Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

Оценка влияния рельефа на температурное поле земной коры методом статистического моделирования

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Актуальность исследования. Геотемпературное поле вблизи земной поверхности подвергается воздействию ряда факторов (рельеф, климатические вариации земной поверхности, фильтрация метеорных вод и др.) которые затрудняют оценку глубинного теплового потока особенно по малоглубинным температурным измерениям (работы Е. А. Любимовой, АгД—Дучкова—ВтАт-Голубева и др.). В районах с расчлененным рельефом… Читать ещё >

Содержание

  • Глава 1. ОБЗОР МЕТОДОВ РАСЧЕТА ВЛИЯНИЯ РЕЛЬЕФА НА ГЕОТЕМПЕРАТУРНОЕ ПОЛЕ, ДАННЫЕ О ГЕОТЕРМИИ, РЕЛЬЕФЕ ДНА И СТРОЕНИИ ЗЕМНОЙ КОРЫ БАЙКАЛЬСКОЙ ВПАДИНЫ
    • 1. 1. Методы расчета топопоправок к геотермическим измерениям
    • 1. 2. Тепловой поток Байкальской впадины
    • 1. 3. Рельеф дна и строение осадочного чехла Байкальской впадины
    • 1. 4. Выводы
  • Глава 2. АЛГОРИТМ РЕШЕНИЯ СТАЦИОНАРНОГО УРАВНЕНИЯ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ НА ОСНОВЕ МЕТОДА МОНТЕ-КАРЛО
    • 2. 1. Параметры модели для вычисления топографической поправки к геотермическим измерениям и постановка задачи
    • 2. 2. Алгоритм решения краевой задачи с краевыми условиями первого и второго рода для уравнения Лапласа
      • 2. 2. 1. Метод Монте-Карло при решении краевой задачи для уравнения Лапласа
      • 2. 2. 2. Реализация алгоритма блуждания по сферам для решения краевой задачи уравнения Лапласа
      • 2. 2. 3. Алгоритм решения краевой задачи методом Монте-Карло
    • 2. 3. Тестирование алгоритма
    • 2. 4. Выводы
  • Глава 3. ИСПОЛЬЗОВАНИЕ РАЗРАБОТАННОГО АЛГОРИТМА ДЛЯ РАЧЕТА ТОПОГРАФИЧЕСКОЙ ПОПРАВКИ И ЭФФЕКТА КОНТРАСТА ТЕПЛОПРОВОДНОСТЕЙ
    • 3. 1. Оценка влияния рельефа на геотемпературное поле в пунктах бурения подводных скважин ВЭР-93 и ВЭР
    • 3. 2. Оценка влияния рельефа на геотемпературное поле в месте бурения береговой скважины Л
      • 3. 2. 1. Расчет топографической поправки для двумерной модели среды
      • 3. 2. 2. Расчет топопоправки для трехмерной модели среды
      • 3. 2. 3. Влияние рельефа и контрастов теплопроводности
      • 3. 2. 4. Сравнение результатов расчетов с оценками предшественников
    • 3. 3. Расчёт топографических поправок к малоглубинным измерениям теплового потока на участке Кукуй-2 (Центральный Байкал)
    • 3. 4. Выводы

Оценка влияния рельефа на температурное поле земной коры методом статистического моделирования (реферат, курсовая, диплом, контрольная)

Объект и предмет исследования. Объектом исследования в данной работе является тепловое поле верхнего слоя земной коры в условиях сильно расчленённого рельефа. Предмет исследования — оценка искажающего влияния рельефа (а также ряда других приповерхностных факторов) на температурное поле в трёхмерных моделях земной коры (на примере ряда районов Байкальской впадины).

