Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

Методы и алгоритмы анализа и управления сложными объектами на гетерогенных нечётких моделях для систем медицинского назначения

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Личный вклад автора. В работах соискателем предложен метод синтеза гетерогенных нечетких решающих правил и показана эффективность его применения в медицине. В работах показывается роль микроэлементного статуса в прогнозировании и дифференциальной диагностике заболеваний на примере панкреатитав работе приведен алгоритм интеллектуальной поддержки принятия решений в экспертной системе с базой знаний… Читать ещё >

Содержание

  • 1. АНАЛИТИЧЕСКИЙ ОБЗОР И ПОСТАНОВКА ЗАДАЧ ИССЛЕДОВАНИЯ
    • 1. 1. Математические методы системного анализа в задачах прогнозирования и оценки состояния сложных объектов
    • 1. 2. Использование нечеткой логики принятия решений в задачах оценки и управления состоянием сложных систем
    • 1. 3. Использование экспертных систем в задачах системного анализа и управления сложными объектами
    • 1. 4. Цель и задачи исследования
  • 2. МЕТОДЫ И АЛГОРИТМЫ ОЦЕКИ И УПРАВЛЕНИЯ СОСТОЯНИЕМ СЛОЖНЫХ ОБЪЕКТОВ НА ОСНОВЕ НЕЧЕТКИХ ГЕТЕРОГЕННЫХ РЕШАЮЩИХ ПРАВИЛ
    • 2. 1. Объект, методы и средства исследований
    • 2. 2. Метод синтеза гетерогенных нечетких решающих правил для прогнозирования и оценки состояния сложных объектов
    • 2. 3. Алгоритм интеллектуальной поддержки для анализа и управления процессами принятия решений в экспертных системах медицинского назначения с базой знаний на гетерогенных нечетких правилах
    • 2. 4. Выводы второй главы
  • 3. РАЗРАБОТКА ОСНОВНЫХ ЭЛЕМЕНТОВ ЭКСПЕРТНОЙ СИСТЕМЫ МЕДИЦИНСКОГО НАЗНАЧЕНИЯ НА ОСНОВЕ БАЗЫ ЗНАНИЙ С ГЕТЕРОГЕННЫМИ НЕЧЕТКИМИ ПРАВИЛАМИ
    • 3. 1. Разработка структуры программного обеспечения экспертной системы медицинского назначения
    • 3. 2. Меридианные модели для реализации их средствами машинной графики
    • 3. 3. Синтез решающих правил для прогнозирования, ранней диагностики и оценки степени тяжести панкриатита
    • 3. 4. Выводы третьей главы
  • 4. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ
    • 4. 1. Результаты экспериментальной проверки прогнозирования возникновения панкреатитов
    • 4. 2. Результаты экспериментальной проверки правил для ранней диагностики панкреатитов
    • 4. 3. Результаты экспериментальной проверки правил определения степени тяжести острого панкреатита
    • 4. 4. Выводы четвертой главы

Методы и алгоритмы анализа и управления сложными объектами на гетерогенных нечётких моделях для систем медицинского назначения (реферат, курсовая, диплом, контрольная)

Актуальность темы

В последние 25−30 лет успешно развивается новое направление системного анализа и принятия решений, связанное с разработкой методов моделей и алгоритмов обработки экспертных знаний.

В работах отечественных и зарубежных ученых получены теоретические и практические решения, позволяющие автоматизировать процесс принятия решений в различных сферах человеческой деятельности. Для успешной реализации технологии экспертных систем в задачах исследования и управления состоянием сложных объектов и систем необходимо по возможности интегрировать процессы исследования и принятия окончательных решений. Однако, несмотря на ясность общей концепции построения экспертных систем, их создание для решения конкретных системных задач требует дополнительных исследований. Последнее утверждение вытекает из мирового опыта таких систем разработки, подтверждающего прямую зависимость эффективности работы экспертных систем от структуры используемых данных, конкретного варианта модели представления знаний и алгоритмов обработки информации.

Многочисленные исследования в различных предметных областях, связанных с анализом и управлением сложными и сверхсложными объектами и системами, показали, что одним их эффективных методов представления и обработки знаний в экспертных системах является нечеткая логика принятия решений. При этом наибольшими логическими и функциональными возможностями обладают так называемые гетерогенные нечеткие множества, для которых при синтезе соответствующих решающих правил допускается использование различных наиболее подходящих математических структур.

Гетерогенные нечеткие множества позволяют моделировать ситуации многокритериального принятия решения, когда имеются признаки с различными типами шкал, что характерно для большого количества практически важных системных задач.

Однако практическая применимость этого типа нечётких множеств для различных предметных областей, включая медицину, изучена недостаточно. В частности, существуют проблемы эффективной агрегации разнородных информационных блоков, с помощью которых описывается состояние сложных и сверхсложных систем. Недостаточно исследован так же вопрос о построении баз знаний экспертных систем при использовании гетерогенных нечётких структур.

Таким образом, разработка методов синтеза нечётких гетерогенных моделей и построения на их основе высокоэффективных алгоритмов системного анализа и управление состоянием сложных объектов, включая организм человека, для экспертных систем соответствующих предметных областей является актуальной задачей.

Работа выполнена в соответствии с Федеральной целевой программой «Научные и научно-педагогические кадры инновационной России на 20 092 013 гг., в рамках реализации мероприятия № 1.2.1 «Проведение научных исследований научными группами под руководством докторов наук» и в соответствии с совместным научным направлением Юго-Западного государственного университета и Курского государственного медицинского университета «Разработка медико-экологических информационных технологий» и в соответствии с программой проблемной комиссии хирургии органов брюшной полости.

Цель работы. Разработка методов, моделей и алгоритмов для экспертных систем медицинского назначения, обеспечивающих повышение качества принятия решения по анализу и управлению состоянием здоровья за счет применения гетерогенных нечетких моделей, позволяющих агрегировать различные типы решающих правил с разнородными информационными блоками для задач предметной области различного уровня.

