Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

Автоматизированное проектирование двусортносинаптических средств нейронного управления обогащением алмазоносных пород

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Развитие производственных процессов в перспективных отраслях промышленности характеризуются качественными изменениями в технологии. Широкое распространение опасных производств, в том числе в алмазодобывающей промышленности, а также острая необходимость разработки и внедрения энерго-, ресурсосберегающих технологий, диктуемая современными условиями развития цивилизации, влекут за собой значительное… Читать ещё >

Содержание

  • Глава 1. Нейронное управление технологическими процессами обогащения алмазоносных пород
    • 1. 1. Вибротехнология обогащения алмазоносных пород
    • 1. 2. Структура микропрограммной сети управления
    • 1. 3. Цифровой однородный нейрон гексагональной структуры
    • 1. 4. Вычисление весов синапсов и квазипорогов нейрона на основе. целочисленного решения системы уравнений
    • 1. 5. Выводы по первой главе
  • Глава 2. Симметризации булевых функций
    • 2. 1. Свойство симметризации булевых функций
    • 2. 2. Вычисление инвариантов симметричности слабоопредёленных булевых функций
    • 2. 3. Вычисление симметричности булевых функций
    • 2. 4. Выводы по второй главе
  • Глава 3. Проектирование двусортносинаптических нейронов
    • 3. 1. Модель цифрового нейрона гексагональной структуры с возбуждающими и тормозящими синапсами
    • 3. 2. Вычисление центра симметризации на основе метрики Хемминга
    • 3. 3. Вычисление распределения возбуждающих и тормозящих синапсов на основе валентности и на оценке асимметричности булевой функции
    • 3. 4. Выводы по третьей главе
  • Глава 4. Автоматизированное проектирование нейронных средств управления обогащением алмазоносных пород
    • 4. 1. Физико-химические процессы при виброакустической технологии обогащения алмазоносных пород
    • 4. 2. Проектирование средств нейронного управления памятью микропрограммной сети
    • 4. 3. Проектирование односортно-синаптических средств нейронного управления микрооперациями микропрограммной сети
    • 4. 4. Разработка проектов двусортно-синаптических средств нейронного управления обогащением алмазоносных пород на основе
  • — таблицы распределения расстояний по Хеммингу относительно центра симметризации,
  • — валентности булевой функции,
  • — минимальной удалённости булевой функции от класса симметричных функций
    • 4. 5. Программный инструментарий и результаты его внедрения
    • 4. 6. Выводы по четвёртой главе
  • Акты внедрения

Автоматизированное проектирование двусортносинаптических средств нейронного управления обогащением алмазоносных пород (реферат, курсовая, диплом, контрольная)

В настоящее время при непрерывном росте добычи и переработки полезных ископаемых технический прогресс всё в большей степени определяется уровнем использования информационных технологий. Физико-химические и механические процессы разделения минералов как основа обогащения полезных ископаемых описываются информационными структурами, обработка которых даёт возможность логического управления технологическими процессами. Технической базой систем обработки информации являются нейросети, осуществляющие параллельную обработку информации и существенно повышающие производительность вычислительных средств.

Развитие производственных процессов в перспективных отраслях промышленности характеризуются качественными изменениями в технологии. Широкое распространение опасных производств, в том числе в алмазодобывающей промышленности, а также острая необходимость разработки и внедрения энерго-, ресурсосберегающих технологий, диктуемая современными условиями развития цивилизации, влекут за собой значительное усложнение управления технологическим оборудованием и ужесточение требований, предъявляемых к безотказности и производительности систем управления технологическими процессами.

Этих условия определяют широкое внедрение эффективных и гибких систем нейронного управления (СНУ), основанных на результатах бурного развития микроэлектронной технологии, а также достижениях дискретной математики, математических методов кибернетики, системного анализа. Сложность проектируемых СНУ, а также высокие требования к срокам их разработки и возможности модернизации приводят, в свою очередь, к необходимости создания соответствующих эффективных САПР.

Проблемам создания соответствующих эффективных СНУ посвящены работы учёных А. И. Галушкина, В. А. Горбатова, A.B. Горбатова, В.И.

Горбаченко, А. Л. Стемпковского, А. Н. Бубенникова, В. Л. Белявского, Н. Г. Рамбиди, Н.Г., П. Н. Лускинович, и другие. [1−5-48 ].

В развитии горнодобывающего комплекса очень важным является создание универсальных технологий, позволяющих извлекать максимально возможное количество полезных компонент из разрабатываемого грунта. Не менее важной задачей является и автоматизация управления этими технологиями. В этой связи, предложенные далее методы получения полезных компонент из исходной горной массы и универсальные схемы создания алгоритмического и программного инструментария проектирования технологическими горными процессами позволяют решить одну из задач совершенствования автоматизации технологических процессов обогащения.

Ухудшение горнотехнических условий эксплуатации месторождений и сокращение сырьевой базы приводят к необходимости вовлечения в эксплуатацию месторождений содержащих труднообогатимое сырьё. В связи с этим значительно увеличиваются затраты на подготовку сырья к обогащению, снижаются объемы переработки и обогащения, увеличиваются потери полезного компонента.

