Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

Табличные структуры (таблицы данных, матрицы данных)

РефератПомощь в написанииУзнать стоимостьмоей работы

Еще проще можно действовать, если все элементы таблицы имеют равную длину. Такие таблицы называют матрицами. В данном случае разделители не нужны, поскольку все элементы имеют равную длину и количество их известно. Для розыска элемента с адресом (m, n) в матрице, имеющей М строк и N столбцов, надо просмотреть ее с самого начала и отсчитать a символ, где, а — длина одного элемента. Со следующего… Читать ещё >

Табличные структуры (таблицы данных, матрицы данных) (реферат, курсовая, диплом, контрольная)

С таблицами данных мы тоже хорошо знакомы, достаточно вспомнить всем известную таблицу умножения. Табличные структуры отличаются от списочных тем, что элементы данных определяются адресом ячейки, который состоит не из одного параметра, как в списках, а из нескольких. Для таблицы умножения, например, адрес ячейки определяется номерами строки и столбца. Нужная ячейка находится на их пересечении, а элемент выбирается из ячейки.

При хранении табличных данных количество разделителей должно быть больше, чем для данных, имеющих структуру списка. Например, когда таблицы печатают в книгах, строки и столбцы разделяют графическими элементами — линиями вертикальной и горизонтальной разметки:

Таблица 2.

Пример разделения графическими элементами.

Планета.

Расстояние до Солнца, а.е.

Относительная масса.

Количество спутников.

Меркурий.

0,39.

0,056.

Венера.

0,67.

0,88.

Земля.

1,0.

1,0.

Марс.

1,51.

0,1.

Юпитер

5,2.

Если нужно сохранить таблицу в виде длинной символьной строки, используют один символ-разделитель между элементами, принадлежащими одной строке, и другой разделитель для отделения строк, например так:

Меркурий*0,39*0,056*0#Венера*0,67*0,88*0#Земля*1,0*1,0*1#Марс*1,51*0,1*2*…

Для розыска элемента, имеющего адрес ячейки (m, n), надо просмотреть набор данных с самого начала и пересчитать внешние разделители. Когда будет отсчитан m — 1 разделитель, надо пересчитывать внутренние разделители. После того как будет найден n — 1 разделитель, начнется нужный элемент. Он закончится, когда будет встречен любой очередной разделитель.

Еще проще можно действовать, если все элементы таблицы имеют равную длину. Такие таблицы называют матрицами. В данном случае разделители не нужны, поскольку все элементы имеют равную длину и количество их известно. Для розыска элемента с адресом (m, n) в матрице, имеющей М строк и N столбцов, надо просмотреть ее с самого начала и отсчитать a [N (m — 1) + (n — 1)] символ, где, а — длина одного элемента. Со следующего символа начнется нужный элемент. Его длина тоже равна а, поэтому его конец определить нетрудно.

Таким образом, табличные структуры данных (матрицы) — это упорядоченные структуры, в которых адрес элемента определяется номером строки и номером столбца, на пересечении которых находится ячейка, содержащая искомый элемент.

Многомерные таблицы.

Выше мы рассмотрели пример таблицы, имеющей два измерения (строка и столбец), но в жизни нередко приходится иметь дело с таблицами, у которых количество измерений больше.

Таблица 3.

Пример таблицы, с помощью которой может быть организован учет учащихся.

Номер факультета:

Номер курса (на факультете):

Номер специальности (на курсе):

Номер группы в потоке одной специальности:

Номер учащегося в группе:

Размерность такой таблицы равна пяти, и для однозначного отыскания данных об учащемся в подобной структуре надо знать все пять параметров (координат).

Показать весь текст
Заполнить форму текущей работой