Для достижения поставленной цели необходимо решить следующие задачи:

— на основании изучения существующих подходов к анализу и управлению состоянием сложных объектов, функционирование которых описывается разнородной системой нечетких признаков, определить задачи исследования и выбрать адекватный математический аппарат исследования;

— разработать метод синтеза гетерогенных нечетких решающих правил для базы знаний экспертных систем медицинского назначения;

— разработать алгоритм интеллектуальной поддержки для анализа и управления процессами принятия решений в условиях неполного и нечёткого описания объекта исследования ;

— создать основные элементы программного обеспечения для экспертной системы медицинского назначения с базой знаний, использующей гетерогенные нечёткие правила;

— оценить эффективность предложенных методов моделей и алгоритмов на примере решения задач прогнозирования, ранней и дифференциальной диагностики заболеваний системы пищеварения.

Методы исследований. Для решения поставленных задач использовались методы системного анализа, теории нечеткой логики принятия решений, экспертного оценивания, статистического анализа и математического моделирования. Для синтеза и проверки качества работы нечетких решающих правил использовалась система компьютерной математики MATLAB 7 SP1 и пакет визуального моделирования Simulink с системой нечеткой логики Fuzzy Logic Toolbox.

Область исследования. Содержание диссертации соответствует П4 «Разработка методов и алгоритмов решения задач системного анализа, оптимизации, управления, принятия решений и обработки информации» специальности 05.10.01 «Системный анализ, управление и обработка информации» паспорта номенклатуры специальностей научных работников (технические науки).

Научная новизна. В диссертации получены следующие результаты, характеризующиеся научной новизной:

— метод синтеза гетерогенных нечетких решающих правил для анализа состояния сложных объектов, отличающийся возможностью агрегации различных типов нечётких математических моделей с разнородными информационными блоками, позволяющий решать задачи прогнозирования и оценки состояния исследуемых объектов на различных уровнях их функционирования с требуемым для практики качеством;

— алгоритм интеллектуальной поддержки для анализа и управления процессами принятия решений, отличающийся возможностью гибкой смены тактики анализа и управления состоянием объекта исследования в условиях его разнородного, неполного и нечёткого описания, позволяющий обеспечивать рациональное взаимодействие между экспертной системой и лицом принимающим решение;

— математическое и программное обеспечение экспертной системы медицинского назначения, отличающееся тем, что сетевая база знаний этой системы использует гетерогенные нечёткие правила, реализуемые унифицированными решающими модулями, взаимодействующими с модулями графического представления исследуемых объектов, позволяющее обеспечивать интеллектуальную поддержку специалистов выбранной предметной области;

— система гетерогенных нечетких решающих правил экспертной системы медицинского назначения для прогнозирования, ранней диагностики и оценки степени тяжести острого панкреатита, отличающаяся тем, что высокое качество принятия решений обеспечивается агрегированием различных типов правил, выбираемых в соответствии со структурой данных с учетом защитных механизмов и индивидуальных особенностей организма, что позволяет достигать уверенности в принимаемых решениях на уровне 0,9 и выше в зависимости от количества собираемой о пациентах информации;

Практическая значимость работы.

Разработанные методы, модели, решающие правила и алгоритмы составили основу построения экспертной системы интеллектуальной поддержки врача — гастроэнтеролога, клинические испытания которой показали целесообразность ее использования в медицинской практике.

Применение предложенных в диссертации разработок позволяет снизить риск возникновения, развития и обострения заболеваний системы пищеварения, а также выработать рациональные схемы проведения лечебно-оздоровительных мероприятий, повышая эффективность лечения и сокращая его сроки.

Основные теоретические и практические результаты работы внедрены в составе медицинской информационной системы в практическую деятельность муниципального учреждения здравоохранения «Городская клиническая больница № 4», используются в научно-исследовательской работе кафедры химической технологии биологически активных веществ Курского государственного медицинского университета и в учебном процессе Юго-Западного государственного университета при подготовке специалистов по направлению «Биомедицинская инженерия».

Экономическая и социальная значимость результатов диссертационного исследования состоит в улучшении качества медицинского обслуживания населения.

Апробация работы. Основные положения диссертационной работы докладывались и обсуждались на следующих научно-технических конференциях: на международной научно-технической конференции «Оптико-электронные приборы и устройства в системах распознавания образов» (Курск, 2008) — на 3-м международном радиоэлектронном форуме «Прикладная радиоэлектроника, конференция проблемы биомединженерии» (Харьков, 2008) — на XI и XII международных научно-технических конференциях «Медико-экологические информационные технологии» (Курск, 2008, 2009) — на XIV международной научно-практической конференции «Экология и жизнь» (Пенза, 2008) — на Всероссийской научно-практической конференции «Биомедицинская инженерия и биотехнология» (Курск, 2008) — на научно-технических семинарах кафедры химической технологии биологически активных веществ Курского государственного медицинского университета (Курск, 2005,., 2009) на межрегиональной научно-практической конференции «Информационные проекты в медицинской и педагогической практике» (Курск, 2010).

Публикации. По материалам диссертации опубликовано 16 печатных работ, перечень которых приведен в конце автореферата, из них две работы в журналах по перечню журналов и изданий, рекомендованных ВАК РФ.

Личный вклад автора. В работах [1,2,5] соискателем предложен метод синтеза гетерогенных нечетких решающих правил и показана эффективность его применения в медицине. В работах [3 и 6] показывается роль микроэлементного статуса в прогнозировании и дифференциальной диагностике заболеваний на примере панкреатитав работе [4] приведен алгоритм интеллектуальной поддержки принятия решений в экспертной системе с базой знаний на основе гетерогенных нечетких правилв работах [7, 9, 10, 12, 13] показывается, что применение гетерогенных нечётких правил, использующих комбинированное пространство разнородных признаков, обеспечивают повышение качества прогнозирования и диагностики заболеваний системы пищеваренияа в работах [8, 11] разрабатывается база знаний для экспертной системы интеллектуальной поддержки принятия решений врача-гастроэнтерологав работах [14−16] предложены методы синтеза гетерогенных нечетких решающих правил для прогнозирования поведения и оценки состояния сложных систем включая организм человека.

