpha} phosphorylation. J Biol Chem 284: 5523−5532, 2009.
  27. Carra S, Seguin SJ, and Landry J. HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4: 237−239, 2008.
  28. Carra S, Sivilotti M, Chavez ZobeLAT, Lambert H, and Landry J. HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet 14: 1659−1669, 2005.
  29. Chabaud S, Lambert H, Sasseville AM, Lavoie H, Guilbault C, Massie B, Landry J, and Langelier Y. The. R1 subunit of herpes simplex virus ribonucleotide reductase has chaperone-like activity similar to Hsp27. FEBSLett 545: 213−218, 2003.
  30. Charpentier AH, Bednarek AK, Daniel RL, Hawkins KA, Laflin KJ, — Gaddis S, MacLeod MC, and Aldaz CM. Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res 60: 5977−5983, 2000.
  31. Ghauhan^ D, Li G, Shringarpure R, Podar K, Ohtake Y, Hideshima T, and Anderson KG. Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res 63: 6174−6177, 2003.
  32. Chavez Zobel AT, Loranger A, Marceau N, Theriault JR, Lambert H, and Landry
  33. J. Distinct chaperone mechanisms can delay the formation of aggresomes by the myopathy-causing R120G alphaB-crystallin mutant. Hum Mol Genet 12: 1609−1620, 2003.
  34. Chen J, Feige MJ, Franzmann TM, Bepperling A, and Buchner J.' Regions outside the alpha-crystallin domain of the small heat shock protein Hsp26 are required for its dimerization. J Mol Biol 398: 122−131,2010.
  35. Chowdary TK, Raman B, Ramakrishna T, and Rao CM: Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J 381: 379−387, 2004.
  36. Chu G, Egnaczyk GF, Zhao W, Jo SH, Fan GC, Maggio JE, Xiao RP, and Kranias
  37. EG. Phosphoproteome analysis of cardiomyocytes subjected to beta-adrenergic stimulation: identification and characterization of a cardiac heat shock protein p20. Circ Res 94: 184−193, 2004.
  38. Ciocca DR, and Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10: 86−103, 2005.
  39. Clark JI, and Huang QL. Modulation of the chaperone-like activity of bovine alpha-crystallin. Proc Natl Acad Sci USA 93: 15 185−15 189, 1996.
  40. Claxton DP, Zou P, and McHaourab HS. Structure and orientation of T4 lysozyme bound to the small heat shock protein alpha-crystallin. J Mol Biol 375: 1026−1039, 2008.
  41. Crippa V, Carra S, Rusmini P, Sau D, Bolzoni E, Bendotti C, De Biasi S, and Poletti A. A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases. Antopliagy 6: 2010.
  42. Das KP, Petrash JM, and Surewicz WK. Conformational properties of substrate proteins bound to a molecular chaperone alpha-crystallin. J Biol Chem 271: 10 449−10 452, 1996.
  43. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, and Gygi
  44. SP. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105: 1 076 210 767, 2008.
  45. Depre C, Hase M, Gaussin V, Zajac A, Wang L, Hittinger L, Ghaleh B, Yu X, Kudej RK, Wagner T, Sadoshima J, and Vatner SF. Hll kinase is a novel mediator of myocardial hypertrophy in vivo. Circ Res 91: 1007−1014, 2002.
  46. Depre C, Kim SJ, John AS, Huang Y, Rimoldi OE, Pepper JR, Dreyfus GD, Gaussin V, Pennell DJ, Vatner DE, Camici PG, and Vatner SF. Program of cell survival underlying human and experimental hibernating myocardium. Circ Res 95: 433−440, 2004.
  47. Depre C, Tomlinson JE, Kudej RK, Gaussin V, Thompson E, Kim SJ, Vatner DE, Topper JN, and Vatner SF. Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc Natl Acad Sci USA 98: 9336−9341, 2001.
  48. Dreiza CM, Komalavilas P, Furnish EJ, Flynn CR, Sheller, MR, Smoke CC, Lopes LB, and Brophy CM. The small heat shock protein, HSPB6, in muscle function and disease. Cell Stress Chaperones 15: 1−11, 2010.
  49. Ehrnsperger M, Graber S, GaestelsM, and Buchner J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16: 221−229,1997.
