ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅Π·Π΅Π½Ρ ΠΈΠΌΠ°Π»ΡΠ½ΡΡ ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ in vitro Ρ Π΄Π΅ΡΠ΅ΠΉ Ρ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ
ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΠ¦Π ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Ρ ΠΈΠΌΠ΅ΡΠΈΠ·ΠΌΠ° ΠΠ‘Π ΠΠ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π» Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΏΡΠΈΠΆΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΠ‘Π Ρ Π΄Π΅ΡΠ΅ΠΉ Ρ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ. ΠΡΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ in vitro ΠΠ‘Π ΠΠ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° 3β4 ΠΏΠ°ΡΡΠ°ΠΆΠ° ΠΎΠ±Π»Π°Π΄Π°ΡΡ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ½ΠΈΠΆΠ°Π΅ΡΡΡ ΠΏΡΠΈ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΈ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΠ»Π°Π²Π° 1. ΠΠΠΠΠ ΠΠΠ’ΠΠ ΠΠ’Π£Π Π«
- 1. 1. ΠΠ΅Π·Π΅Π½Ρ ΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΠΊΠ»Π΅ΡΠΊΠΈ ΠΈ ΡΡΡΠΎΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΌΠΈΠΊΡΠΎΠΎΠΊΡΡΠΆΠ΅Π½ΠΈΠ΅
- 1. 2. Π ΠΎΠ»Ρ ΠΌΠ΅Π·Π΅Π½Ρ ΠΈΠΌΠ°Π»ΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π² Π³ΠΎΠΌΠΎΠΏΠΎΡΠ·Π΅
- 1. 3. ΠΠΌΠΌΡΠ½ΠΎΡΠ΅Π½ΠΎΡΠΈΠΏΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΠ‘Π
- 1. 4. ΠΠ΅ΡΠΎΠ΄Ρ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΠΠ‘Π
- 1. 5. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΠ‘Π
- 1. 6. ΠΠΌΠΌΡΠ½ΠΎΠΌΠΎΠ΄ΡΠ»ΠΈΡΡΡΡΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΠ‘Π
- 1. 7. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΠ‘Π in vivo
- 1. 7. 1. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΠ‘Π Ρ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
- 1. 7. 2. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΠ‘Π Ρ Π»ΡΠ΄Π΅ΠΉ
- 1. 8. ΠΠ΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ
- 1. 9. ΠΠΌΠΌΡΠ½ΠΎΠ³Π΅Π½Π΅ΡΠΈΠΊΠ°
- 1. 10. Π€ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΎΠ»Ρ ΠΠ‘Π
- ΠΠ»Π°Π²Π° 2. ΠΠΠ’ΠΠ ΠΠΠΠ« Π ΠΠΠ’ΠΠΠ«
- 2. 1. ΠΠ±ΡΠ°Π·ΡΡ ΠΠ Π΄Π»Ρ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ‘Π
- 2. 2. ΠΠ΅ΡΠΈ, ΠΏΠΎΠ»ΡΡΠ°Π²ΡΠΈΠ΅ ΠΠ‘Π Π΄Π»Ρ ΠΊΠΎ-ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΉ
- ΠΠ΅ΡΠΈ, ΠΏΠΎΠ»ΡΡΠ°Π²ΡΠΈΠ΅ ΠΠ‘Π Π΄Π»Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π Π’ΠΠ₯
- 2. 3. ΠΠ±ΡΠ°Π·ΡΡ ΠΠ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Ρ ΠΈΠΌΠ΅ΡΠΈΠ·ΠΌΠ° ΠΠ‘Π
- 2. 4. ΠΠ»ΠΎΠ½ΠΎΠ³Π΅Π½Π½ΠΎΠ΅ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΠΎΠΌΠ°Π»ΡΠ½ΡΡ ΡΠΈΠ±ΡΠΎΠ±Π»Π°ΡΡΠΎΠ² ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°
- 2. 5. ΠΠ½Π΄ΡΠΊΡΠΈΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²ΠΊΠΈ ΠΌΠ΅Π·Π΅Π½Ρ ΠΈΠΌΠ°Π»ΡΠ½ΡΡ ΠΏΡΠ΅Π΄ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΈΠΊΠΎΠ²
- 2. 6. ΠΠΌΠΌΡΠ½ΠΎΡΠ΅Π½ΠΎΡΠΈΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΠΎΡΠΎΡΠ½ΠΎΠΉ ΡΠΈΡΠΎΡΠ»ΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΠΈ
- 2. 7. ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΡΠΎΡΡΠ° ΠΠ‘Π ΠΏΡΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ
- 2. 8. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΡΡΠΎΠΌΠ°Π»ΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π² ΠΊΡΠ»ΡΡΡΡΠ΅ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄ΠΎΡΡΠ°Π²ΠΊΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ° ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Π² Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΡ
- 2. 9. ΠΡΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΈΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ²
- 2. 10. ΠΠ°ΡΠΈΠΎΡΠΈΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅
- 2. 11. ΠΠ½Π°Π»ΠΈΠ· ΡΠ°ΡΡΠΎΡΡ Π°Π½Π΅ΡΠΏΠ»ΠΎΠΈΠ΄ΠΈΠΈ
- 2. 12. ΠΠ»ΠΎΠ½ΠΎΠ³Π΅Π½Π½ΠΎΠ΅ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΠΎΠΌΠ°Π»ΡΠ½ΡΡ ΡΠΈΠ±ΡΠΎΠ±Π»Π°ΡΡΠΎΠ² ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Ρ ΠΈΠΌΠ΅ΡΠΈΠ·ΠΌΠ°
- 2. 13. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Ρ ΠΈΠΌΠ΅ΡΠΈΠ·ΠΌΠ° (ΠΌΠ΅ΡΠΎΠ΄ ΡΠΈΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ’Π―-Π»ΠΎΠΊΡΡΠΎΠ²)
- 2. 14. ΠΠ°ΠΊΡΠ΅ΡΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΠ‘Π
- 2. 15. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΠΠ ΡΠΈΡΠΎΠΌΠ΅Π³Π°Π»ΠΎΠ²ΠΈΡΡΡΠ° ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° (Π‘ΠΠ£)
- 2. 16. Π‘ΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ° Π΄Π°Π½Π½ΡΡ
- ΠΠ»Π°Π²Π° 3. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΈΡ ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅
- ΠΠΠΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΠΎΠΉ Π½Π°ΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ‘Π
- 3. 2. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²ΠΎΡΠ½ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΠΎΠΉ Π½Π°ΠΌΠΈ ΠΊΡΠ»ΡΡΡΡΡ ΠΠ‘Π ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°
- Π.ΠΠ‘Π²Π΅ΡΠΎΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΠ‘Π ΠΏΡΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ
- 3. 4. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΡΠΎΠΊΠΎΠ² ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π° ΡΠ΅Π½ΠΎΡΠΈΠΏΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΡΡΠ°Π² ΠΌΠΎΠ½ΠΎΡΠ»ΠΎΠΉΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΡ
- 3. 5. ΠΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ, Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ Π΄Π»Ρ ΠΠ‘Π Π°Π½ΡΠΈΠ³Π΅Π½ΠΎΠ² ΠΏΡΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ
- Π.Π±ΠΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΡΠΎΡΡΠ° ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ
- 3. 7. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΡΡΠΎΠΌΠ°Π»ΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π² ΠΊΡΠ»ΡΡΡΡΠ΅ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄ΠΎΡΡΠ°Π²ΠΊΠΈ ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Π² Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΡ
- 3. 8. ΠΠ°ΡΠΈΠΎΡΠΈΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ½ΠΎΠ½ΠΎΡΠ»ΠΎΠΉΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΡ ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°
- 3. 9. Π§Π°ΡΡΠΎΡΠ° Π°Π½Π΅ΡΠΏΠ»ΠΎΠΈΠ΄ΠΈΠΈ ΠΠ‘Π
- 3. 10. ΠΠ°ΠΊΡΠ΅ΡΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΠ‘Π
- 3. 11. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΠΠ ΡΠΈΡΠΎΠΌΠ΅Π³Π°Π»ΠΎΠ²ΠΈΡΡΡΠ° ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° (Π‘ΠΠ£)
- 3. 12. ΠΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΡΠ΅ΠΌΡΡ ΠΠ‘Π Ρ Π΄Π΅ΡΠ΅ΠΉ
- ΠΠΠΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ
ΠΈΠΌΠ΅ΡΠΈΠ·ΠΌΠ° ΠΠ‘Π ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΠΏΠ΅ΡΠ΅Π½Π΅ΡΡΠΈΡ
Π°Π»Π»ΠΎΠ³Π΅Π½Π½ΡΡ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡ ΠΠ
- 3. 14. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Ρ ΠΈΠΌΠ΅ΡΠΈΠ·ΠΌΠ°
- ΠΡΠ²ΠΎΠ΄Ρ
ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅Π·Π΅Π½Ρ ΠΈΠΌΠ°Π»ΡΠ½ΡΡ ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ in vitro Ρ Π΄Π΅ΡΠ΅ΠΉ Ρ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
ΠΡΠ²ΠΎΠ΄Ρ.
1. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΡΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ in vitro ΠΠ‘Π ΠΠ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΈΠΆΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠΈ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡΡ Ρ Π΄Π΅ΡΠ΅ΠΉ Ρ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ.
2. ΠΠ‘Π, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ in vitro, ΡΠΎΡ ΡΠ°Π½ΡΡΡ ΠΏΠΎΠ»Π½ΠΎΡΠ΅Π½Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ, ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΊ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²ΠΊΠ΅ Π² Π°Π΄ΠΈΠΏΠΎΡΠΈΡΡ ΠΈ ΠΎΡΡΠ΅ΠΎΡΠΈΡΡ.
3. ΠΠ»Ρ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΠ‘Π Π² ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΡΠ»Π΅Π΄ΡΡΡΠ°Ρ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅Π½ΠΎΡΠΈΠΏΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΠ°Π½Π΅Π»Ρ: CD105, CD166, CD44, CD73, CD13, CD29, CD90.
4. ΠΡΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ in vitro ΠΠ‘Π ΠΠ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° 3−4 ΠΏΠ°ΡΡΠ°ΠΆΠ° ΠΎΠ±Π»Π°Π΄Π°ΡΡ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ½ΠΈΠΆΠ°Π΅ΡΡΡ ΠΏΡΠΈ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΈ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΊ 10−12 ΠΏΠ°ΡΡΠ°ΠΆΡ.
5. ΠΠΎΡΠ»Π΅ 3 ΠΏΠ°ΡΡΠ°ΠΆΠ° Π² ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΎΠ²Π°Π»ΠΈ ΠΊΠ»Π΅ΡΠΊΠΈ Ρ Π³Π΅ΠΌΠΎΠΏΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈ ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΠΎΠΌ ΡΠ΅Π½ΠΎΡΠΈΠΏΠΎΠΌ (CD45, CD34, CD 133, CD3, CD 19, CD25, CD38, CD45, CD106, CD31). ΠΠ°Π±Π»ΡΠ΄Π°Π»Π°ΡΡ Π²ΡΡΠΎΠΊΠ°Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠ² ΠΠ‘Π KM (CD90, CD 105, CD 166, CD44, CD73, ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½Π°Ρ CD 13 ΠΈ Π‘Π’)29.).ΠΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΡΡΠΎΠΊΠ° ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ‘Π Π΄ΠΎ 10−12 ΠΏΠ°ΡΡΠ°ΠΆΠ° ΡΠ½ΠΈΠΆΠ°Π΅ΡΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠ»Π΅ΡΠΎΠΊ, ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡΡΡΡΠΈΡ CD90, CD 105 ΠΈ CD166. ΠΠ°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΡ ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ CD29, CD13, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΡΡΠ΅Π·Π°ΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠΈ Π³Π΅ΠΌΠΎΠΏΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ (CD45+), ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ (CD31+) ΠΈ ΠΌΠΎΠ½ΠΎΡΠΈΡΠΎΠ² (CD 14+).
6. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ ΠΠ‘Π ΠΠ Π½Π° ΡΠ°Π½Π½ΠΈΡ ΠΈ ΠΏΠΎΠ·Π΄Π½ΠΈΡ ΠΏΠ°ΡΡΠ°ΠΆΠ°Ρ Ρ ΡΠΎΠΌΠΎΡΠΎΠΌΠ½ΡΠΉ Π½Π°Π±ΠΎΡ Π½Π΅ ΠΌΠ΅Π½ΡΠ»ΡΡ (46,XY ΠΈΠ»ΠΈ 46, XX) ΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΎΠ²Π°Π»ΠΈ Π°Π½Π΅ΡΠΏΠ»ΠΎΠΈΠ΄ΠΈΠΈ.
7. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π½Π°ΠΌΠΈ Π΄Π°Π½Π½ΡΠ΅ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠ°Π½ΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ Ρ Π΄Π΅ΡΠ΅ΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡΡ, ΠΎΠ± ΠΎΡΡΡΡΡΡΠ²ΠΈΠΈ ΡΠ°Π½Π½ΠΈΡ ΡΡΠ°Π½ΡΡΡΠ·ΠΈΠΎΠ½Π½ΡΡ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ ΠΏΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½Π½ΡΡ in vitro ΠΠ‘Π Ρ Π΄Π΅ΡΠ΅ΠΉ.
8. ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΠ¦Π ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Ρ ΠΈΠΌΠ΅ΡΠΈΠ·ΠΌΠ° ΠΠ‘Π ΠΠ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π» Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΏΡΠΈΠΆΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΠ‘Π Ρ Π΄Π΅ΡΠ΅ΠΉ Ρ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ.
ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ.
1. ΠΠ΅ΡΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ Π΄Π»Ρ ΡΠΊΡΠΏΠ°Π½ΡΠΈΠΈ ex vivo ΠΠ‘Π ΠΠ Π² ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅Π»ΡΡ .
2. ΠΠ»Ρ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ‘Π in vitro ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Ρ ΠΎΠ±ΡΠ°Π·ΡΡ ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, Π²ΡΠ΅ΠΌΡ Ρ ΠΊΠΎΡΠΎΡΡΡ ΠΎΡ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π·Π°Π±ΠΎΡΠ° ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Π΄ΠΎΠ½ΠΎΡΠ° Π΄ΠΎ Π½Π°ΡΠ°Π»Π° Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΡΠ»ΠΎ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 6 ΡΠ°ΡΠΎΠ².
3. ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅Π½ΠΎΡΠΈΠΏΠ° ΠΠ‘Π Π² ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π΅ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΏΠ°Π½Π΅Π»Ρ, ΡΠΎΡΡΠΎΡΡΡΡ ΠΈΠ· Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ Π΄Π»Ρ ΠΠ‘Π ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠ² (CD90, CD105, CD166, CD44, CD73, CD13, CD29), ΡΠ°ΠΊ ΠΈ ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠ², ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΡΡ Π΄Π»Ρ Π³Π΅ΠΌΠΎΠΏΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ (CD3, CD14, CD 19, CD25, CD29, CD31, CD34, CD38, CD45, CD 106, HLA-DR).
4. ΠΠ»Ρ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅Π»Π΅ΠΉ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΠΠ‘Π 3−4 ΠΏΠ°ΡΡΠ°ΠΆΠ°.
5. Π ΡΠ»ΡΡΠ°Π΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅Π»ΡΡ ΠΠ‘Π Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ·Π΄Π½ΠΈΡ ΡΡΠΎΠΊΠΎΠ² ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌ ΡΡΡΠΎΠ³ΠΈΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π½ΠΎΡΠΈΠΏΠ° ΠΈ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΎΠ².
1. ΠΠ»Π°Π΄ΠΈΠΌΠΈΡΡΠΊΠ°Ρ Π. Π., ΠΠ°ΠΉΠΎΡΠΎΠ²Π° Π. Π. Π ΡΠΌΡΠ½ΡΠ΅Π² Π‘. Π, Π ΡΠΌΡΠ½ΡΠ΅Π² Π. Π. ΠΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Ρ ΠΈ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΠΌΠΈ ΠΊΠ»Π΅ΡΠΊΠ°ΠΌΠΈ. 2005; ΡΡΡ. 74−82.
2. Kojima Π et al. Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc. Natl.Acad.Sci. USA 2004;101(8):2458−63.
3. Willenbring H et al. Myelomonocytic cells are sufficient for therapeutic cell fusioniin liver. Nat .Med.2004;10−7:744−8'.
4. DelFAgnola Π‘ et al. Hematopoietic stem celltransplantation does not restore dystrophin expression alter engraftment into cardiac and skeletal muscle. J Clin.Invest.2004; 114:1577−85.
5. Lapidos K.A. et al. Transplanted hematopoieticstem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle.J.Clin.Invest. 2004;114:1577−85.
6. Terade N et al. Bone marrow cells adopt the phenotypeb of other cells by spontaneous cell fusion. Nature 2002;416(6880):542−5.
7. Ogle B.M. et al. Biological implications of cell fusion .Nat. Rev.Mol. Cell Biol. 2005;6(7)-567−75.
8. Olge B. M et al. Spontaneous fusion of cells between species yields transdifferentiation and retroviral in vivo. FASEB J.2004; 18:548−50.
9. Shi D. et al. Myogenic fusion of human bone marrow stromal cells, but not hematopoietic cells. Blood 2004;104:290−4.
10. Clark BR, Kealing A. Biology of bone marrow stroma. //Ann NY Acad Sci. -1995. -N770. -P.70−78.
11. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. //Exp Hematol. -2000. -N28. -P.875−884.