Интенсификация и совершенствование процесса подготовки сырья к обогащению с использованием традиционных методов (механических, гидравлических, химических и др.), как правило, связана со значительными материальными и энергетическими затратами.

Одним из перспективных способов повышения эффективности процесса подготовки труднообогатимого сырья перед последующим обогащением (дезинтеграция, обдирка, подготовка поверхностей кристаллов к флотации и т. д.) является использование виброакустического метода, интегрированного с системой автоматизированного логического управления, реализованной на базе нейронной технологии.

Нейронные сети — эффективный вид программных и аппаратных продуктов, используемых для прогнозирования, моделирования ситуаций, распознавания образов и управления сложными технологическими процессами.

Сфера применения нейросредств охватывает сегодня все основные области человеческой деятельности, а объем рынка нейросетевого оборудования удваивается каждые два года.

Искусственный нейрон представляется в виде сумматора с взвешенными входами. Когда на входы сумматора подается некоторый вектор, на выходе сумматор выдает сумму произведений входов на соответствующие им веса. Затем эта сумма преобразуется активационной функцией, которая моделирует нелинейную усилительную характеристику биологического нейрона.

Аналоговая реализация нейрона на основе множительных устройств и сумматора требует прецезионную точность изготовления компонентов нейрона. По этой причине более эффективной является цифровая реализация. Западный вариант такой реализации основан на использовании однородных структур тетраидального типа (С. Мурога США), российский вариант — гексагонального типа (B.JI. Белявский, В. А. Горбатов, A.B. Горбатов, Россия). Однородная гексагональная структура является на два-три порядка более эффективной, по сравнению с тетрагональной в смысле объёма аппаратурных затрат. Кроме того, тетрагональная структура не является однородной, если учитывать её окружение: дешифраторы, дополнительные регистры. В качестве технического элемента нейронного управления выбран однородный нейрон гексагональной сотовой структуры. [49].

Настоящая работа посвящена решению актуальной задачи создания системы автоматизированного проектирования двусортносинаптических средств нейронного управления обогащением алмазоносных пород.

Цель исследований состоит в разработке математического обеспечения системы автоматизированного проектирования двусортносинаптических средств нейронного управления и доведения его до программной реализации.

Для достижения поставленной цели решаются следующие задачи:

1. Включение в цифровую модель нейрона В. Л. Белявского, В. А. Горбатова наряду с возбуждающими синапсами и тормозящие синапсы.

2. Вычисление оптимального распределения возбуждающих и тормозящих синапсов нейрона с целью минимизации его сложности при однородной сотовой реализации.

3. Создание математического обеспечения проектирования оптимальных сотовых нейронов с двусортными синапсами.

4. Разработка программного обеспечения проектирования двусортносинаптических средств нейронного управления технологическим процессом обогащения алмазоносных пород. Основная идея работы состоит в вычислении оптимального распределения возбуждающих и тормозящих синапсов на основе введённых в диссертации понятий: центра симметризации, валентности и таблицы распределения расстояний по Хеммингу точек пространства до центра симметризации реализуемой булевой функции, минимальной удалённости булевой функции от класса симметричных функций, исследуемых в работах [ 15,132−148].

Достоверность научных исследований определяется использованием методов дискретной математики, в том числе теории графов, методов оптимизации и нейроматематики и полученными практическими результатами.

Впервые на основе предложенных понятий центра симметризации, валентности и таблицы распределения расстояний по Хеммингу точек пространства до центра симметризации реализуемой булевой функции разработано математическое обеспечение автоматизированного проектирования двусортносинаптических однородных сотовых нейронов.

В рамках работы, на основе созданного математического обеспечения, разработан инструментарий автоматизированного проектирования двусортносинаптических средств нейронного управления обогащением алмазоносных пород. Применение этого инструментария позволило повысить производительность работы всего объекта автоматизации и сократить потребление водных ресурсов и значительно уменьшить риск работы персонала.

Результаты диссертации внедрены в Мирнинском, Нюрбинском горнообогатительных комбинатах алмазодобывающей компании «АЛРОСА», что позволило уменьшить время сепарации и потребляемой электроэнергии на 10%, а сложности нейронных структур обеспечивающих логическое управление на 20% по сравнению с сотовыми нейронами, имеющими только возбуждающие синапсы. Результаты внедрения подтверждены соответствующими актами о внедрении.

Основные положения диссертационной работы докладывались и были одобрены на научно — технических конференциях МГГУ, на семинарах кафедры САПР МГТУ, на семинарах отделения «Теоретическая информатика и интеллектуальные технологии и стратегии» Международной академии информатизации, опубликованы в четырёх научных работах, три из которыхстатьи [150+153].

4.6. Выводы по четвертой главе

1. Для внедрения научных результатов разработан программный пакет проектирования оптимальных сотовых нейронов с двусортными синапсами, позволивший автоматизированно проектировать цифровые средства нейронного управления, описываемые функциями до 64 переменных.