Актуальность исследования. Геотемпературное поле вблизи земной поверхности подвергается воздействию ряда факторов (рельеф, климатические вариации земной поверхности, фильтрация метеорных вод и др.) которые затрудняют оценку глубинного теплового потока особенно по малоглубинным температурным измерениям (работы Е. А. Любимовой, АгД—Дучкова—ВтАт-Голубева и др.). В районах с расчлененным рельефом (горные районы, водоемы с крутыми бортами и неровным дном) главную роль играют рельеф и соответствующие изменения температуры земной поверхности. Имеющийся опыт изучения влияния рельефа на геотемпературное поле показывает (работы А. Д. Дучкова, W.G. Powell и др.), что геотермический градиент (тепловой поток), измеренный в скважинах, расположенных в прогибах, обычно увеличен по сравнению с глубинным, а на хребтах, наоборот, занижен. Влияние рельефа максимально у поверхности и уменьшается с глубиной. Для учета влияния рельефа на геотермический градиент (тепловой поток) рассчитываются так называемые топографические поправки, которые могут' достигать значительных величин. В общем случае топопоправка находится путём численного решения стационарного уравнения теплопроводности (уравнения Лапласа) для блочно-однородных моделей теплопроводности с постоянным тепловым потоком (геотермическим градиентом) на нижней границе. На практике рельеф чаще всего аппроксимируется простыми геометрическими формами, для которых существуют аналитические решения в предположении однородности среды. Подобный подход не всегда позволяет обеспечить необходимую точность учета влияния рельефа. В связи со всё большим распространением цифровых карт рельефа появляется возможность производить более точную оценку влияния реального трехмерного рельефа на температурное поле пород. Однако для этого необходимо разработать подходящий вычислительный алгоритм.

В пределах Байкальской впадины в предыдущие годы выполнено значительное количество измерений теплового потока в условиях резко расчлененного рельефа, влияние которого определялось чаще всего приближенно. В настоящее время для оз. Байкал построена детальная цифровая карта рельефа дна, что позволяет рассчитать топографическую поправку от трёхмерного рельефа и тем самым уточнить распределения теплового потока и температур в горных породах.

Таким образом, актуальность работы определяется необходимостью развития программно-алгоритмических средств (вычислительного алгоритма) для более точной оценки искажающего влияния трёхмерного рельефа на геотемпературное поле как Байкальской впадины, так и других территорий.

Цель исследования — повысить точность количественной оценки влияния рельефа и других факторов (поверхностная температура, контрасты теплопроводности) на тепловое поле верхней части земной коры посредством применения специально разработанного на основе метода статистического моделирования (Монте-Карло) вычислительного алгоритма и цифровых карт рельефа (на примере Байкальской впадины).

Научная задача — на основе метода Монте-Карло с учетом данных о реальном трехмерном рельефе разработать и программно реализовать алгоритм решения прямой стационарной задачи теплопроводности.

Задача решалась поэтапно:

1. Сравнительный анализ известных способов расчета влияния рельефа (топографической поправки), выбор оптимального метода (Монте-Карло), позволяющего решать трехмерные задачи со сложной геометрией границ расчётной области;

2. Разработка и программная реализация вычислительного алгоритма решения стационарной задачи теплопроводности для трёхмерных блочно-однородных сред на основе метода Монте-Карлотестирование алгоритма на эталонных задачах, имеющих аналитическое решение;

3. Использование разработанного алгоритма для расчета искажающего влияния рельефа и других факторов (изменения температуры земной поверхности, контрасты теплопроводности) на значения геотермического градиента (теплового потока) в Байкальской впадине.

Фактический материал и методы исследования. При анализе методов учета влияния рельефа использовались теоретические и практические материалы из работ F. Birch (1967), А.Н. Lachenbruch (1968), Дучков, Соколова (1974) — W.G. Powell et al. (1988) и др.

Для восстановления структуры температурного поля горных пород в области с верхней границей сложной формы, автором решалась трехмерная краевая задача для уравнения Лапласа. При этом использовался численный метод статистического моделирования (Монте-Карло) в разновидности несеточного алгоритма Брауна-Мюллера «блуждания по сферам», изложенный в работе М. Е. Muller (1956).

В качестве модели рельефа применялась цифровая топографическая карта дна оз. Байкал, основанная на новых батиметрических данных и объединенная с топографическими данными по береговой зоне. Карта построена международной группой исследователей при поддержке проекта ИНТ АС № 99−1669 (http: //users, ugent. be/~mdbatist/intas/morphometry. htm).