12. Colter DC, Class R, Digirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. //Proc. Nati. Acad. Sci USA.-2000. -N97. -P.3213−3218.
13. Javazon E.N., Colter D.C., Schwarz E.J., Prockop D.J. Rat marrow stromal cells aremore sensitive to plating density and expand more rapidly from single-cell-derivedicolonies than human marrow stromal cells. //Stem cells. -2001. -N19. -P.219−225.
14. Martin D.R., CoxN.R., Hathcock T.L., Niemeyer G.P., Baker H.J. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. //Exp. Hematol. -2002. -N30. -P.879−886.
15. Pittenger M., Mackay A., Beck S., et al. Multilineage potential of adult human mesenchymal stem cells. //Science. -1999. -N84. -P. 143−147.
16. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. //J Cell Physiol. -1999. -N181. -P.67−73.
17. Clark E, Wognum AW, Marciniak R et al. Mesenchymal cell precursors from human bone marrow have a phenotype that is direct from cultured mesenchymal cells and are exclusively present in a small subset of CD451ow SH2+ cells. //Blood. -2001. -N98. -P.85a.
18. Haynesworth SE, Baber MA, Caplan AL. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal anibodies. //Bone. -1992. — N13. -P.69−80.
19. Gronthos S, Simmons PJ. The growth factor requirements of STRO-1 -positive human marrow stromal precursors under-deprived conditions in vitro. //Blood. -1995. -N85. -P.929−940.
20. Oyajobi BO, Lomri A, Hott M et al. Isolation and characterization of human clonogenic osteoblast progenitors immunoselected from fetal bone marrow stroma using STRO-1 monoclonal antibody. //J Bone Miner Res. -1999. -N14. -P.351−361.
21. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. //Blood. -1991. -N78. -P.55−62.
22. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, et al. Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. //Nature 2002. -N418. -P.41−49.
23. Lee OK, Kuo TK, Chen W-M et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. //Blood. -2004. -N103. -P. 1669 -1675.
24. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. //J Cell Sci. -2003. -N116. -P. 1827−1835.
25. Gronthos S., Simmons PJ. The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. //Blood. -1995. -N85. -P.4.
26. Majumdar MK, Banks V, Peluso DP, Morris EA. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. //J Cell Physiol. -2000. -N185. -P.198−106.
27. Mitchell JB, Mcintosh K, Zvonic S, Garrett S, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. //Stem Cells. -2006. -Vol.24, N2. -P.376−385.
28. Rochon C, Frouin V, Bortoli S, Giraud-Triboult K, et al. Comparison of gene expression pattern in SP cell populations from four tissues to define common «sternness functions». //Exp Cell Res. -2006. -Vol.312, N11. -P.2074;2082.
29. Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). //Circulation. -2002. -N106. -P.3009−3017.
30. Barry F.P. Mesenchymal stem cell therapy in joint disease. //Novartis Found Syrnp. -2005. -N249. -P.86−96.
31. Kovacic JC, Graham RM. Stem-cell therapy for myocardial diseases. //Lancet. -2004. -N363. -P.1735−1736.
32. Noort W., Kruisselbrink A., de Paus R., et al. Co-transplantation of MSC and UCB CD34+ cells results in enhanced hemopoietic engrafment. //Exp.Hematol.-2002. -N30. -P.870−878.
33. Jiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. //Nature 2002. -N418. -P.41−49.
34. Jiang Y, Vaessen B, Lenvik T et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. //Exp Hematol 2002. -N30. -P.896−904.
35. Reyes M, Dudek A, Jahagirdar B et al. Origin of endothelial progenitors in human postnatal bone marrow. //J Clin Invest. -2002. -N109. -P.337−346.
36. Reyes M, Lund T, Lenvik T et al. Purification and ex-vivo expansion of postnatal human marrow mesodermal progenitor cells. //Blood. -2001. -N98. -P.2615−2625.
37. Reyes M., Verfaillie C.M. Charakterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. //Ann NY Acad Sei. -2001. -N938. -P.231−235.
38. Schwartz RE, Reyes M, Koodie L et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. //J Clin Invest. -2002. -N109. -P.1291−1302.
39. Herzog E., Chai. Li., Krause S. Plasticity of marrow-derived stem cells. //Blood. -2003. -N102. -P.3483−3493.
40. Aldhous P, Reich ES. Flawed stem cell data withdrawn. //New Scientist. -2007, -Vol.15- N2591.-P. 12.
41. Hardeman EC, Chiu CP, Minty A, Blau HM. The pattern of actin expression in human fibroblast X mouse muscle heterokaryons suggests that human muscle regulatory factors are produced. //Cell. -1986. -N47. -P. 123−130.