Структура и объем диссертации

Диссертация состоит из введения, четырех глав, заключения и библиографического списка, включающего 189 наименований. Объем диссертации 124 страницы машинописного текста, 30 рисунков и 25 таблиц.

4.4. Выводы четвертой главы.

1. Качество принятия прогностических решений, обеспечиваемое нечеткими решающими правилами проверено на репрезентативных контрольных выборках и было установлено, что для наиболее часто встречающихся факторов риска они обеспечивают трехлетний прогноз по риску заболевания панкреатитом на уровне 0,85 и выше в зависимости от количества и качества собираемой информации.

2. Правила принятия решений о наличии у пациента ранней стадии панкреатита обеспечивают уверенность для наиболее распространенных факторов риска на уровне 0,88 и выше, что достаточно для их использования в практике врачей, работающих с выбранным контингентом больных.

3. Статистическая проверка правил принятия решений о степени тяжести панкреатита превышает уровень 0,95, что соответствует медико-техническим требованиям по выбранному классу задач.

ЗАКЛЮЧЕНИЕ

.

Предлагаемая работа посвящена решению научных и практических задач, связанных с повышением качества оценки состояния и управления сложными объектами за счет совершенствования методов теории нечеткой логики принятия решений.

В ходе проведенных исследований получены следующие основные результаты.

1. На основании анализа достижимости целей и задач исследования определены объекты, методы и средства исследований. Обосновано использование аппарата нечеткой логики принятия решений с гетерогенными математическими моделями, как наиболее адекватными для решаемых в работе задач.

2. Разработан метод синтеза гетерогенных нечетких решающих правил, позволяющий за счет агрегации различных типов этих правил с разнородными информационными блоками решать задачи прогнозирования и оценки состояния сложных объектов на различных уровнях их функционирования с требуемым для практики качеством.

3. Предложен алгоритм интеллектуальной поддержки для анализа и управления процессами принятия решений позволяющий в условиях неполного и нечеткого описания объекта исследования обеспечивать рациональное взаимодействие между экспертной системой и специалистами предметной области решающими задачи оценки состояния и управления сложными объектами.

4. Разработано математическое и программное обеспечение экспертной системы медицинского назначения, которое позволяет обеспечивать интеллектуальную поддержку специалистов выбранной подметной области повышая качество медицинского обслуживания людей с заболеваниями системы пищеварения.

5. Получены решающие правила для прогнозирования, ранней диагностики и оценки степени тяжести панкреатитов, учитывающие различные типы информативных признаков (включая факторы риска), которые позволяют в условиях нечеткого и неполного представления данных получать уверенность в правильном прогнозе, раннем диагнозе, и в классификации обострений на уровне 0,9, что для данного класса задач достаточно для практического использования.

6. Проведена апробация предложенных методов и средств на репрезентативных контрольных выборках и показана эффективность их использования в практике врачей гастроэнтерологов.