  50. Fan>GC, Chu G, and KraniasEG. Hsp20 and its cardioprotection. Trends Cardiovasc Med 15: 138−141,2005.
  51. Fan GC, Chu? G, Mitton B, Song Q, Yuan Q, and Kranias EG. Small heat-shock protein Hsp20 phosphorylation inhibits beta-agonist-induced cardiac apoptosis. Circ Res 94: 1474−1482, 2004.
  52. Fan GC, Ren X, Qian >J, Yuan Q, Nicolaou P, Wang Y, Jones WK, Chu G, and Kranias' EG. Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusioninjury. Circulation 111: 1792−1799, 2005.
  53. Fan GC, Yuan Q, Song G, Wang Y, Chen G, Qian J- Zhou X, Lee YJ, Ashraf M, and Kranias EG. Small heat-shock protein Hsp20 attenuates beta-agonist-mediated cardiac remodeling through apoptosis signal-regulating kinase 1. Circ Res 99: 1233−1242, 2006.
  54. Fan GC, Zhou X, Wang X, Song G, Qian J, Nicolaou P, Chen G, Ren X, and Kranias EG. Heat shock protein 20 interacting with phosphorylated Akt reduces doxorubicin-triggered oxidative stress and cardiotoxicity. Circ Res 103: 1270−1279, 2008.
  55. Fontaine JM, Sun X, Benndorf R, and Welsh MJ. Interactions of HSP22 (HSPB8) with HSP20, alphaB-crystallin, and HSPB3. Biochem Biophys Res Commun 337: 1006−1011, 2005.
  56. Fontaine JM, Sun X, Hoppe AD, Simon S, Vicart P, Welsh MJ, and Benndorf R.
  57. Abnormal small heat shock protein interactions involving neuropathy-associated HSP22 (HSPB8) mutants. Faseb J 20: 2168−2170, 2006.
  58. Fontanella B, Birolo L, Infusini G, Cirulli C, Marzullo L, Pucci P, Turco MC, and Tosco A. The co-chaperone BAG3 interacts with the cytosolic chaperonin CCT: new hints for actin folding. Int J Biochem Cell Biol 42: 641−650, 2010.
  59. Fuchs M, Poirier DJ, Seguin SJ, Lambert H, Carra S, Charette SJ, and Landry J.1.entification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction. Biochem /425: 245−255, 2010.
  60. Furnish EJ, Brophy CM, Harris VA, Macomson S, Winger J, Head GA, and Shaver
  61. EG. Treatment with transducible phosphopeptide analogues of the small heat shock-related protein, HSP20, after experimental subarachnoid hemorrhage: prevention and reversal of delayed decreases in cerebral perfusion. JNeurosurg 112: 631−639, 2010.
  62. Gaestel M, Schroder W, Benndorf R, Lippmann C, Buchner K, Hucho F, Erdmann VA, and Bielka H. Identification of the phosphorylation sites of the murine small heat shock protein hsp25. J Biol Chem 266: 14 721−14 724, 1991.
  63. Ghosh JG, and Clark JI. Insights into the domains required for dimerization and assembly of human alphaB crystallin. Protein Sci 14: 684−695, 2005.
  64. Ghosh JG, Estrada MR, and Clark JI. Interactive domains for chaperone activity in the small heat shock protein, human alphaB crystallin. BiochemisUy 44: 14 854−14 869, 2005.
  65. Ghosh JG, Estrada MR, and Clark JI. Structure-based analysis of the beta8 interactive sequence of human alphaB crystallin. Biochemistry 45: 9878−9886, 2006.
  66. Ghosh JG, Estrada MR, Houck SA, and Clark JI. The function of the beta3 interactive domain in the small heat shock protein and molecular chaperone, human alphaB crystallin. Cell Stress Chaperones 11: 187−197,2006.
  67. Gober MD, Smith CC, Ueda K, Toretsky JA, and Aurelian L. Forced expression of the HI 1 heat shock protein can be regulated by DNA methylation and trigger apoptosis in human cells. J Biol Chem 278: 37 600−37 609, 2003.
  68. Gober MD, Wales SQ, and Aurelian, L. Herpes simplex virus type 2 encodes a heat shock protein homologue with apoptosis regulatory functions. Front Biosci 10: 2788−2803, 2005.
  69. Gonzalez FA, Radenf DL, and’Davis RJ: Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. J Biol Chem 266: 22 159−22 163, 1991.