2. Программный пакет автоматизированного проектирования двусортносинаптических средств нейронного управления обогащением алмазоносных пород внедрен в Мирнинском, Нюрбинском горно-обогатительных комбинатах алмазодобывающей компании «АЛРОСА». Внедрение результатов диссертации позволило уменьшить время сепарации и потребляемой электроэнергии на 10%, увеличить скорость работы, сократить затраты водных ресурсов и уменьшить риск работы персонала, а сложность нейронных структур, обеспечивающих управление, уменьшить на 25% по сравнению с сотовыми нейронами, имеющими только возбуждающие синапсы.

3. Результаты внедрения подтверждены соответствующими актами о внедрении.

Акционернай компания «АЛРОСА» сабыылаах акционерная уопсастыба):

ALROSA"

Company Limited

Г Акционерная компания «ААРОСА» закрытое акционерное общество), •

Мирнинский горно-обогатительный комбинат

Молодежный пер. д 3, г Мирный, 678 170, Республика Саха (Якутия), МГОК Телефакс- (411−36) 3−47−32, телефоны- (411−36) 3−68−56 E-mailPublic@mgok alrosa-mir ru

200 г. №

Ha№ от

ЗАКЛЮЧЕНИЕ

Исследования, проведённые при выполнении данной диссертационной работы, позволили решить задачу автоматизированного проектирования двусортносинаптических средств нейронного управления обогащением алмазоносных пород. В ходе выполнения работы лично автором были получены следующие результаты, имеющие как научное, так и практическое значение:

1. Предложена формальная модель нейрона при его сотовой реализации, обобщающая известную модель Мак-Каллока-Питтса и включающая наравне с возбуждающими и тормозящие синапсы при цифровой реализации.

2. Введены понятия центра симметризации булевых функций, таблицы распределения расстояний по Хеммингу точек пространства относительно центра симметризации, валентности и удалённости булевой функции от класса симметричных функций.

3. На основе введённых понятий валентности, центра симметризации булевых функций, таблицы распределения расстояний по Хеммингу точек пространства относительно центра симметризации показано, что вес каждого синапса двусортносинаптического нейрона равен единице, и минимальная сложность нейрона равна размерности реализуемой функции, если её валентность равна 0.

4. Показано, что если реализуемая на нейронах сотовой структуры булева функция /(X) является симметричной, то сложность нейрона равна её размерности, а при отличной сложности нейрона — она эквивалентируется путём расщепления переменных, функцией /(Х11АХ), принадлежащей классу симметричных функций.

5. На основе исследования взаимосвязи введённых понятий центра симметризации булевых функций, таблицы распределения расстояний по Хеммингу точек пространства, валентности, удалённости функции от класса симметричных функций относительно центра симметризации разработаны алгоритмы вычисления оптимального распределения возбуждающих и тормозящих синапсов.

6. Для внедрения научных результатов разработан программный пакет проектирования оптимальных сотовых нейронов с двусортными синапсами, позволивший автоматизированно проектировать цифровые средства нейронного управления, описываемые функциями до 64 переменных.

7. Программный пакет автоматизированного проектирования двусортносинаптических средств нейронного управления обогащением алмазоносных пород внедрен в Мирнинском, Нюрбинском горно-обогатительных комбинатах алмазодобывающей компании «АЛРОСА». Внедрение результатов диссертации позволило уменьшить время сепарации и потребляемой электроэнергии на 10%, увеличить скорость работы, сократить затраты водных ресурсов и уменьшить риск работы персонала, а сложность нейронных структур, обеспечивающих управление, уменьшить на 25% по сравнению с сотовыми нейронами, имеющими только возбуждающие синапсы.

Результаты внедрения подтверждены соответствующими актами о внедрении.