Показать весь текст

Список литературы

  1. , С.А. Прикладная статистика. Классификация и снижение размерностей Текст. / С. А. Айвазян, В. М. Буштабер, И. С. Енюков Л.Д. Мешалкин // — М.: Финансы и статистика, 1989. 607 с.
  2. , С.А. Прикладная статистика. Основы моделирования и первичная обработка данных Текст. / С. А. Айвазян, И. С. Енюков, Л. Д. Мешалкин // Справочное издание. М.: Финансы и статистика, 1983. — 472 с.
  3. , В.В. Обработка медико -биологических данных на ЭВМ Текст. /В.В. Александров, B.C. Шнейдеров //-Л.: Медицина, 1984. 160 с.
  4. , В.В. Анализ данных на ЭВМ (на примере СИТО). Текст. / В. В. Александров, А. И. Алексеев, И. Д. Горский М.: Финансы и статистика, 1990.-245с.
  5. , C.B. Прикладной статистический анализ данных. Теория. Компьютерная обработка. Области применения. Текст. / C.B. Алексахин // В 2-х томах. М. ПРИОР, 2002. -688 с.
  6. , В.Ф. Рефлексология (теория и методы). Текст. / В. Ф. Ананин // Монография. М.: изд-во РУДН и Биомединформ, 1992. -168с.
  7. , Т. Введение в многомерный статистический анализ М.: Физматгиз, 1963. -500 с.
  8. , П.К. Очерки по физиологии функциональных систем. Текст. // П. К. Анохин // М.: Медицина, 1975. 446с.
  9. , Т.Н. Применение препаратов-производных нуклеиновых кислот в лечении острого панкреатита: автореферат дисс. канд. мед. наук / Т. Н. Анищева. Курск 2005. -23с.
  10. , P.M. Оценка адаптационных возможностей организма и риск развития заболеваний. Текст. / P.M. Баевский, А.П. Берсенева-М.: Медицина, 1997. -235с.
  11. , И.А. Разработка и исследование методов и средств управления процессами диагностики и комбинированной терапии язвеннойболезни желудка. Текст. // дисс. канд. мед. наук: 05.13.01 защищена 23.12.05/Башлыков Иван Анатольевич. Воронеж, 2005.139с.
  12. , С.Д., Гурович Ф. Г. Математико-статистические методы экспертных оценок. -М.: Статистика, 1980. -263с.
  13. , П., Доксам, К. Математическая статистика. — М.: Финансы и статистика, 1983. вып.1. -278с.- Вып.2. -254с.
  14. Боровиков, В.П. Statistica для студентов и инженеров. — М.: Компьютер Пресс, 2001.-301с.
  15. , Э.М., Мучник, Ч.Б. Структурные методы обработки эмпирических данных. М.: Наука, 1983. -464с.
  16. , Н.С., Панов, В.М. «Имитационное моделирование сложных систем» М.: Практика, 1998.
  17. , В.Н., Червоненкис, А.Я. Теория распознавания образов. М.: Наука, 1974. -487с.
  18. , В.Н. Распознающие системы. Текст. / В. Н. Васильев // Справочник. -Киев.: Наукова думка, 1983. -82с.
  19. , Е.С. Клиническая рефлексология. Текст. Е. С. Вельховер, В. Г. Никифоров. -М.: Медицина, 1983.С. 19−83.
  20. , С.А. Математическая обработка результатов исследований в медицине, биологии и экологии. Текст. / С. А. Воробьев, A.A. Яшин // под ред. A.A. Яшина. Монография. Тула. ТулГу, 1999. -120с.
  21. , Ю.С. Эффективность применения глутоксима в комплексном лечении больных острым панкреатитом / Ю. С. Винник, Г. В. Бульгин, С. С. Дунаевская // Сибирское мед. Обозрение 2002.- № 2. -С.29−32.
  22. Гаваа Лувсан. Очерк методов восточной рефлексотерапии.- 3-е изд. -Новосибирск, 1991. 432 с.
  23. XIV Международной научно-практической конференции «Экология и жизнь» Пенза, 2008 АНОО Приволжский дом знаний, С. 11−12.
  24. , И.Л. Прогнозирование и ранняя диагностика панкреатитов по микроэлементному статусу Текст.: H.A. Кореневский, Л. П. Лазурина, И. Л. Гаврилов, А. Л. Локтионов. Вестник Воронежского государственного университета.
  25. , И.Л. Прогнозирование возникновения и оценка степени тяжести панкреатитов на основе нечеткой логики принятия решений Текст.: А. Л. Локтионов, H.A. Кореневский, Л. П. Лазурина, И. Л. Гаврилов / Биомедицинская техника и радиоэлектроника
  26. , И.П. Анализ и обработка данных: специальный справочник. -СПб.: Питер, 2001.-752 с.
  27. , А.И. Синтез многослойных систем распознавания образов. Текст. / А. И. Галушкин М.: Энергия, 1974. -386с.
  28. , Я.Я. Новая информационная технология анализа медицинских данных. СПб: Политехника, 1999. -191с.
  29. , A.A. Статистика в медицинских исследованиях Текст. / A.A. Глухов, A.M. Земсков, H.A. Степанян, A.A. Андреев, А. Н. Рог, Э. В. Савенюк, И. Н. Химина, В. А. Куташов. Воронеж: Изд-во «Водолей», 2005. -158с.
  30. , А.Н., Дунин-Барковский B.JL, Кирдин А. Н. и др. Нейроинформатика. Новосибирск: Наука. Сибирское предприятие РАН, 1998.-296С.
  31. , А.Н. Обучение нейронных сетей. -М.: Изд. СССР-США СП «ParaGraph», 1990. -160с.
  32. , П.К. Моделирование процесса распознавания с помощью нейронной сети. Текст. / П. К. Горбатенко, JI.H. Паринский // Вестник новых медицинских технологий. -2000 -Т.: VII, № 3 -4.С.21−22.
  33. , A.JI. Методы распознавания. Текст. / A.JI. Горелик, В. А. Скрипкин М.: Высшая школа, 1984.-258с.
  34. , Е.В. Применение непараметрических критериев статистики в медико-биологических исследованиях / Е. В. Гублер, A.A. Генкин. JL: Медицина, 1973.-103с.
  35. , Е.В. Вычислительные методы анализа и распознавания патологических процессов. JL: Медицина, 1978. -296с.