  70. Halaby DM, and Mornon JP. The immunoglobulin superfamily: an insight on its tissular, species, and functional diversity. JMolEvol 46: 389−400, 1998.
  71. Hase M, Depre C, Vainer SF, andSadoshima J. Hll has dose-dependent and dual hypertrophic and proapoptotic functions in cardiac myocytes. Biochem J388: 475−483,2005.
  72. Haslbeck M. sHsps and their role in the chaperone network. Cell Mol Life Sci 59: 16 491 657, 2002.
  73. Haslbeck M- Ignatiou A, Saibil H, Helmich S, Frenzl E, Stromer T, and Buchner J.'
  74. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J Mol Biol 343: 445−455, 2004.
  75. Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, and Buchner J. Hsp26: a temperature-regulated chaperone. EMBO J18: 6744−6751, 1999.
  76. Havasi A, Li Z, Wang Z, Martin JL, Botla V, Ruchalski K, Schwartz JH, and Borkan SC. Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 283: 12 305−12 313, 2008.
  77. Hayes D, Napoli V, Mazurkie A, Stafford WF, and Graceffa P. Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function. J Biol Chem 284: 18 801−18 807, 2009.
  78. Hedhli N, Wang L, Wang Q, Rashed E, Tian Y, Sui X, Madura K, and Depre C.
  79. Proteasome activation during cardiac hypertrophy by the chaperone Hll Kinase/Hsp22. Cardiovasc Res 77: 497−505, 2008.
  80. Horwitz J, Bova MP, Ding LL, Haley DA, and Stewart PL. Lens alpha-crystallin: function and structure. Eve 13 (Pt 3b): 403−408, 1999.
  81. Horwitz J, Huang QL, Ding L, and Bova MP. Lens alpha-crystallin: chaperone-like properties. Methods Enzymol 290: 365−383, 1998.
  82. Hu Z, Yang B, Lu W, Zhou W, Zeng L, Li T, and Wang X. HSPB2/MKBP, a novel and unique member of the small heat-shock protein family. J Neurosci Res 86: 2125−2133, 2008.
  83. Huang Q, Ye J, Chen W, Wang L, Lin W, Lin J, and Lin X. Heat shock protein 27 is over-expressed in tumor tissues and increased in sera of patients with gastric adenocarcinoma. Clin Chem Lab Med48: 263−269, 2010.
  84. Ito H, Kamei K, Iwamoto I, lnaguina Y, Nohara D, and Kato K. Phosphorylation-induced change of the oligomerization state of alpha B- crystallin. J Biol Chem 276: 5346−5352, 2001.
  85. Jakob U, Gaestel M, Engel K, and Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem 268: 1517−1520, 1993.
  86. Jaya N, Garcia V, and Vierling E. Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proc Natl Acad Sci U SA 106: 15 604−15 609, 2009.
  87. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, and Hightower LE. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14: 105−111, 2009.
  88. Kappe G, Boelens WC, and de Jong WW. Why proteins without an alpha-crystallin domain should not be included in the human small heat shock protein family HSPB. Cell Sti ess Chaperones 2009.
  89. Kappe G, Franck E, Verschuure P, Boelens WC, Leunissen JA, and de Jong WW.
  90. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspBl-10. Cell Stress Chaperones 8: 53−61, 2003.
  91. Kasakov AS, Bukach OV, Seit-Nebi AS, Marston SB, and Gusev NB. Effect of mutations in the beta5-beta7 loop on the structure and properties of human small heat shock protein HSP22 (HspB8, Hll). FehsJllA: 5628−5642, 2007.
  92. Kato K, Goto S, Inaguma Y, Hasegawa K, Morishita R, and Asano T. Purification and characterization of a 20-kDa protein that is highly homologous to alpha B crystallin. J Biol Chem 269: 15 302−15 309, 1994.
  93. Kato K, Ito IT, Kamei K, Inaguma Y, Iwamoto I, and Saga S. Phosphorylation of alphaB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphoiylation. J Biol Chem 273: 28 346−28 354, 1998.
  94. Kazakov AS, Markov DI, Gusev NB, and Levitsky DI. Thermally induced structural changes of intrinsically disordered small heat shock protein Hsp22. Biophys Chem 145: 79−85, 2009.