42. Honma T, Honmou O, Iihoshi S, et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. //Exp Neurol. -2006. -N199. -P.56−66.
43. Sugaya K, Alvarez A, Marutle A, Kwak YD, et al. Stem cell strategies for Alzheimer’s disease therapy.
44. Zhang I I Huang Z, Xu Y, Zhang S. Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurol Res. 2006, 28, 104−112.
45. Couri C, Foss M, Voltarelli C. Secondary prevention of type 1 diabetes mellitus, stopping immune destruction and promoting B-cell regeneration. //Braz J Med Biol Res. -2006.-N39.-P. 1271−1280.
46. Rabb H. Paracrine and differentiation mechanisms underlying stem cell therapy for the damaged kidney. //Am J Physiol Renal Physiol. -2005. -N289. -P.29−30.
47. Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 2005, 328, 258 264.
48. Minguell JJ. Mesenchymal stem cells. //Exp Biol Med. -2001. -N226. -P.507−520.
49. Conget P, Minguel JJ. Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. //Exp Hematol. —2000. -N28. -P.3 82−390.
50. Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype, implications for osteopenic disorders. Hi Bone Miner Res. -1998. -N13. -P.371−382.
51. Owen M. Marrow stromal stem cells. //J Cell Sci. -1988. -N10. -P.63−76.
52. Tontonoz P, Hu E. Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. //Cell. -1994. -N79. -P.l 1 471 156.
53. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. //J Cell Biochem. -1997. -N64. -P.278−294.
54. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfal, A transcriptional activator of osteoblast differentiation. //Cell 1997. -N89. -P.743−754.
55. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. //Exp Hematol. -1976. -N4. -P.267−274.
56. Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. //J Cell Sci. -2000. -N113. -P. 1161−1166.
57. Liu B, Buckley SM, Lewis ID, et al. Homing defect of cultured human hematopoietic cells in the NOD/SCID mouse is mediated by Fas/CD95. //Exp Hematol. -2003. -N31. -P.824−832.
58. Miura M, Miura Y, Padilla-Nash H. et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. //Stem Cells. -2006. -Vol.24, N4. -P. 1095−1103.
59. Rubio D., Garcia-Castro J., Martin M. et al. Spontaneous human adult stem cell transformation. //Cancer Res. -2005. -Vol.65, N8. -P.3035−3039.
60. Tolar J., Nauta A., Osborn M. et al. Sarcoma Derived from Cultured Mesenchymal Stem Cells. //Stem cells. -2007. -Vol.25, N2. -P.371−379.
61. Wang Y., Huso D., Harrington J. et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. //Cytotherapy. -2005. — Vol.7, N6. -P.509−519.
62. Sale GE, Stoib R. Bilateral diffuse pulmonary ectopic ossification after marrow allograft in a dog. Evidence for allotransplantation of hemopoietic and mesenchymal stem cells. //Exp Hematol. -1983. -Vol.11, N10. -P.961−966.
63. Young-Sup Yoon, et al. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction //Circ 2004. -N109. -P.3154−3157.
64. El-Seisi S, et al. Renal pathology at autopsy in patients who died after hematopoietic stem cell transplantation. //Biol Blood Marrow Transplant. -2003. -Vol9, N11. -P.683−688.
65. Di Nicola M et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood.2002;99:3838−3843.
66. Le Blanc K et al. Mesenchymal stem cell inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57:11−20.
67. Potian JA et al. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigenes and recall antigens. J lmmunol.2003:171: 3426−3434.
68. Tse WT et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cell .-implication in transplantation. Transplantation .2003 -75: 389−397.
69. Bartholomew A et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol.2002;30: 42−48.
70. Djouad F et al. Immunosuppressive effect of mesenchymal stem cell favors tumor growth in allogeneic animals.Blood.2003.102:3837−3844.
71. Krampera M et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigenspecific T cells to their cognate peptide. Blood .2003;101:3722−3729.
72. Augello A. et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol.2005;35: 1482−1490.
73. Le Blance K et al. Mesenchymal stem cells inhibit the expression of CD 25(interleukin -2 receptor) and CD 38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol. 2004;60:307−315.
74. Rasmusson I et al. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogenes and alloantigens by different mechanisms. Exp Cell Res.2005;305:33−41.