  36. , A.C. Математическое моделирование в экологии Текст.: Учебное пособие для вузов / A.C. Гринин, H.A. Орехов, В. Н. Новиков. -М.: ЮНИТИ-ДАНА, 2003.296с.
  37. , A.B. Диагностическая ценность исследования уровней цитокинов в клинической практике / A.B. Демьянов, А. Ю. Котов, A.C. Симбирцев // Цитокины и воспаление. -2003. -Т.2, № 3. -С.20−35.
  38. , Т.А. Статистические методы прогнозирования Текст.: Учебное пособие для вузов / Т. А, Дуброва. М.: ЮНИТИ-ДАНА, 2003.206с.
  39. , Р., Харт П. Распознавание образов и анализ сцен. М.: Мир, 1978.-510с.
  40. Дюк, В., Эмануэль, В. Информационные технологии в медико-биологических исследованиях. СПб: Питер, 2003. -528с.
  41. , H.H. Общая теория статистики. Текст./ H.H. Елисеева, М. М. Юзбашев // Учебник под ред. И. И. Елисеевой. -4-еизд., перераб. и доп. М.: Финансы и статистика, 2003.-480с.
  42. , И.С. Методы, алгоритмы, программы многомерного статистического анализа. -М.: Финансы и статистика, 1986. 325 с.
  43. , Н.Г. Методы распознавания и их применение. — М.: Сов. радио, 1972.-308с.
  44. , JI. Основы нового подхода к анализу сложных систем и процессов принятия решений // Математика сегодня. М.: Знание, 1974.
  45. , JI.A. Понятие лингвистической переменной и ее применение к принятию приближенных решений. Текст. / Л. А. Заде М.: Мир, 1976. -312с.
  46. , В.Г. Новое в изучении акупунктурных меридианов тела человека. Текст. / В. Г. Зилов // Вестник новых медицинских технологий. -1999 -Т. VI. № 3−4. -С. 148−153.
  47. , А.Г. Самообучающиеся системы распознавания и автоматического регулирования. Текст. / А. Г. Ивахненко Киев. Техника, 1969.-392с.
  48. , А.Г. Долгосрочное прогнозирование и управление сложными системами. — Киев: Техника, 1975. 311с.
  49. , А.Г., Юрачковский, Ю.П. Моделирование сложных систем по экспериментальным данным. -М.: Радио и связь, 1987. -118с.
  50. Исаева, Н. М, Системный подход к математическому моделированию в биологии и медицине / Н. М. Исаева, Т. Н. Субботина // Вестник новых медицинских технологий. -2000 -Т.VII № 3−4. -25с.
  51. , В.П. Донозологическая диагностика в практике массовых заболеваний населения. Текст. / В. П. Казначеев, P.M. Баевский, А. П. Берсенев Л.: Медицина, 1986. -216с.
  52. , С.А. Цитокины мононуклеарных фагоцитов в регуляции реакции воспаления и иммунитета / С. А. Кетлинский, Н. М. Калинина // Иммунология. -1995. -№ 3. -С.30−44.
  53. , В.А. Лапароскопический метод лечения панкреонекроза / В. А. Козлов, И. В. Козлов, Е. Б. Головко / VIII Всерос. съезд хирургов: тез. докл. -Краснодар, 1995.-С.592−593.
  54. Кон, Е. М. Оценка тяжести заболевания при остром панкреатите / Е. М. Кон, В. А. Черкасов // IX Всерос. съезд хирургов (20−22 сентября 2000 г., г. Волгоград). -Волгоград, 2000. -С.62−63.
  55. , H.A. Прогнозирование возникновения заболеваний работников сельскохозяйственного производства Текст. / H.A. Кореневский, В. И. Серебровский, H.A. Коптева // Курск: изд-во Курск, гос. с.-х. ак., 2005. -35с.
  56. , H.A. Проектирование нечетких решающих сетей настраиваемых по структуре данных для задач медицинской диагностики. Текст. / H.A. Кореневский // Системный анализ и управление в биомедицинских системах. Москва, 2005, Т.4, № 1.С.12−20.
  57. , H.A. Проектирование систем принятия решений на нечетких сетевых моделях в задачах медицинской диагностики ипрогнозирования. Текст. / H.A. Кореневский // Вестник новых медицинских технологий, 2006.T.XIII, № 2.С.6−10.
  58. , H.A. Методы поиска информативных проекционных зон и синтеза нечетких решающих правил для рефлексодиагностики. Текст. / H.A. Кореневский, В. В. Буняев // Системный анализ и управление в биомедицинских системах. Том 3, № 2, 2004. -С. 175−178.
  59. , H.A. Синтез меридианных моделей для рефлексодиагностики и рефлексотерапии. Текст. / H.A. Кореневский, В. В. Буняев // Системный анализ и управление в биомедицинских системах. Том 3.№ 2, 2004. -С.178−182.
  60. , H.A. Энергоинформационные основы рефлексологии. Текст. / H.A. Кореневский, М. И. Рудник, Е. М. Рудник, Курск, гуман.-техн. инст., Курск, 2001−236с.
  61. , С. Теория информации и статистика. М.: Наука, 1967. -408с.
  62. , JI. Обзор систем для анализа структуры образов и разработки алгоритмов классификации в режиме диалога. Текст. / JI. Кэнал //
  63. Распознавание образов при помощи цифровых вычислительных машин. -М.: Мир- 1974. -157с.
  64. , Г. С. Логические функции в задачах эмпирического предсказания. Текст./ Г. С. Лбов // Эмпирическое предсказание и распознавание образов: Вычислительные системы. Новосибирск, 1978, вып.76. -С.34−64.
  65. , Г. С. Методы обработки разнотипных экспериментальных данных. Текст. / Г. С. Лбов, Новосибирск: Наука. 1981. -287с.
  66. , И.Н. Синдром полиорганной недостаточности (ПОН). Метаболические основы (Лекция часть 1) / И. Н. Лейдерман // Вестн. интенсив, терапии. —1999. —№ 2. -С.24−28.
  67. , И.Н. Синдром полиорганной недостаточности (ПОН). Метаболические основы (Лекция часть 2) / И. Н. Лейдерман // Вестн. интенсив, терапии. -1999. —№ 3. -С.32−37.