Для построения трёхмерных геотермических моделей блоков земной коры Байкальской впадины использовались сейсмические разрезы по профилям, секущим Байкальскую впадину (работы C.B. Крылова, В. Д. Суворова, Д. Хатчинсон и др.), а также материалы геотермических исследований на оз. Байкал (работы Е. А. Любимовой, А. Д. Дучкова, В. А. Голубева, C.B. Лысак и др.).

Защищаемые научные результаты.

1. На основе метода Монте-Карло разработан и программно реализован алгоритм решения прямой стационарной задачи теплопроводности для количественной оценки влияния трехмерного рельефа (а также контрастов теплопроводности горных пород) на тепловое поле верхней части земной коры.

2. С использованием разработанного алгоритма выполнены оценки влияния рельефа и контраста теплопроводности донных осадков и пород фундамента на геотермический градиент и тем самым уточнены измеренные значения теплового потока в ряде районов Байкальской впадины (скважины Л-2, BDP-93, BDP-96, структура Кукуй-2).

Научная новизна работы и личный вклад. На основе метода статистического моделирования разработан, программно реализован и протестирован оригинальный алгоритм решения прямой задачи теплопроводности для оценки искажающего влияния рельефа (а также изменения поверхностной температуры и теплопроводности пород) на тепловое поле верхней части земной коры. Новизна заключается в использовании при решении поставленной задачи трехмерных моделей реального рельефа.

Для оптимизации разработанного на основе метода Монте-Карло алгоритма введены фиктивные границы внутри области и найдены решения по переходу случайных блужданий через эти границы, а также найдено решение для расчета оптимального радиуса при блуждании вблизи границы сложной геометрии, представленной рельефом.

Рассчитаны поправки к геотермическому градиенту (тепловому потоку), учитывающие влияние поверхностных факторов (рельеф, изменения поверхностной температуры, теплопроводности пород) на температурное поле в ряде районов Байкальской впадины: вдоль профилей, секущих впадину и проходящих через подводные скважины ЕЮР-93, ЕЮР-96 и береговую скважину Л-2, а также в пунктах малоглубинных геотермических измерений на структуре Кукуй-2 (грязевой вулкан).

Теоретическая и практическая значимость. Разработанный алгоритм и его программная реализация являются вкладом в развитие программно-алгоритмических средств решения прямой геотермической задачи. Решение краевой задачи для уравнения Лапласа позволяет повысить качество оценки влияния рельефа (топографические поправки) и контрастов теплопроводности горных пород на тепловое поле верхней части земной коры и получить более точные оценки значений теплового потока по измерениям температуры в скважинах и донных осадках. Данный подход применим к другим задачам теплопроводности, где имеют место блочно-однородные по теплопроводности среды, с границами сложной формы и произвольным распределением температуры на них.

В отличие от традиционных методов расчета топографической поправки, использующих упрощенные формы рельефа, разработанный алгоритм дает возможность более точно и полно учитывать искажающее влияние трехмерного рельефа на геотемпературное поле. Кроме того отметим, что метод привлекателен тем, что позволяет вычислять значения температуры в отдельных точках без расчета температурного поля для всей модели. Это весьма актуально в связи с малочисленностью полевых геотермических данных.

Практическую значимость имеет расчёт топографических поправок к геотермическому градиенту (тепловому потоку), выполненный вдоль трех профилей, секущих впадину и проходящих через береговую скважину Л-2 пос. Листвянка) и подводные скважины BDP-93 и BDP-96, а также в пунктах малоглубинных геотермических измерений на структуре К-2 (грязевой вулкан). Расчёты позволили улучшить достоверность геотермических данных и показали необходимость комплексирования малоглубинных геотермических измерений с детальной батиметрической съёмкой.