75. Meisel R et al. Human Bone marrow stromal cell inhibit allogeneic T-cell responses by indolamine 2,3-dioxygenasemediatad tryptophan degradation.Blood.2004:103 -4619−4621.
76. Aggarvval S et al. Human Mesenchymal stem cells modulate allogeneic immune cell responses.Blood.2005; 105:1815−1822.
77. Plumas let al. Mesenchymal stem cells induce apoptosis of activated-T cells.Leukemia.2005; 19:1597−1604'.
78. Rasmusson I et al. Immune modulation by mesenchymal stem cells .Exp Cell Res.2006;312:2169−2179.91Giennie S et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood.2005;105:2821−2827.
79. Maccario R et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4 + subsets expressing a regulatory/suppressive phenotype.Haemotologica.2005;90:516−525.
80. Rutella S et al. Tolerogenic dendritic cells? cytokine modulation comes of age.Blood. 2006;108:1435−1440.
81. Jiang XX et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells.Blood.2005; 105:4120−4126.
82. Nauta AJ et al. Mesenchymal stem cells inhibit generation and function of both CD 34+ derived and monocyte-derived dendritic cells. J Immunol.2006;177:2080;2087.
83. Zhang W et al. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 2004;13:263−271.
84. Beyth S et al. Human mesenchymal stem cells alter antigenpresenting cell maturation and induce T-cell unresponsiveness.Blood.2005;105:2214−2219.
85. Corcione A. et al. Human mesenchymal stem cells modulate B-cell functions.Blood.2006; 107:367−372.
86. Krampera M et al. Role for interferongamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24:386−398.
87. Smuth MJ et al. New aspects of naturalkiller-cell surveillance and therapy of cancer .Nat Rev Cancer. 2002;2 :850−861.
88. Sotiropoulou PA et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24:74−85.
89. Spaggiari GM et al. Mesenchymal stem cells-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation.Blood.2006; 107:1484−1490.
90. Nauta AJ et al. Donor-derived mesenchymal stem cells are immunogenic in an allogenec host and stimulate donor graft rejection in a nonmyeloblative setting. Blood.2006;108 :2114−2120.
91. Yanez R et al. Adipose tissue-derived mesenchymal stem cells (AD-MSC) have in vivo immunosuppressive properties applicable for the control of graftversus-host disease (GVHD). Stem Cells.2006; 24:2582−2591.
92. Sudres M et al. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vivo but fail to prevent grafit-versus-host disease in mice. J Immunol. 2006;176:7761−7767.
93. Zappia E et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106:1755−1761.
94. Zhang J et al. Human bone marrow stromal cell treatment improves neurological function recovery in EAE mice .Exp Neurol.2005; 195:16−26.
95. Djouad F et al. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collageninduced arthritis. Arthritis Rheum .2005;52:1595−1603.
96. Studney M et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2006;62:3603−3608.
97. Koc ON et al. Rapid hematopoietic recovery after coinfusion of autologousblood stem cells and cultureexpanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy .J Clin Oncol. 2000; 18:307−316.
98. Lazarus HM et al. Contransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patiets. Biol Blood Marrow Transplantat. 2005; 11:389−398.
99. Ball LM et al. Cotransplantation of haploidentical bone marrow derived mesenchymal stem cells overcomes graft dysfunction and improves hematological and lymphocyte recovery in haploidentical stem cells transplantation. Blood.2006; 108: Abstract 3118.
100. Le Blanc K et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004; 363:1439−1441.
101. Horwitz EM et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sei USA. 2002; 99:8932−8937.
102. Gao J et al. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells afterinfusion. Cells Tissues Organs.2001; 169:12−20.
103. Breitbach M et al. Potential risks of bone marrow cell transplantation into infracted hearts. Blood. 2007;110: 1362−1369.
104. Rubio D et al. Spontaneous human adult stem cell transformation. Cancer Res .2005;65:3035−3039.
105. Miura M et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells. 2006;24: 10 951 103.
106. Tolar J et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 2006;25:371−379.
107. Bacigalupo A et al. T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Exp Hematol .2005;33: 819−827.
108. Del Papa N et al. Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum. 2006;54:2605−2615.
109. In 4 Anker PS et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102:1548−1549.
110. In4 Anker PS et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica.2003;88:845−852.
111. Bieback Π et al. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22:625−634.
112. Kogler G et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004; 200:123−135.
113. Niederkoni JY. See no evil, hear no evil, do no evil: the lessons of immune privilege .Nat Immunol. 2006;7:354−359.
114. Barry FP et al. Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev .2005; 14: 252−265.
115. ΠΠΎΡ ON ct al. Allogeneic mesenchymal stem cells infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant.2002;30:215−222.