  95. Kim KK, Kim R, and Kim SH. Crystal structure of a small heat-shock protein. Nature 394: 595−599, 1998.
  96. Kim MV, Kasakov AS, Seit-Nebi AS, Marston SB, and Gusev NB. Structure and properties of K141E mutant of small heat shock protein HSP22 (HspB8, Hll) that is expressed in human neuromuscular disorders. Arch Biochem Biophys 454: 32−41, 2006.
  97. Kim MV, Seit-Nebi AS, and Gusev NB. The problem of protein kinase activity of small heat shock protein Hsp22 (HI 1 or HspB8). Biochem Biophys Res Commiin 325: 649−652, 2004.
  98. Kim MV, Seit-Nebi AS, Marston SB, and Gusev NB. Some properties of human small heat shock protein Hsp22 (HI 1 or HspB8). Biochem Biophys Res Comnnm 315: 796−801, 2004.
  99. Kiss AJ, Mirarefi AY, Ramakrishnan S, Zukoski CF, Devries AL, and Cheng CH. Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman. J Exp Biol 207: 4633−4649, 2004.
  100. Kostenko S, and Moens U. Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 66: 3289−3307, 2009.
  101. Kumar A, and Singh S. Interaction of chaperone alpha-crystallin with unfolded state of alpha-amylase: Implications for reconstitution of the active enzyme. Int J Biol Macromol 45: 493−498, 2009.
  102. Kumar MS, Koteiche HA, Claxton DP, and McHaourab HS. Disulfide cross-links in the interaction of a cataract-linked alphaA-crystallin mutant with betaBl-crystallin. FEBS Lett 583: 175−179,2009.
  103. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680−685, 1970.
  104. Lambert H, Charette SJ, Bernier AF, Guimond A, and Landry J. HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274: 9378−9385, 1999.
  105. Landry J, Lambert H, Zhou M, Lavoie JN, Hickey E, Weber LA, and Anderson
  106. CW. Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem 267: 794−803, 1992.
  107. Laskovvska E, Matuszewska E, and Kuczynska-Wisnik D. Small heat shock proteins and protein-misfolding diseases. Ctirr Pharm Biotechnol 11: 146−157, 2010.
  108. Latham JC, Stein RA, Bornhop DJ, and McHaourab HS. Free-solution label-free detection of alpha-crystallin chaperone interactions by back-scattering interferometry. Anal ChemU: 1865−1871,2009.
  109. Lee GJ, Roseman AM, Saibil HR, and Vierling E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBOJX6: 659−671, 1997.
  110. Lehr S, Kotzka J, Avci H,'Sickmann A, Meyer HE, Herkner A, and MuIIer-Wieland"
  111. D. Identification of major ERK-related phosphorylation sites in Gabl. Biochemistry 43: 1 213 312 140, 2004.
  112. Lelj-Garolla B, and Mauk AG. Self-association and chaperone activity of Hsp27 are thermally activated. J Biol Chem 281: 8169−8174, 2006.
  113. Leroux MR, Ma BJ, Batelier G, Melki R, and Candido EP. Unique structural features of a novel class of small heat shock proteins. J Biol Chem 272: 12 847−12 853, 1997.
  114. Leroux MR, Melki R, Gordon B, Batelier G, and Candido EP. Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J Biol Chem 272: 24 646−24 656, 1997.
  115. Lindner RA, Kapur A, and Carver JA. The interaction of the molecular chaperone, alpha-crystallin, with molten globule states of bovine alpha-lactalbumin. J Biol Chem 272: 27 722−27 729, 1997.
  116. Lindner RA, Kapur A, Mariani M, Titmuss SJ, and Carver JA. Structural alterations of alpha-crystallin during its chaperone action. Eur J Biochem 258: 170−183, 1998.
  117. Lindner RA, Treweek TM, and Carver JA. The molecular chaperone alpha-crystallin is in kinetic competition with aggregation to stabilize a monomelic molten-globule form of alpha- lactalbumin. Biochem J 354: 79−87,2001.
  118. Mao YW, Liu JP, Xiang H, and Li DW. Human alphaA- and alphaB-crystallins bind to Bax and Bcl-X (S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11: 512−526, 2004.
  119. Markov DI, Pivovarova AV, Chernik IS, Gusev NB, and Levitsky DI. Small heat shock protein Hsp27 protects myosin SI from heat-induced aggregation, but not from thermal denaturation and ATPasc inactivation. FEBSLett 582: 1407−1412, 2008.