Апробация. Основные результаты диссертационной работы были доложены на семинарах ИНГГ СО РАН, на шести научных конференциях и получили одобрение специалистов: Международной молодежной научной школе-конференции «Теория и численные методы решения обратных и некорректных задач» (Новосибирск, 2012) — «Всероссийской конференции молодых ученых по математическому моделированию и информационным технологиям» (Новосибирск, 2007) — Сибирской международной конференции молодых ученых по наукам о Земле (Новосибирск, 2006, 2008) — Молодежной конференции «Трофимуковские чтения» (Новосибирск, 2007, 2011) — Международной научной студенческой конференции «Студент и научно-технический прогресс» (Новосибирск, 2006).

Материалы диссертации изложены в 8 публикациях: из них одна статья в ведущем рецензируемом научном журнале, входящем в список ВАК («Геология и геофизика»), 7 публикаций в трудах, материалах и тезисах научных конференций.

Общее число публикаций автора (с учетом других тематик) — 21, из них две статьи в рецензируемых научных журналах, входящих в список ВАК («Геология и геофизика», «Криосфера Земли»),.

Работа выполнена в Лаборатории естественных геофизических полей Института нефтегазовой геологии и геофизики им. A.A. Трофимука СО РАН.

Объём и структура работы. Общий объём диссертационной работы 110 страниц. Диссертация состоит из введения, трех глав и заключения. Работа включает 23 рисунка, 4 таблицы, список литературы из 96 наименований.

3.4. Выводы.

В главе 3 представлены результаты использования разработанного алгоритма для расчета топографических (и других) поправок к температурным измерениям в ряде районов Байкальской впадины. Расчеты поправок выполнены вдоль трех профилей, секущих впадину и проходящих через подводные скважины ВЭР-93 и ВОР-96, береговую скважину Л-2 (пос. Листвянка), а также в пунктах малоглубинных геотермических измерений на структуре К-2 (грязевой вулкан).

Оценки, полученные для мест расположения подводных скважин, показали, что поправки даже у поверхности не превышают точности измерения геотермического градиента в подводных скважинах (~5−10%). Скважины оказались удачно расположенными в геотермическом отношении. Показано, что при другом расположении скважин поправки могли превышать 40%.

При оценке влияния рельефа, поверхностной температуры, контраста теплопроводности осадочной толщи оз. Байкал и кристаллических пород на формирование температурного поля в месте бурения скв. Л-2 (пос. Листвянка, исток р. Ангара) расчет проводился как для двумерного, так и для трехмерного рельефа. Установлено, что топография дна озера Байкал и окружающей суши занижает тепловой поток на 16−13%) по всей длине скважины Л-2. Примерно также, но с обратным знаком влияет различие теплопроводности. В итоге суммарный эффект влияния этих двух факторов приводит к занижению геотермического градиента (и теплового потока), измеренного по скв. Л-2, не более чем на 5−6%.

В пределах структуры К-2 (Кукуй-2) автор впервые выполнил оценку влияния микрорельефа (в основном 30−50 м) на малоглубинные (в слое 1−3 м) измерения геотермического градиента в донных осадках. Вычисленные топографические поправки в отдельных пунктах варьировали от 50 до 300%. Соответственно изменились и исправленные значения геотермического градиента. Выполненные расчеты показали существенное влияние сравнительно незначительных изменений рельефа дна на температурное поле приповерхностного слоя донных осадков. В этой связи, очевидно, что малоглубинные геотермические измерения должны сопровождаться батиметрической съёмкой.

ЗАКЛЮЧЕНИЕ

.

Важной задачей геотермии является учет влияния поверхностных факторов (трёхмерный рельеф, палеоклимат, движение подземных вод, контрасты теплопроводности и др.), влияющих на температурное поле горных пород. В диссертационной работе автор предлагает новый метод расчета топографических поправок, учитывающих влияние рельефа на геотемпературное поле.

Проведенные исследования показали, что для решения поставленной задачи оценки искажающего влияния трехмерного рельефа вычислительное преимущество имеет метод статистического моделирования (Монте-Карло). В частности, в отличие от других численных методов (например, сеточных) метод Монте-Карло позволяет получать значения температуры для отдельных пунктов измерений, что для геотермии, имеющей обычно незначительное число экспериментальных данных, весьма важно.