Показать весь текст

Список литературы

  1. Галушкин А.И., Теория нейронных сетей, ИПРЖ «Радиотехника», Москва, 2001 г.
  2. Нейронные сети: история развития теории, под общей редакцией проф. А. И. Галушкина, акад. Я. З. Цыпкина, ИПРЖ «Радиотехника», Москва, 2001 г., 839 стр.
  3. Нейроматематика, под общей редакцией, проф. А. И. Галушкина, ИПРЖ «Радиотехника», Москва, 2002 г., 447 стр.
  4. В.И., Нейрокомпьютеры в решении краевых задач теории поля, ИПРЖ «Радиотехника», Москва, 2003 г., 333 стр.
  5. В.А., Фундаментальные основы дискретной математики, Наука, Физматлит, Москва, 2000 г., 544 стр.
  6. ГорбатовА.В., Характеризационная теория синтеза функциональных декомпозиций в К-значных языках, Физмат, Москва, 2000 г., 336 стр.
  7. В. А., Теория частично упорядочных систем, Москва, Советское радио, 1976 г., 336 стр.
  8. В.А., Кафаров В. В., Павлов П. Г., Логическое управление технологическими процессами, Москва, Энергия, 1978 г., 246 стр.
  9. Э.В., Прангишвили И. В., Цифровые автоматы с нарастающей структурой, Москва, Энергия, 1974 г., 240 стр.
  10. Ю.Евреинов Э. В., Косарев Ю. Г., Однородные вычислительные системы высокой производительности, Москва, Наука, 1966 г., 112 стр. 11 .Логические матрицы, программируемые в условиях эксплуатации, Электроника, № 6, 1975 г., стр. 89−91.
  11. А.Н. Ориентированные графы и конечные автоматы, Москва, Наука, 1971 г., 404 стр.
  12. Р., Теория переключательных схем, Москва, Наука, том 1, 1970 г., 416 стр., том 2, 1971 г., 404 стр.
  13. Г. Н., О групповой инвариантности булевых функций, в кн.:
  14. Применение логики в науки и техники, Москва, Изда-во АН СССР, 1960 г., стр. 263−340.
  15. Akers S.B., A rectangular logic array. IEEE Trans, on Computers. August 1972, vol. C-21, N.8, p. 848−857
  16. Born R.C., Scidmore A.R., Transformation of Switching functions to completely symmetric switching function. IEEE Trans, on Computers. June 1968, vol. C-17, N.6, p. 596−599
  17. Danielsson P.E., Boolean memories, IEEE Trans, on Computers. January 1966, vol. EC-15, N. l, p. 67−73
  18. Dalberg В., On Symmetric functions with redundant variables weighed functions, IEEE Trans, on Computers. May 1973, vol. C-22, N.5, p. 450−458
  19. Das S.R., Sheng C.L., On detection total or partial symmetry of switching fuctions, IEEE Trans, on Computers. Marchl971, vol. C-20, N.3, p. 352−355
  20. Lee D.T., Hong S.J., An algorithm for transformation of an arbitrary switching function to a completely symmetric function, IEEE Trans, on Computers. November 1976, vol. C-25, N. l 1, p. 1117−1123
  21. Muroga S. Logical design and switching theory. Wiley & Sons, New-Jork London-Sydney-Toronto, 1976, vol. C-25, N. 11, 624 p.
  22. Sung C.Hu. Cellular synthesis of synchronous sequential machines. IEEE Trans, on Computers. December 1972, vol. C-21, N. l2, p. 1399−1405
  23. Yau S.S., Tang J.S. Transformation of an arbitrary switching function to a totally symmetric function. IEEE Trans, on Computers. December 1971, N. l2, p. 1606−1609
  24. П.Н. Нанотехнологические процессы и комплексы для нанонейроэлектронных схем: докл. V Всероссийская конференция «Нейрокомпьютеры и их приминение», Москва, 1999 г.
  25. Goser R.F., et al., Aspects of system and circuits for nanoelectronics. Proceedings of the IEEE, April 1997, vol. 85 no. 4, pp. 558−573
  26. П.Н., Фролов В. Д. Наноэлектронные элементы перспективных вычислительных устройств: Сб. докл. V Всероссийскаяконференция «Нейрокомпьютеры и их применение», Москва, 1999 г.
  27. С.А., Мальцев П. П. Элементы нанотехнологии: Сб. докл. IV Всероссийская конференция «Нейрокомпьютеры и их приминение», Москва, 1998 г.
  28. М.В. Перспективные нанонейроэлементы: Сб. докл. IV Всероссийская конференция «Нейрокомпьютеры и их приминение», Москва, 1998 г.
  29. Лускинович П. Н Наноэлектронные нейросхемы: Сб. докл. V Всероссийская конференция «Нейрокомпьютеры и их применение», Москва, 1999 г.
  30. Rambidi, N.G., Maximychev, A.V. Towards a biomolecular computer. Information processing capabilities of biomolecular nonlinear dynamic media. BioSystems, 1997, vol. 41, pp. 195−211
  31. Rambidi, N.G., Biomolecular computer: from the brain-machine disanalogy to the brain-machine analogy. BioSystems, 1994, vol. 33, pp. 45−54