  120. McColIum AK, Casagrande G, and Kohn EC. Caught in the middle: the role of Bag3 in disease. Biochem J425: el-3, 2010.
  121. McHaourab HS, Godar JA, and Stewart PL. Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48: 3828−3837, 2009.
  122. Muchowski PJ, Hays LG, Yates JR, 3rd, and" Clark JI. ATP and the core «alpha-Crystallin» domain of the small heat-shock protein alphaB-crystallin. J Biol Chem 274: 3 019 030 195, 1999.
  123. Mymrikov EV, Bukach OV, Seit-Nebi AS, and Gusev NB. The pivotal role of the beta 7 strand in the intersubunit contacts of different human small heat shock proteins. Cell Stress Chaperones 15: 365−377, 2010.
  124. Panasenko OO, Seit Nebi A, Bukach OV, Marston SB, and Gusev NB. Structure and properties of avian small heat shock protein with molecular weight 25 kDa. Biochim Biophys Acta 1601:64−74, 2002.
  125. Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, and Arrigo AP. Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 22: 816−834, 2002.
  126. Permyakov EA, and Burstein EA. Some aspects of studies of thermal transitions in proteins by means of their intrinsic fluorescence. Biophys Chem 19: 265−271, 1984.
  127. Peschek J, Braun N, Franzmann TM, Georgalis Y, Haslbeck M, Weinkauf S, and Buchner J. The eye lens chaperone alpha-crystallin forms defined globular assemblies. Proc Natl Acad Sci U S A 106: 13 272−13 277,2009.
  128. Pipkin W, Johnson JA, Creazzo TL, Burch J, Komalavilas P, and Brophy C.1.calization, macromolecular associations, and function of the small heat shock-related protein HSP20 in rat heart. Circulation 107: 469−476, 2003.
  129. Raman B, Ramakrishna T, and Rao CM. Rapid refolding studies on the chaperone-like alpha-crystallin. Effect of alpha-crystallin on refolding of beta- and gamma-crystallins. J Biol Chem 270: 19 888−19 892, 1995.
  130. Reddy GB, Das KP, Petrash JM, and Surewicz WK. Temperature-dependent chaperone activity and structural properties of human alphaA- and alphaB-crystallins. J Biol Chem 275: 4565−4570, 2000.
  131. Santhoshkumar P, and Sharma KK. Analysis of alpha-crystallin chaperone function using restriction enzymes and citrate synthase. Mol Vis 7: 172−177, 2001.
  132. Schaub MC, and Perry SV. The relaxing protein system of striated muscle. Resolution of the troponin complex into inhibitory and calcium ion-sensitizing factors and their relationship to tropomyosin. BiochemJ 115: 993−1004, 1969.
  133. Scopes RK. Measurement of protein by spectrophotometry at 205 nm. Anal Biochem 59: 277−282, 1974.
  134. Sharma KK, Kaur H, and Kester K. Functional elements in molecular chaperone alpha-crystallin: identification of binding sites in alpha B-crystallin. Biochem Biophys Res Commun 239: 217−222, 1997.
  135. Sharma KK, Kumar GS, Murphy AS, and Kester K. Identification of l, l'-bi (4-anilino)naphthalene-5,5'-disulfonic acid binding sequences in alpha-crystallin. J Biol Chem 273: 15 474−15 478, 1998.
  136. Sharma KK, Kumar RS, Kumar GS, and Quinn PT. Synthesis and characterization of a peptide identified as a functional element in alphaA-crystallin. J Biol Chem 275: 3767−3771, 2000.
  137. Sreerama N, and Woody RW. Computation and analysis of protein circular dichroism spectra. Methods Enzymol 3 83: 318−351, 2004.
  138. Stamler R, Kappe G, Boelens W, and- Slingsby C. Wrapping the alpha-crystallin domain fold in a chaperone assembly. JMol Biol 353: 68−79, 2005.
  139. Stetler RA, Gao Y, Signore AP, Cao G, and’Chen J. HSP27: mechanisms of cellular protection against neuronal injury. Curr Mol Med 9: 863−872,2009.
  140. Sun X, Fontaine JM, BartI I, Behnam B, Welsh MJ, and Benndorf R. Induction of Hsp22 (HspB8) by estrogen and the metalloestrogen cadmium in estrogen receptor-positive breast cancer cells. Cell Stress Chaperones 12: 307−319, 2007.