На основе метода Монте-Карло автор разработал, реализовал в виде программы и протестировал оригинальный алгоритм решения прямой задачи теплопроводности. Разработанный алгоритм позволяет моделировать температурное поле под трехмерной поверхностью сложной геометрии и, соответственно, с большой степенью достоверности количественно оценивать искажающее влияние трёхмерного рельефа (а также изменений температуры поверхности и контрастов теплопроводности) на тепловое поле верхней части земной коры. В основе алгоритма лежит процесс «блуждания по сферам», для реализации которого автором получены оригинальные решения.

Разработанные алгоритм и программа впервые использованы автором для оценки искажающего влияния на геотемпературное поле трёхмерного рельефа, вариаций поверхностной температуры и теплопроводности пород в ряде районов Байкальской впадины. В итоге выполнен расчет топографических поправок к геотермическому градиенту (тепловому потоку) вдоль трёх профилей, секущих впадину и проходящих через береговую скважину Л-2 (пос. Листвянка) и подводные скважины ЕЮР-93, ЕЮР-96, а также в пунктах малоглубинных (1−3 м) геотермических измерений на структуре Кукуй-2 (грязевой вулкан). Расчеты позволили повысить достоверность геотермических данных и показали необходимость комплексирования малоглубинных геотермических измерений с детальной батиметрической съёмкой. Метод применим и для прогнозирования распределения температуры в блочно-однородных средах с границами сложной формы и произвольным распределением поверхностной температуры.

В дальнейшем автор намерен развить алгоритм для расчета методом Монте-Карло непосредственно производной решения краевой задачи, не прибегая к предварительной оценке температур. Эта методика оптимально подходит для коррекции малоглубинных измерений. Автор планирует также усложнить расчётные модели за счет введения в них объемных источников тепла. Несомненно, важной задачей является ускорение вычислительного процесса, посредством использования технологии параллельного программирования на базе суперкомпьютера.