  32. Galushkin A.I., Luskinowich P.N., Nesmeyanov S.S., Nikishin V.I., and Frolov V.D. The Quantum Neurocomputer. Journal of The British Interplanetary Society, 1994, vol. 47, pp. 331−333
  33. Luskinowich P.N., Nikishin V.I., and Ryzhikov I.A. Nanoelectronics Based on Scanning Tunneling Microscopy .IEEE Int. Solid-State Conf., Session 8, TP 8.7, 1992
  34. Nanostructure, Physics and Fabrication / Edited by Reed M.A., Kirk W.P. Proc. Int. Symp., College Station, texas, March 13−15, 1989, Academic Press, Inc.
  35. H.C., Быков B.A., Емельянов A.B. Наноэлектронка: состояние и перспективы: Сб. докл. I Всероссийская конференция «Нейрокомпьютеры и их применение», Москва, 1995 г.
  36. Н.Г. Биомолекулярные нейрокомпьютеры. «Нейрокомпьютер», № 1,2,1998 г. стр. 27−33
  37. Н.Г. Биомолекулярная реализация нейронных сетей -структураи логические характеристики: Сб. докл. II Всероссийская конференция «Нейрокомпьютеры и их применение», Москва, 1996 г.
  38. Ю.В., Брюхоницкий Ю. А., Галуев Г. А. и др. Принципы построения цифровых нейроподобных структур на пластине. Деп. рук. Таганрог, 1987 г.
  39. А.Н. перспективы развития и применения систем из 2- и 3-х мерных нейронных СБИС на пластине: Сб. докл. I Всероссийская конференция «Нейрокомпьютеры и их применение», Москва, 1995 г.
  40. А.Н., Бубенников A.A. Технологические проблемы создания субмикронных нейрочипов и нейросистем на пластинах: Сб. докл. III Всероссийская конференция «Нейрокомпьютеры и их применение», Москва, 1997 г.
  41. А.Н., Зыков A.B. Модели цифровых формальных нейронов и нейронных сетей для 0,15−0,3 мкм. нейрочипов и нейропластин: Сб. докл. IV Всероссийская конференция «Нейрокомпьютеры и их применение», Москва, 1998г
  42. Ramacher U., Wesseling М., Goser К. WSI architecture of a neurocomputers module. Int. Conf. on WSI. p. 124−130
  43. В.А. Частотная матрица отношений и её свойства. Труды МЭИ М., 1964, стр 5−30.
  44. В.А. Дифференцирование графов по событиям. Труды МЭИ, М., 1970, 18−30.
  45. Белявский B. JL, Горбатов В. А. Однородный сотовые структуры и их свойства. Вычислительная техника. МЭИ, М., 1970.
  46. McDonald, J.F., Dabsal, S., Philhower, R., Russinovich, M.E., Wafer Scale Integration (WSI) of Programmable Gate Array (PGA's). 1990 Int. Conf. On WSI, pp. 329−338
  47. McDonald, J.F., Rogers, E.H., Rose, K., Steckl, A.L., The tuals of Wafer Scale Integration, IEEE, Spectrum, 1984, vol.21, pp.32−39.
  48. Daud, Т., et. Al. Neural network based feed-forward high density associative memory. Int. Electron device meeting, 1987/
  49. Thakor, A.P., Binary synaptic connections based on memory switching ib a-Si:H. AIP Conf. 1986, pp. 426−430.
  50. Wyatt, P.W., Raffel, J.I., Restructable VLSI a Demonstrated Wafer Scale Technology. 1989, Int. Conf. On WSI, pp. 13−20/
  51. Chapman, G.H., Canter, J.M., Cohen, S.S., The technology of laser formed interaction for wafer scale integration. 1989 Int. Conf on WSI, pp. 21−29.
  52. Rueckert, U., Kreuzer, J., Goser, K., Neural networks, Proc. 1987, IEEE First int. Conf. on NN. Pp. 31−33.
  53. Distante, F., et al. A general configurable architecture for WSI implementation for Neural Networks. 1990 Int. Conf. on WSI, pp. 116 123.
  54. Spenser, E.G., Programmable bistable switches and resisters for neural networks. AIP Conf. 151, 1986, pp. 414−419.
  55. Wu, S., Lu, Т., Xu, X., and Yu, F.T.S., Adaptive Optical Neural Network using a High Resolution Video Monitor. Microwave Opt. Technol. Lett., 1989, vol. 2, no. 7.
  56. Wu, S., Lu, Т., Xu, X., and Yu, F.T.S., Two-Dimensional Programmable Optical Neural Network. Applied Optics, 1989, vol. 28, no. 22.
  57. Yu, F.T.S., Wu, S., and Mayers, A.W., Applications of Phase Conjugation to a Transform Correlator. SPIE, vol. 1134 Optical Pattern Recognition II, 1989, pp. 111−118.
  58. Barnard, E., and Casasent, D., Optical Neural Net for Matrix Inversion. -Applied Optics, 1 July 1989, vol. 28, no.13.
  59. Barnard, E., and Casasent, D., Optical Neural Net for Classifying Imaging Spectrometer Data. Applied Optics, 1 August 1989, vol. 28, no. 15.