  141. Sun X, Fontaine JM, Rest JS, Shelden EA, Welsh MJ, and Benndorf R. Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem 279: 2394−2402, 2004.
  142. Sun X, Welsh MJ, and Benndorf R. Conformational changes resulting from pseudophosphorylation of mammalian small heat shock proteins—a two-hybrid study. Cell Stress Chaperones 11: 61−70, 2006.
  143. Takayama S, and Reed JC. Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol 3: E237−241, 2001.
  144. Taylor RP, and Benjamin IJ. Small heat shock proteins: a new classification scheme in mammals. J Mol Cell Cardiol 38: 433−444, 2005.
  145. Tessier DJ, Komalavilas P, Panitch A, Joshi L, and Brophy CM. The small heat shock protein (HSP) 20 is dynamically associated with the actin cross-linking protein actinin. J Surg Res 111: 152−157,2003.
  146. Theriault JR, Lambert H, Chavez-Zobel AT, Charest G, Lavigne P, and Landry J.
  147. Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J Biol Chem 279: 23 463−23 471, 2004.
  148. Trent S, Yang C, Li C, Lynch M, and Schmidt EV. Heat shock protein B8, a cyclin-dependent kinase-independent cyclin D1 target gene, contributes to its effects on radiation sensitivity. Cancer Res 67: 10 774−10 781, 2007.
  149. Treweek TM, Rekas A, Lindner RA, Walker MJ, Aquilina JA, Robinson CV, Horwitz J, Der Perng M, Quinlan RA, and Carver JA. R120G alphaB-crystallin promotes the unfolding of reduced alpha-lactalbumin and is inherently unstable. Febs J 272: 711−724, 2005.
  150. Trigon S, Serizawa H, Conaway JW, Conaway RC, Jackson SP, and1 Mo range M. Characterization of the residues phosphorylated in vitro by different C-terminal domain kinases. J Biol Chem 273: 6769−6775, 1998.
  151. Veinger L, Diamant S, Buchner J- and Goloubinoff P: The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273: 11 032−11 037, 1998.
  152. Villen J, Beausoleil SA, Gerber SA, and Gygi SP. Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA 104: 1488−1493, 2007.
  153. Wang L, Zajac A, Hedhli N, and Depre C. Increased expression of Hll kinase stimulates glycogen synthesis in the heart. Mol Cell Biochem 265: 71−78, 2004.
  154. Wang X, Zingarelli B, O’Connor M, Zhang P, Adeyemo A, Kranias EG, Wang Y, and Fan GC. Overexpression of Hsp20 prevents endotoxin-induced myocardial dysfunction and apoptosis via inhibition of NF-kappaB activation. J Mol Cell Cardiol 47: 382−390, 2009.
  155. Wilhelmus MM, Boelens WC, Otte-Holler I, Kamps B, de Waal RM, and Verbeek MM. Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res 1089: 67−78, 2006.
  156. Wilhelmus MM, Otte-Holler I, Wesseling P, de Waal RM, Boelens WC, and Verbeek MM. Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol Appl Neurobiol 32: 119−130, 2006.
  157. Ким MB. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ ΡΠ²ΠΎΠΉΡΡ‚Π²Π° ΠΌΠ°Π»ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока Hsp22 ΠΈ Π΅Π³ΠΎ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ³ΠΎ ΠΌΡƒΡ‚Π°Π½Ρ‚Π°, экспСрссируСмого ΠΏΡ€ΠΈ Π΄ΠΈΡΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠΎΡ‚ΠΎΡ€Π½ΠΎΠΉ Π½Π΅ΠΉΡ€ΠΎΠΏΠ°Ρ‚ΠΈΠΈ II Ρ‚ΠΈΠΏΠ°. In: ΠšΠ°Ρ„Π΅Π΄Ρ€Π° Π±ΠΈΠΎΡ…ΠΈΠΌΠΈΠΈ. Москва: ΠœΠ“Π£ ΠΈΠΌ. Πœ. Π’. Ломоносова, 2005.
  158. Π’ΠŸ. ЀопгографичСский Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΡƒΡ€Π½Ρ‹ΠΉ справочник. Москва: Π˜ΡΠΊΡƒΡΡΡ‚Π²ΠΎ, 1963.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