  68. , А.Н. Математические методы планирования многофакторных медико-биологических экспериментов. М.: Медицина, 1979. -344с.
  69. , Б.Г. Экспертная информация. Методы получения и анализа. -М.: Радио и связь, 1982. -184с.
  70. Методика применения экспертных методов для оценки качества продукции // М.: Стандарт, 1975. 31 с.
  71. , А.Н. Расплывчатые ситуационные модели принятия решений Текст. / А. Н. Мелихов, Л. С. Берштейн, С. Я. Коровин // Учеб. Пособие, Таганрог: ТРТИ, 1986. -211с.
  72. , В.И. Теоретические основы системного анализа Текст. / В. И. Новосельцев, Б. В. Тарасов, В. А. Голиков, Б. Е. Демин / Под ред. В. И. Новосельцева // М.: Майор, 2006. 592 с.
  73. , В.Г. Электропунктура метод изучения механизмов иглорефлексотерапии Текст. / В. Г. Никифоров // В кн. Электропунктура и проблемы информационно-энергетической регуляции деятельности человека. М: 1976.-С.11−19.
  74. , Н.Д. Искусственный интеллект. Методы поиска решений. -М.: Мир, 1973.-298с.
  75. , В.П. Практикум по медицинской информатике Текст. / В. П. Омельченко, A.A. Демидова // Серия учебники. Учебные пособия / Ростов на Дону. Феникс, 2001.304с.
  76. , А.И. Прикладная теория измерений // Прикладной многомерный статистический анализ. -М.: наука, 1978.С.68−138.
  77. , С. Нейронные сети для обработки информации. Текст. / Оссовский С. / Пер. с польского Рудинского Л. Д. М.: Финансы и статистика.2002. -344с.
  78. , В.Г. Использование лапароскопии в лечении деструктивного панкреатита / В. Г. Пашков, С. А. Аносов // Эндоскопич. хирургия. -1998. -№ 1. -С.37.
  79. , А.К. Об изменении электрических потенциалов во внутренних органах и связанных с ними активных точек кожи // Физиол. журнал. СССР, 1995, Т.41, вып.З. -С.357−362.
  80. , Э.В. Экспертные системы: Решение неформализованных задач в диалоге с ЭВМ. М.: Наука, 1987. -287с.
  81. , Ф.И. Электропунктурная рефлексотерапия. Рига: Зинатне.1980. -245с.
  82. , B.C. Некоторые аспекты рефлексодиагностики и рефлексотерапии // Вестник новых медицинских технологий. 2003 Т. Х, № 3 -С.45−47.
  83. Построение экспертных систем: Пер. с англ./ Под ред. Ф. Хейса Рота, Д. Уотермана, Д. Лената. -М.: Мир, 1987.-412с.
  84. , В.В. Автоматизация методик психологического исследования Текст. / В. В. Плотников, H.A. Кореневский, Ю. М. Забродин. -Орел, изд-во института психологии АНСССР- ВНИИОТ Госагропрома СССР, 1989. -327с.
  85. , И.А. Критерии оценки тяжести состояния больных с панкреонекрозом / И. А. Родионов, A.B. Шабунин, М. С. Гордеев // IX Всерос. съезд хирургов (20−22 сентября 2000 г., г. Волгоград). Волгоград, 2000. -С.77.
  86. , A.C. Модели и методы системного анализа: принятие решений и оптимизация // Учебное пособие для вузов / М.: «МИСИС». Издательский дом «Руда и металлы», 2005. 352 с.
  87. , В.А. Сепсис: современный взгляд на проблему / В. А. Руднов // Рус. мед. журн. -2000. -Т.2, № 1. -С.25−28.
  88. , B.C. Лечебная тактика при панкреонекрозе / B.C. Савельев, М. И. Филимонов, Б. Р. Гельфанд // IX Всерос. съезд хирургов (20−22 сентября 2000 г., г. Волгоград). -Волгоград, 2000. -С. 111−112.
  89. , B.C. Панкреонекроз. Состояние и перспектива / B.C. Савельев, В. А. Кубышкин // Хирургия. 1993. -№ 6. -С.22−28.
  90. Сидельников, Ю. В, Теория и организация экспертного прогнозирования. -М.: ИМЭМО АН СССР, 1990. -196с.
  91. Справочник по функциональной диагностике в педиатрии Текст. / Под ред. Ю. Е. Ватищева, И. С. Кисляк. М., Медицина, 1979. 624с.
  92. , P.A. Лечебно-тактическая концепция острого деструктивного панкреатита: дис.. д-ра мед. наук: 14.00.27 / P.A. Сопия. —М., 2001. -300с.
  93. , К.В. Функциональные системы организма в норме и патологии // Системные механизмы поведения / Труды научного совета по экспериментальной и прикладной физиологии РАМН. -1993 -Т2. -С.17−33.
  94. , К.В. Системное взаимодействие в целом организме Текст. / К. В. Судаков, Е. А. Юматов // Физиология функциональных систем. Учебное пособие. Иркутск, 1997. С. 498−510.
  95. , Д.М. Руководство по иглорефлексотерапии Текст. / Д. М. Табеева.М.: Медицина, 1980. -560с.
  96. , К. Итоги рассмотрения факторов неопределенности и неясности в инженерном искусстве Текст. / К. Танака // в кн. Нечеткие множества и теория возможностей. Последние достижения Пер. с англ./ Под ред. P.P. Ягеря М.: Радио и связь, 1986. -408с.
  97. , К., Фохт, Д. Проектирование и программная реализация экспертных систем на персональных ЭВМ. М.: Финансы и статистика 1990. -346с.
  98. , А.Ю. Анализ данных методами многомерного шкалирования Текст. / А. Ю. Терехина. М.: Наука, 1986. -215с.
  99. , Н.Д. Методы диагностики заболеваний по содержанию микроэлементов в органах и тканях / Тутов Н. Д., Лазурина Л. П. // Биомедицинская радиоэлектроника 2001. №З.С. 35−40.
  100. , П. Искусственный интеллект. М.: Мир, 1980. -520с.
  101. , Д. Руководство по экспертным системам. 1980. -384с.
  102. , Р.Д. Построение экспертных систем Текст.: Д. Уотерман, Д. Ленат, Ф. Хейсе-Рот.: пер. с англ. М. Мир, 1987. -521с.
  103. , A.A. Интеллектуальные технологии управления. Искусственные нейронные сети и нечеткая логика Текст. / A.A. Усков, A.B. Кузьмин. М.: горячая линия телеком, 2004. -143с.