  60. Botha, E., Barnard, E., and Casasent, D., Optical Neural Networks for Image Analysis: Imaging Spectrjscopy and Production Systems, 3 rd Int. Conf. Ind. and Eng. Appl. Artif. Intell. and Expert Sys. (IEA/AIE'90), Charleston, S.C., 15−18 July 1990.
  61. Telfer, В., and Casasent, D., Updating Optical Pseudoinverse Associative Memories. Applied Optics, 1 July 1989, vol. 28, no. 13.
  62. Telfer, В., and Casasent, D., Neural Closure Associative Processor, neural Networcs, 1991, vol. 4, pp. 589−598.
  63. X. Дж., Роджерс C.K. Оптические нейронные сети. — ТИИЭР, 1989, т. 77, № 10.
  64. Caulfield, H.J., Optical Neural Networks. SPIE, vol. 960, Real-Time Signal Pricessing for Industrial Applications, 1988.
  65. Psaltis, D., Optical Realization of Neural Network Models. Fall. Joint Comput. Conf., Dallas, Tex., Nov., 2−6, 1986- Proc. IEEE 1986.
  66. Psaltis, D., Optical Realizations of Neural Network Model. SPIE, vol. 700 IOCC 1986 International Optical Computing Conference.
  67. A board System for High-speed Image Analysis and Neural Networks/. E. Sackinger, H.-P. Graf (AT&T Bell Lab., Holmdel. NJ. USA). IEEE Trans. Neural Netw. (USA), Jan. 1996, vol.7, no.l. p.214−21.
  68. Синтез сети Хэмминга на основе программируемых логических интегральных схем / Палагин A.B., Опанасенко В. Н., Чигирик Л.Г.// Электрон моделир, 1995, 17, № 4. с. 62−69.
  69. Tam. S., Gupta, В., Castro, H. and Holler, M., Learning on an Analog VLSI Neural Network Chip. Proceedings of the 1990 IEEE International Conference on Systems, Man & Cybernetics.
  70. Tam. S., Gupta, В., Castro, H. and Holler, M., Analog Non-Volatile VLSI Neural Network Chip and Back-Propagation Training. — Neural Information Processing Systems, Poster Sessions, 1990.
  71. Tarn, S., Castro, H. and Holler, M., Implementation and Performance of an Analog Non-Volatile Neural Network. 1992, 80170NX Neural Information Technology & Applications, pp. 1−28.
  72. PC Personal Programmer. Users Guide. Intel, 1992.80.1ntel Neural Network Training System. Version 3.0 Intel, 1992.
  73. Branch, I., Tam, S., Holler, M.A., Shmurum, A.L., Analog VLSI Neural Networks for Impact Signal Processing, IEEE Micro, December, 1992, pp. 34−44.
  74. Shields, W., Wu, C.H., A New Training Method to Precision-Limited Analog Neural Networks, IEEE Int. Conf. of Neural Networks, 1994 Orlando, pp. 2022−2027.
  75. Webster, W.P., Artificial Neural Networks and their Application for Weapons, Naval Engineers Journal, May, 1991, pp. 46−59.
  76. Tam, S., Holler, N.A., Сапера, С., Neural Networks for Computing, AIP Conference Proceedings, Snowbird, UT 1988.
  77. П.А., Фомин Д. В., Черников B.M., Виксне П. Е., Архитектура нейропроцессора NeuroMatrix NM6403: Сб. докл. V Всероссийском конференции «Нейрокомпьютеры и их применение» М.: Радио и связь, 1999
  78. А.И. Разработка нейрокомпьютеров общего назначения : Сб. докл. V Всероссийской конференции «Нейрокомпьютеры и их применение», М: Радио и связь, 1999, с .67.
  79. Д.Ж. Реализация нейрокомпьютеров на базе ПЛИС XILINX: Сб. докл. V Всероссийской конференции «Нейрокомпьютеры и их применение», М. Радио и связь, 1999, с. 94.
  80. Цифровая обработка сигналов на ПЛИС XILINX (каталог продукции). Scan.Eng. Telecom, 1999.
  81. Универсальная плата цифровой обработки сигналов XDSP-680.
  82. Краткое техническое описание Scan.Eng. Telecom, 1999.
  83. Применение ПЛИС XILINX для построения нейронных сетей. Scan.Eng. Telecom, 1999.
  84. А.Н., Иванов Ю. П., Виксне П. Е., и др. О разработке СБИС «Нейрочип-1» на базе БМК «Исполин-бОТ»: Сб. докл. I Всероссийской конференции «Нейрокомпьютеры и их применение», -М., 1995.
  85. Ю.П., Тришков В. М., Павлов М. Ю., и др. Разработка сверхбольшой интегральной схемы «Нейрочип-1» на основе БМК «Исполин-бОТ» : Сб. докл. II Всероссийской конференции «Нейрокомпьютеры и их применение» -М., 1997.
  86. Botros. N.M., Abdil-Aziz, M., Hardware Implementation of an Artificial Neural Network, IEEE int. Conf., San- Francisco, 1993, pp. 1252−1258.
  87. Eldredge, I. G., Hutchings, B.L. RRANN: A Hardware Implementation of the Backpropagation Algorithm Using Reconfigurable FPGAS. The 1994 IEEE Int Conf. On Neural Networks. Orlando, 1994, pp.20 872 102.