Показать весь текст

Список литературы

  1. B.C. Позднекайнозойская палеоклиматическая запись из озера Байкал (по результатам исследования 600-метрового керна глубокого бурения). / В. Антипин, Т. Афонина, О. Бадалов и др. // Геология и геофизика. — 2000. — Т. 41. — № 1. — С. 3−32.
  2. Д.Е. Моделирование влияния рельефа на температурное поле земной коры / Д. Е. Аюнов // Материалы XLIII Международной научной студенческой конференции «Студент и научно-технический прогресс». Геология Новосибирск: НГУ, 2005. — С. 65.
  3. Д.Е. Моделирование влияния рельефа на температурное поле земной коры. / Д. Е. Аюнов // Тезисы докладов III Сибирской международной конференции молодых ученых по наукам о Земле. -Новосибирск: НГУ, 2006. С. 23−24.
  4. , Д. Е. Применение метода статистического моделирования (Монте-Карло) для оценки искажений геотемпературного поля поверхностным рельефом / Д. Е. Аюнов, А. Д. Дучков // Геология и геофизика. 2008. -Т.49. — № 4. — С. 382−389.
  5. , В. С. Уравнения математической физики / В. С. Владимиров, В. В. Жаринов -М.: Физматлит, 2003. 288 с.
  6. , В. А. Моделирование близповерхностных искажений геотермического поля и возможная модель источника тепловой аномалии в пределах оз.Байкал./ В. А. Голубев, А. И. Левченко, Е. Н. Стрельцов // Геология и геофизика. 1975. — № 12. — С. 15−21.
  7. , В. А. Геотермические исследования на Байкале с использованием кабельного зонда-термометра / В. А. Голубев // Изв. АН СССР. Физика Земли. 1978. — № 3. — С. 106−109.
  8. , В. А. Геотермия Байкала. / В. А. Голубев Новосибирск: Наука, 1982.- 150 с.
  9. , В. А. Кондуктивный и конвективный вынос тепла в Байкальской рифтовой зоне / В. А. Голубев Новосибирск: Академическое изд-во «Гео», 2007. — 223 с.
  10. , В. А. О поправках к тепловому потоку по скважине вблизи истока р. Ангары / В. А. Голубев // Геотермия: Геотерм, исследования в СССР. 1976. — 4.2. — С. 173−182.
  11. , В.А. Новые геотермические исследования на озере Байкал. / В. А. Голубев, Ю. А. Зорин, С. В. Лысак и др. // Сейсмичность и глубинное строение Прибайкалья. Новосибирск: Наука, 1978.
  12. , А. Я. Оценки теплового потока на озере Байкал по сейсмическим данным о нижней границе слоя гидратов / А. Я. Гольмшток, А. Д. Дучков, Д. Р. Хатчинсон и др. // Геология и геофизика. 1997. — № 10. — С. 1677−1691.
  13. ДеМерс, М. Н. Географические Информационные Системы / ДеМерс, М. Н. Москва: СП Дата+, 1999. — 491 с.
  14. , А. Д. Геотермические исследования на озере Байкал / А. Д. Дучков, С. А. Казанцев, В. А. Голубев, С. В. Лысак // Геология и геофизика. 1977. — № 8. — С. 103−108.
  15. , А. Д. Измерения температуры в первых подводных скважинах оз. Байкал./ А. Д. Дучков, С. А. Казанцев // Геология и геофизика. 1995. — Т. 37.-№ 6,-С. 95−103.
  16. , А. Д. Тепловой поток и геотемпературное поле Байкальского региона. / А. Д. Дучков, С. В. Лысак, В. А. Голубев и др. // Геология и геофизика. 1999. — Т. 40. — № 3. — С. 287−303.
  17. , А.Д. Геотермические исследования в Сибири / А. Д. Дучков, Л. С. Соколова Новосибирск: Наука, 1974. — 280 с.
  18. , А. Д. Оценка тепловых свойств осадков озера Байкал по данным о восстановлении температурного поля в подводных скважинах/ А. Д. Дучков, Т.-С. Ли, С. Г. Морозов.// Геология и геофизика. 2001. — Т. 42. -№ 1−2.-С. 296−305.
  19. , А. Д. Тепловой поток в пределах оз. Байкал / А. Д. Дучков, С. А. Казанцев, В. А. Голубев и др. // Геология и геофизика. 1976. — № 4. — С. 112−121.
  20. , Б. С. Решение краевых задач методом Монте-Карло / Б. С. Елепов, А. А. Кронберг, Г. А. Михайлов, К. К, Сабельфельд // Новосибирск: Наука, 1980.
  21. , С. М. Случайные процессы для решения классических уравнений математической физики / С. М. Ермаков, В. В. Некруткин, A.C. Сипин -Москва: Наука, 1984. 205 с.