  104. , А.Г. Автоматизированные медико-технологические системы в 3-х частях Текст. / А. Г. Устинов, В. А. Ситарчук, H.A. Кореневский // Под ред. А. Г. Устинова // Монография КурскГТУ, Курск. 1995. -390с.
  105. , Б.С., Брусиловский, П.М., Розенберг, Г. С. О методах математического моделирования сложных систем // Системные исследования. Ежегодник. — М.: Наука, 1982. С. 65−79.
  106. , Л., Оуэне, А., Уолш, М. Искусственный интеллект и эволюционное моделирование. — Мир, 1969. -230с.
  107. , A.A., Тарловский, Г.Р. Статистическое распознавание образов. Текст. / A.A. Фомин, Г. Р. Тарловский. Радио и связь, 1986. 288с.
  108. , В.Н., Управление в биологических и медицинских системах Текст.: Учеб. пособие / В. Н. Фролов. Под ред. д-ра техн. наук проф. Я. Е. Львовича и д-ра мед. наук, проф. М. В, Фролова Воронеж, гос. техн. унт, Воронеж, 2001. 327с.
  109. Фу, К. Структурные методы в распознавании образов. Текст. К. Фу. -М.: Мир, 1977. 320с.
  110. , К. Введение в статистическую теорию распознавания образов. Текст. / К. Фукунага. Пер с англ. М.: наука, 1979. 350с.
  111. Цитокиновый баланс в патогенезе системного воспалительного ответа: новая мишень иммунотерапевтических воздействий при лечении сепсиса / Е. Р. Черных, О. Ю. Леплина, М. А. Тихонова и др. // Мед. Иммунология. -2001. -Т.З. -С.415−429.
  112. , В.В. Роль цитокинов и других сигнальных молекул в патогенезе острого панкреатита / В. В. Шабанов // Вестн. Рос. академии мед. наук. -2003. —№ 9. -С.44−47.
  113. Шалимов, С. А, Острый панкреатит и его осложнения / С. А. Шалимов, А. П. Радзиховский, М. Е. Ничитайло. Киев: Наукова думка, 1990. -272с.
  114. , Ю.Г. Прогнозирование течения острого панкреатита / Ю. Г. Шапкин, С. Ю. Березкина // Успехи современного естествознания. 2003. -№ 6. -С.95.
  115. , Ю.П. Нейроэндокринные аспекты патогенеза жирового панкреонекроза / Ю. П. Шевердин // Клинич. хирургия. -1991. -№ 2. -С.29−30.
  116. , А.И. Малоинвазивные методики в комплексном лечении больных с острым панкреатитом и его осложнениями / А. И. Шугаев, И. Н. Гера, А. Л. Андреев // Вестн. хурургии. -1999. -Т.158, № 5. -С.85−88.
  117. , Г. Э. Нечеткие множества и нейронные сети. Учебное пособие Текст. Г. Э. Яхъяева // М.: Интернет-Университет Информационных технологий.- БИНОМ. Лаборатория знаний. 2006. 316 с.
  118. Arslan, Е. The relationship between tumor necrosis factor (TNF) alpha and survival following granulocyte colony stimulating factor (G CSF) administration in burn sepsis / E. Arslan, M. Yavuz, C. Dalay // Burns. -2000. -Vol.26, № 6. -P.521−524.
  119. Bachman, G. Leitfaden der akupunktur, die akupunktur, eine altchinesische Heilwese und ihre kliniseh-experimentle Bestatigug.G. Bachman. Ulm-Donau: 1961.P.2039.
  120. Bone, R.C. Sepsis: a new hypothesis for pathogenesis of the disease process / R.C. Bone, C.J. Godzin R.A. Balk // Chest. -1997. -Vol.112. -P.235−243.
  121. Bone, R.C. Sir Isaac Newton, sepsis, SirS and CARS / R.C. Bone // Crit. Care. Med.-1996.-Vol.24.-P.l 125−1129.
  122. Bruce, G. Buchanan, Edward H. Sportlife. Rule-Based Expert Systems'4 The MYCIN Experiments of the Stanford Heuristic Programming Projext. Addison-Wesley Publishing Company. Reading, Massachusetts, 1984, ISBN 0−201−101 726.
  123. Chandrasekaran, B., Mittal, S., Conceptual Representation of Medical Knowledge for Diagnosis by Computer: MDX snd Related System // Adv. Comput. 1983.-N22. -P.217−293.
  124. Cheg, Tan-An «s «Treatment of Shang Han Diseases» American J. Acupuncture. 1988.V.16.№ 4. pp.351−357.
  125. Clough, K., Jardine, I. Telemedicine — the agent for change // Brit. J. Healthcare Comput. Inform. Management.-2001.-Vol. 18, no.8.-P.22−24.
  126. Demikova, N.S., Zhuchenko, L.A., Kobrynsky, B.A. The results of bith defects monitoring in newborn in Russia // Abstracts of the 8th European symposium «Prevention of congenital anomalies», Arch, of Perinatal Medicine, suppl.-2005.-P.31.
  127. Deng Liangyue, Gan Yijun, He SHuhui. Chinese Acupuncture and Moxibustion Beijing, 1987.
  128. Dong, J-T. «Research on the reduction of anxiety and depression with acupuncture». American Journal of acupuncture, 1993- 21 (4). Pp. 327−329.
  129. Hammer, M., Champy, J. Reengineering the Croration: A Manifesto for Business Revolution.-New York: Harper Collins, 1993.
  130. Han, J, Terenius L. «Neurochemical basis of acupuncture analgesia». American Review Pharm Toxicology, 1982- 22, pp.193−220.
  131. Hayes-Roth, F.: «The Knowledge Based Expert System: A Tutorial». IEEE COMPUTER.-1987.-Vol. 17, N9.-P. 11 -18.
  132. Head, G. Die Sensibilititsstiirungen der Hant bei Visceralerkrandkungen. Berlin: Hirschwald, 1998.
  133. Hoang Bao T’au, La Kuang Niep. Acupucture. Translate from Vietnam, in Russian. Moscow: Medicine, 1989. ISBN 5−225−299−4.
  134. Hsu, Jay C., Andrew U. Meyer. Modern control principles and applications. New York: McGraw-Hill, 1968.