  88. В.Г., Система проектирования цифровых фильтров и нейрочипов на ПЛИС Доклад на 4-й Всероссийской конференции «Нейрокомпьютеры и их применение" — М 1998.
  89. В.Г. Проектирование высокопроизводительных параллельных устройств на базе ПЛИС XILINX большой интеграции Сб. докл. У Всероссийской конференции «Нейрокомпьютеры и их применение» -Мю Радио и связь, 1999.
  90. Д.В. Архитектура, производительность и использование нейрочипа ETANN.-Зарубежная радиоэлектроника. Успехи современной радиоэлектроники, 1997 № 2, с. 19−23
  91. Holler М. Tarn. S, Castro. Hand Benton, R An Electrically Trainable Artificial Neural Network (ETANN) with 10 240 Floating Gate Synapses.- International Joint Conference on Neural Networks, June 1989, Washington, D.C.
  92. А. И. Кирсанов Д.В., Заказной цифровой нейрочип. -Нейрокомпьютер, 1992, № 2, с. 67−72
  93. ЮЗ.Крысанов А. И. СБИС-Ьпеиго-базовый нейрочип для создания современных компьютеров Зарубежная радиоэлектроника, 1998, № 1.
  94. Цифровой нейрочип, аппаратно реализующий быстрое обучение нейронной сети с параллельной обработкой данных. Digital Neural-net Chip Learns Quickly with Parallel Processing CMOS, David Bursky ELECTRON. DES, 1990 VOI.38 NO.22
  95. , D., Обучаемый каскадируемый цифровой нейрочип. A VLSI Architecture for High-perfomance, Low-Cost, On-Chip Learning. IJCNN int jt Conf. Neural Networks, san Diego, Calif, 1990, vol.2
  96. Нейрокомпьютер с быстродействием в сто раз больше, чем у суперкомпьютера Neurocomputer lOOrnal schneller als Supercomputer// Elektronik.- 1991 № 11, c.58
  97. Rstrom, D., Nguyen N., An Implementation of Kohohens oSelfcrganizing Map on the Adaptive Solutions Neurocomputer Artificial Networks Elgevier Science Publ, 1991, pp. 715−720
  98. Mueller D., Hammerstrom, D., Компонента искусственной сети A. Neural Network Systems Component. IEEE int. Cjnf. Neural Networks San Francisco, Calif., March.28 Apr. 1, ICNN93, VOL., 3- Piscataway (N.J.) 1993. pp/1258−12 164
  99. Ratanapan, K., Daglu, C.H. Implementation of ARTI Architecture on CNAPS Neurocomputer Application and Science of Artificial Neural Networks. 1995. SPIE, vol. 2492, pp.103−110
  100. ВМС США создают систему обнаружения цели на основе нейронных сетей. Neural Nets For Automated Sonsr/- IEEE Expert, 1993. vol. 8, no 4, p. 92.
  101. White, M., Mark, I., Borsuk, J., et ai., Charge-Coupled Device (CCD) Adaptive Signal Processing IEEE Journal of Solid-state circutes. February 1979, vol. SC-14, NO. l
  102. Agranat A., Yariv, A., A New Architecture for Microelectronic Implementation of Neural Network Models. 111, pp. 403−409
  103. Mead, C., Istail, M., Analog VLSI Implementation of Neural System.-Kluwer Academic Publishers. Boston. USA, 1989.
  104. Hirai, Y., Kamada, K., Yamada, M., Ooyama, M., A Digital Neurochip with Unlimited Connectability for Large Scale Neural Networks.- Proc. International Joint Conference on Neural Networks, 1989, pp. 11/163 169,1989.
  105. Van, D., den Bout, Miller, T., S digital architecture employing stochasticism for the simulation of Hopfield neural nets. -IEEE Trannaction on Circuits and Systems, m May, 1989.
  106. А.И., Кирсанов Д. В., Цифровые нейрочипы (специализированные цифровые СБИС для нейрокомпьютеров) -Зарубежная радиоэлектроника, 1999, № 1, с. 17−37
  107. Mackie, S., Graf. H.P., Schwartz, D.B., Impiementations of networg in silicon.- Neural Computers, 1988, pp. 467−476
  108. Graf. H. P, de Vegvar, P., A CMOS Implementations of Neural Network Model. Advanceb Research in VLSI, 1987, pp. 313−349.
  109. Graf. H. P Jacker, L., Howard, R., et al ., VLSI Implementations of Neural Network Memory with Several Hungreds of Neurons. Conf. Neural Network for Computing, 1986, pp. 182−187
  110. Graf. H. P, Hubbard, W., Jacker, L. D., P.G.N, de Vegvar., A CMOS Associative Menory Chip. 1st IEEE Int. Conf. On Neural Network., 1997
  111. Howard R.E., Graf. H. P Jacker, L., Electronic Neural Network AT&T Techical Journal January/February, 1988, vol.67 issue 1, pp.58−64
  112. Hubbard, W., Schwartz D.B., Denker J., et al Electronic Neural Network Coft Neural Network for Computing, 1986, pp. 227−234