  22. , С. М. Методы Монте-Карло и смежные вопросы / С. М. Ермаков Москва: Наука, 1971. — 328 с.
  23. , П. О поправках на влияние рельефа, вносимых в измерения глубинных температур. Часть 1. Поправки в областях с горным рельефом / П. Ингленд //Тепловое поле Европы: Пер. С англ. Под. ред. В. Чермака и Л. Рибаха. Москва: Мир, 1982. — 376 с.
  24. Каталог данных по тепловому потоку Сибири (1966 1984 гг.) / Отв. Ред. к.т.н. А. Д. Дучков — Новосибирск: Изд. ИГиГ СО АН СССР, 1985. — 82 с.
  25. Н. Н. О связи глубинных температур с термическими коэффициентами горных пород и формой глубинных структур / Н. Н. Корытникова // География и геофизика. -№ 3.- 1943 .
  26. , Н. Н. Влияние водных бассейнов на тепловой режим прилегающих участков в земной коре / Н. Н. Корытникова // Известия академии наук СССР, Серия география и геофизика. № 1. — 1940.
  27. , Н. Н. Влияние теплопроводности горных пород на геоизотермы / Н. Н. Корытникова // Геофизика. 1937. — Т. 7. — № 1 (25). -С. 62−89.
  28. С. В. Изучение Байкальской рифтовой впадины методом сейсмической томографии на преломленных волнах / С. В. Крылов, В. С. Селезнев, В. М. Соловьев и др. // Докл. РАН. 1995. — Т. 345. — № 5. — С. 674−677.
  29. М. И. Проект 'Байкал-бурение': научные и технические задачи и первые результаты / М. И. Кузьмин, Д. Ф. Вильяме, Н. А. Логачев и др. // Геология и геофизика, 1993, — № 34(10−11). — С. 5−15.
  30. , М. И. Глубоководное бурение на Байкале основные результаты. / М. И. Кузьмин, Е. Б. Карабанов, Т. Каваи и др. // Геология и геофизика. — 2001. — Т. 42. — № 1−2. — С. 8−34.
  31. С. В. Геотермическое поле Байкальской рифтовой зоны / С. В. Лысак, Ю. А. Зорин. М.: Наука, 1976. — 92 с.
  32. , Д. Р. Особенности строения осадочной толщи оз. Байкал по результатам многоканальной сейсмической съемки (1989 г) / Д. Р. Хатчинсон, А. Я. Гальмшток, J1. П. Зоненшайн и др // Геология и геофизика. 1993. — Т. 34. — № 10−11. — С. 25−36.
  33. Belova, I. V. Monte Carlo simulation of the effective thermal conductivity in two-phase material / I. V. Belova, G. E. Murch // Journal of Materials Processing Technology. 2004. — 153−154. — P. 741−745.
  34. Birch F. Flow of heat in the Front Range Colorado / F. Birch // Bull. Geol. Soc. Am. 1950.-V. 61.
  35. Birch, F. Low values of oceanic heat flow / F. Birch // J. Geophys. Res. 72. -1967.-P. 2261−2262.
  36. Blackwell, D. D. The terrain effect on terrestrial heat flow/ D. D. Blackwell, J. L. Steele, C. A. Brotf // J. Geophys. Res. 1980. — V. 85. — P. 4757−4772.
  37. Bullard, E. C. The Disturbance of the Temperature Gradient in the Earth’s Crust by Inequalities of Height / E. C. Bullard // M.N.R. Astr. Soc. Geoph. Suppl. 4. -1938.-360 p.
  38. Dahl-Jensen, D. Past temperatures directly from the Greenland Ice Sheet/ D. Dahl-Jensen, K. Mosegaard et al // Science. Oct. 9. 1998. — - P. 268- 271.
  39. Huestis, S. P. Temperature bounds from heat flow data on irregular non-isothermal surfaces / S.P. Huestis // Geophysical Journal International. Vol. 65. -issue l.-P. 165−170.
  40. Jaeger J. C. Lees topographic correction in heat flow and the geothermal flux in Tasmania // J. C. Jaeger, J. H. Sass Geophys. Pura. Appl. — 1963. — V. 54. — P. 53−63.
  41. Jeffreys, H. The Disturbance of the Temperature Gradient in the Earth’s Crust by Inequalities of Height / H. Jeffreys // M.N.R. Astr. Soc., Geoph. Suppl. 4. — 1938.-p. 309.
  42. Kappelmeyer, O. Geothermics with special reference to application / O. Kappelmeyer, R. Haenel Berlin: Gebruder Borntraeger, 1974. — 238 p.
  43. Lachenbruch A. H. Rapid estimation of the topographic disturbance to superfitial thermal gradients / A. H. Lachenbruch // Rew. geophys. 1968.- V. 6. — No.3. — P. 365−400.