  135. Hu Xianglong, Wu Baohua, You Zhenguan. «Preliminary analysis of the mechanism underlying the phenomenon of channel blocking» J. Trad. Chinese Medicine. 1986. V.6 № 4.pp. 289−296.
  136. Jayasuriya, A. Scientific Basis of Acupuncture. Chandrakanthi Press (International) Colombo, Sri Lanka, 1987.
  137. Jonson, C.H. Pancreatic Diseases / C.H. Jonson, C.W. Imprie // Springer.-1999.-P. 1−253.
  138. , D.E. «A Scientific model for acupuncture: part 1» American Journal of acupuncture. 1989. V.17, № 3 .pp.251−268.
  139. , D. «A Scientific model for acupuncture: part 1 &2» American Journal of acupuncture. 1989-.17(3) pp.251−268- 17(4)pp.343−360.
  140. Kobrinsky, B., Tester, I., Demikova, N. et al. A. Multifunctional system of the national genetic register // Medinfo'98: Proc.9th Intern, congr. On medical informatics. Ptl.-Seoul, 1998.-P.121−125.
  141. Kobrinsky, B.A., Database for disabled children received an injuries in disasters // Prehospital and Disaster med.-1997.-Vol.12, № 3.Suppl.l.-P.90−91.
  142. Kulback, S. Information Theory and Statistics. New York: Wiley, 1959.
  143. Manaka, Y. Practice of Acupuncture.-Yokosuka, 1972.-185 p.
  144. Mann, F. Acupuncture: The ancient Chinese art of heating.-L.A Heinemann, 1978.-200p.
  145. Negoita, C.N. Expert System and Fuzzy Systems. The Benjamin/ Cammings Publishing Co., Menio Park, CA, 1985.
  146. , A.L. «Definition of a functional condition of the channel on change of electroskin resistance in one point.'Tgloreflexoterapia in Russian. Gorkkii. 1974.pp.22−25.
  147. Niboyet, J.E.H. L' anesthesia par 1' acupuncture. Maisonneuve, sainte Ruffine, 1973.
  148. Nystrom, P.O. The systemic inflammatory response syndrome: definitions and aetiology/ P.O. Nystrom// Journal of Antimicrobial Chemotherapy.-1998.-Vol.4-P.l-7.
  149. Ostanin, A.A. Cytokine based immunotherapy of severe and generalized surgical infections / A.A. Ostanin, S.D. Nikolov, N.R. Chernykh // Crit. Care Intern.- 1996.-№ 11/12.-P.13−16.
  150. Pruitt, J.H. Increased soluble interleukin-1 type II receptor concentrations in postoperative patients and in patients with sepsis syndrome / J.H. Pruitt, M.B. Welborn // Blood.-1996.-Vol.87.-P.3282−3288.
  151. Sammon, Y.W. An optimal discriminant plane // IEEE Ttrans. Comput.-1970,-Vol. 19, N9.-P.15−25.
  152. Sammon, Y.W. A. Nonlinear mapping for Data Structure Analysis// IEEE Trans/ Comput.-1969, -C-18-N5-P.401−409.
  153. Sandifort, P., Annett H., Cibulskis ZR. What can information systems do for primary health care. An international perspective // Social sei. Andmed.-1992.-Vol.34.-P. 1077−1087.
  154. Saoty, T. Measuring the fuzziness of sets // Cybernetics.-1974.-Vol. 4, N4.-P.53−61.
  155. Scheibel, M.E. Strctural substurates for integrative patterns in the brain stremreticular cove. Reticular formation on the brain. Boston, 1985.
  156. Schnorrenberger, C.C. Lehrbuch der chinesischen Medizin fur westliche Arzte. Die theoretischen Grundlagen der chinesischen Akupunktur und Arzneiverordnung.-Stuttgart: Hippokrates Veri., 1979.-636 S.
  157. Schnorrenberger, C.C. Spezielle Techniken der Akupunktur und Moxabustion.-Stuttgart: Hippokrates Veri., 1983.-385 S.
  158. Seem, M.D. Acupuncture imaging: Perceiving the Energy Pathways of the Body: A Guide for Practitioners and Their Patients. Healing Arts Press Rochester, Vermont, 1990, p85.
  159. Shortliffe, E.H. Computer- Based medical Consultations: MYCIN, New York: American Elseviver, 1976.
  160. , D.V. «The curious meridians.» American Journal of acupuncture. 1989.V.17, №l, pp.45−56.
  161. , D.V. «Wind as a factor of pathogenesis.» American Journal of acupuncture. 1988. V. 16,№ 2.pp. 159−164.
  162. Weiss, S.M., Kulikowski, C.A. A Practical Guide to Desinging Expert System.- New Gersey: Powman &Allan heild Publ., 1984.
  163. , R. «Electroakupuncturdiagnostik» Medizin heute. 1960.№ 5.P. 128−131.
  164. Voll, R. «Electroakupuncturtepapie» Medizin heute. 1960.№ 1.P.256−260.
  165. , R. «Geloste und ungeloste Probleme den Electroakkupunctur» Schriftenrehe des Zentralrerbandes der Artzte fur Naturheilverfahren. 1961.5. Sonderheft.P. 148−152.
  166. World Health Organization. Standart Acupuncture Nomenclature, part 1 (revised). Edited by Regional Office for the Western Pacific, Manila, Phlippines, 1991, p 11.
  167. Yeh, F.L. Changes in ciculating levels of anti inflammatory cytokine interreukin 10 in burned patients / F.L. Yeh, W.L. Lin, H.D. Shen // Burns.-2000.-Vol.26, № 5.-P.454−459.
  168. Zadeh, L. A Advances in Fuzzy Mathematics and Engineering Fuzzy Sets and Fuzzy information-Granulation Theory. Beijing. Beijing Normal University Press. 2005. ISBN 7−303−5 324−7
  169. Zadeh, L.A., King-Sun Fu, Kokichi Tanaka, Massamichi Shimura. Fuzzy sets and their applications to cognitive and decision processes. Academic Press, Inc. New York San Francisco London, 1975. ISBN 0−12−775 260−9
  170. Zhao Jianguo, Zhang Linying. «Review of the current status of acupuncture and moxibustion.» American Journal of acupuncture. 1986. V/14, № 2. pp. 105−109.
Заполнить форму текущей работой