  113. Jacker, L Graf. H. P, Hubbard, W Electronic Neural Network chip -Applied Optics, December, 1987, vol. 26, no.23, pp. 5077−5080
  114. Thakoor, A.P., Lamb J.L., Moopenn A., and Lambe J., Binary Synaptic Connections Based on Memory Switching in a-Si:H AIP Conf. Proc., 1986 pp. 426−431
  115. Thakoor, A.P. Moopenn A., and Lambe J. And Khanna S.K. Electronic hardware implementations of neural netwoks applied Optics, 1 December 1987, vol.26, no 23. pp. 5085−5092
  116. Eberhardt, S., Duong T., Thakoor, A., Design of parallel hardware neural network system from custom analog VLSI «building block» chips
  117. Moopenn, A., Langenbacher, H., Thakoor, A, Khanna, S., Programmable synaptic chip for electronic neural networks, Neural Inf. Process Syst. 1st IEEE Conf. Denver, Colo, 1987 no. 8−12 N.Y., 1988 pp.564−572
  118. Akers, L.A., Walker, M.Y., A Limited-interconnect Syntetic Neural IC. Pros IEEE Int. Coft. Neural Networks, 1988, vol.2, pp. 151−158
  119. Walker, M.R., Hasler, L.A., A CMOS Neural Networks for Pattern Association IEEE MICRO, 1989, voi. 9, p.68
  120. Черносвистов A. Visual С++ «Питер», Санкт-Петербург, 2000
  121. Mc-Culloch, W.S. and W. Pitts., «A logical calculus of the ideas immanent in nervous activitu». Bulletin of Mathematical Biophysics, vol.9, p.p. 127−147, 1943.
  122. Sivilotti, M.A., Emerling, M.R., Mead, C.A., VLSI ARCHITECTURES FOR Implementation of. Neural Networks, Electronic Neural Network conf. Neural Networks Computing, 1986. p. 408
  123. C.X. (Caldwell S. H.) The Recognition and Identification of Symmetric Switching Functions/ Trans. AIEE, 1954, VOI.73. pt.l. p. 142−147
  124. И.М., Хэрари Ф. (Copi I. M., Harary F.) Some Properties of n-adic Relations Portugaliae Math., 1953, vol.12, fasc.4, p.143−152
  125. B.K. Реализация симметрических функций в классе II-схем докл. АН СССР. 1956. т. 109, стр. 260−263.
  126. Мак-Класки Э.ДЖ. Detection of Group Invariance or Total Symmetry of a Boolean Function. BSTJ, 1956? vol. 35, № 6,p. 1445−1453.
  127. Малер Д.Ю. Application of Boolean Algebra to Switching Circuit Design and to Error Detection. IRE Trans., 1954, vol. EC-3, № 3, p. 612.
  128. Маркус М.П. The Detection and Identification of Symmetric Switching Functions with the Use of Tables of Combinations. IRE Trans ., 1956, vol. EC-5, No 4, p. 237−239.
  129. M. П. Detecting Symmetric Switching Functions. Prod. Engng 1956 vol. 27, No 12, p. 164−166.
  130. И. (Ninomiya) On the Number of Types of Symmetric Boolean Output Matrices. Mem. Fac. Engng Nagoya Univ. 1955, vol. 7. No 2, p. 115−124
  131. С. (Pankajam S.) On Symmetric Functions of n Elementsina Boolean Algebra. J. Indian Math. Soc., 1936/7. vol. 2, No 5, p. 198 210
  132. С. (Pankajam S.) On Symmetric Functions of m Elements ina Boolean Algebra. Proc. Indian Acad. Sei., 1939, Sec. A, No 2, p. 95 102
  133. Г. Н. О функциональной разделимости булевых функций. Докл. АН СССР, 1954, т. 94, № 5, стр. 801−803- 1958, т. 123, № 5, стр. 774
  134. Г. Н. К изучению симметрических булевых функций с точки зрения теориирелейно контактных схем. Докл. АН СССР, 1955, т. 104, № 2, стр. 183−185- 1958, т. 123, № 5, стр. 774
  135. Г. Н. К синтезу симметрических контактных схем. Сб. работ по автоматике и телемеханике. Изд-во АН СССР, 1956, стр. 268−277
  136. Г. Н. О групповой инвариантности булевых функций. 1958 г. стр. 39−44
  137. Ю. (Polya G.) Sur les types des propositions composees. J. Symbolic Logic, 1940, vol. 5, № 3, p. 98−103
  138. Нан дер Пуль В.JI. (van der Puel W.L.) Enige bijzondere onderwerpen uit de schattelalgebra. De Ingenieur (Utrecht). 1955, vol. 67, Nr. I, blz. E.9-E.14
  139. P. (Righi R) Le fiinzioni di commutazione in genere e guelli simmetriche in particolare. Ingeneria ferroviaria, 1955, An. 10, N 10, p. 719−737.
  140. A.B., Карбачинский В. М., Леоненко И. В. Автоматизированное проектирование нейронных сетей логического управления обогащением полезных ископаемых // Информационная математика. 2000. № 0. С. 108−114.
  141. И.В. Проектирование микропрограммной сети управления технологическими процессами обогащения алмазоносных пород. // Информационная математика. 2004. — № 1 (4). — С.93−103.
Заполнить форму текущей работой