  44. , A.H. 1957. Three-dimensional heat conduction in permafrost beneath heated buildings / A. H. Lachenbruch // U.S. Geol. Surv. Bull. 1052-B. — 1957. — P. 51−69.
  45. Langseth, M. G. Revised Lunar Heat Flow Values / M. G. Langseth, S. J. Keihm, K Peters // Proc. 7th Lunar Sei. Conf. 1976. — P. 3143−3171.
  46. Lee Tien-Chang. Determination of thermal conductivity and formation temperature from cooling history of friction-heated probes / Tien-Chang Lee, A. D. Duchkov, S. G. Morozov. // Geophys. Journal International. 2003. -152.-P. 433−442.
  47. Lees, C. H. On the shape of the isogeotherms under mountain ranges in radioactive districts. London: Proc. Roy. Soc., 1910.— V. 8.
  48. Lister, C.R.B. On the thermal balance of a mid-ocean ridge // Geophys. J. Roy. Astr. Soc. 1972. -V. 26. — P. 515−535.
  49. Liu, Zhen, Peter Bird. 2002. North America plate is driven westward by lower mantle flow // Geophysical Research Letters. Vol. 29. — No. 24. — P. 17−1 to 17−4.
  50. Matsubayashi O. Application of Boundary Element Technique to Evaluation of Topographic Effect on Heat Flow Observation / O. Matsubayashi // J. Geothermal Res. Soc. 1983. — P.249−257.
  51. Minkowycz W.J. Handbook of Numerical Heat Transfer / Minkowycz W.J. et al. New York: John Wiley & Sons, Inc, 1988.
  52. Muller M.E. Some continuous Monte Carlo methods for Dirichlet problem / M.E. Muller // Ann. Math Statist. 1956. — V 27. — № 3. — P 569−589.
  53. Naraghi, M. H. A boundary-dispatch Monte Carlo (Exodus) method for analysis of conductive heat transfer problems / M. H. Naraghi, S.-C. Tsai. // J. Numerical Heat Transfer. 1993. — Part B. — Vol. 24. — P. 475−487.
  54. Roy, R. F. Continental heat flow / R. F. Roy, D. D. Blackwell and E. R. Decker, // The Nature of the Solid Earth, ed. E.C. Robertson, McGraw Hill. Ch. 19, -New York, 1972. — P. 506−544.
  55. Safandal J. Some remarks on the estimation of geothermal topocorrections / Jan Safandal, C. Maty ska // Springer Netherlands. 1987. — Volume 31. -Number 3,-P. 284−300.
  56. Serban, D. Z. Transylvanian heat flow in the presence of topography, paleoclimate and groundwater flow / D. Z. Serban, S. B. Nielsen, C Demetrescu // Tectonophysics. 2001. — V. 335. — P. 331−344.
  57. Shentu, J. A Monte Carlo Method of Solving Heat Conduction Problems with Complicated Geometry / Jun Shentu, Yun Sunghwan, Cho Nam Zin. // Korean Nuclear Society, Nuclear Engineering and Technology. 2007. — Vol.39. -No.3. — P. 207−214.
  58. Smith, M. W. Microclimatic influences on ground temperatures and permafrost distribution, Mackenzie Delta, Northwest Territories / M. W. Smith // Can. Jnl Earth Sci. 1975. — V. 12. — P. 1421−1438.
  59. De Batist, M. A new bathymetric map of Lake Baikal. Scientific Drilling Database Электронный опт. диск (CD-ROM).// M. De Batist, M. Canals, P.P. Sherstyankin, S. Alekseev & the INTAS Project 99−1669 Team. 2002.
  60. Townend, J. Heat flow through the West Coast, South Island, New Zealand / John Townend // New Zealand Journal of Geology & Geophysics. 1999. -Vol. 42.-P. 21−31
  61. Zinsmeiter G. E. and Pan S. S., A method for improving the efficiency of Monte Carlo calculation of heat conduction problems / G. E. Zinsmeiter // J. Heat Transfer, Trans. ASME, 1974. Series С — 96. — P. 246−254.
  62. Zinsmeiter G. E., and Pan S. S., A modification of the Monte Carlo method / G. E. Zinsmeiter, S. S. Pan /7 Inter. Jour. Num.Meth. Engr. 10. — 1976. — P. 10 571 064.
  63. Von Herzen, R. P. Heat flow through the eastern Pacific ocean floor / R. P. Von Herzen, S. Uyeda // J. Geophys. Res. 1963. — V. 68. — P. 4219−4250.
Заполнить форму текущей работой