116. Stagg J et al. Interferon-gammastimulated marrow stromal cells: a new type of nonhematopoietic antigenpresenting cell. Blood. 2006:107:2570−2577.
117. Chan JL et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood.2006; 107:4817−4824.
118. Eliopoulos N et al. Allogeneic marrow stromal cells are immune rejected by MHC class I and II mismatched recipient mice. Blood.2005;106:4057−4065.
119. Grinnemo KH et al. Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infracted rat myocardium .J Thorac Cardiovasc Surg .2004;127:1293−1300.
120. Alma J et al. Immunomodulatory properties mesenchymal stromal cells. Blood.2007.110:3499−3506.
121. Tai M.-H. et al. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis doi:10.1093.321.
122. Rubio D. et al. Spontaneous human adult stem cell transformation. Cancer Res.2005;65:3035−9.
123. Kassem M. et al. Adult stem cells and cancer. Cancer Res.2005;65:9601.
124. Miura M et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells to malignant transformation. Stem Cells. 2005.
125. Stenderup Π et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003;33:26−919.
126. Π€ΡΠΈΠ΄Π΅Π½ΡΡΠ΅ΠΈΠ½ Π. Π―., Π§Π΅ΡΡΠΊΠΎΠ² Π. Π. ΠΠ»Π΅ΡΠΎΡΠ½ΡΠ΅ ΠΎΡΠ½ΠΎΠ²Ρ Π½ΠΌΠΌΡΠ½Π½ΡΠ΅ΡΠ°.Π. :ΠΠ΅Π΄ΠΈΡΠΈΠ½Π°, 1969; 256.
127. Friedenstein A., Petrakova Π., Kurolesova A., Frolova G/ Heterotopic transplants of bone marrow Analysis of precursors cells for osteogenic and hematopoietic tissues. Transplantation. 1968; 6- 230−247.
128. Baserga A. Le nicchie di mitosi hemopoietiche. Hematologica (Pavia). 1976. Vol.61. N1. 1−8.
129. Sotiropoulou PA, Perez SA, Gritzapis AP, et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24: 74−85.
130. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune responses. Blood. 2005;105:1815−1822.
131. Bottino Π‘, Castriconi R, Moretta L, Moretta A. Cellular ligands of activating NIC receptors. Trends Immunol. 2005;26:221−226.
132. Brunning R, Bennett J, et al. Myelodysplasia syndromes .IARC Press-2001 p61−73.
133. Schoch Π‘ et al. Patients with de novo acute myeloid leukaemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: a study of 90 patients. Br J Haematol.2001; 112:118−126.
134. Schoch Π‘ et al. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML):an analysis of 93 patients t-AML in comparison to 1091 patients with de novo AML.Leukemia. 2004;18:120−125.
135. PatientsBr J Haematol. 2001;ll3−737−745.
136. J-lromal stem cells: marrow-derived osteogenic preciarsors.
137. Found Symp. 1988; 136:42−60.
138. Al Marr0WStr0raal flbrΒ°Wasts. Calcif Tissue Int. l995−56- (Sup^X 1).17.
139. VisserPj" 13 AH' BrΒ°Ckbank KG' Ploemacher RE, van Vliet E, Brakel-van Peer ICM, jsser. Characterization of fibroblastic stromal cells from murine bone marrow. — Exp.
140. Hematol.- 1985. 13.-237−243.y rth SE, Babei MA, Caplan A I. Cell surface antigens on human marrow-derived mesenchymal cells in vitro: effects of dexamethasone and IL-1 alpha. -J Cell Physiol. 1996. — 166. — 585−592.
141. Goldberg VM, Caplan AI. The osteogenic potential of cuIture-ocparLded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks.
142. Orthop.-1991.-269.-298−311.
143. Flores-Figueroa E et al. In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplasia syndrome. Leuke Res .2002;26:677−686.
144. Borojevic R et al. Bone marrow stromal in childhood myelodysplastic syndrome xomposition, ability to sustain hematopoiesis in vitro, and altered gene expression. Leuk Res. 2004;28: 831−844.
145. Narendran A et al. Characterization of bone marrow stromal abnormalities in a patients with constitutional trisomy 8 mosaicism and myelodysplastic syndromes (MDS) .Pediatr Hematol Oncol. 2004;21:209−221.
146. Flores-Figueroa E et al. Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res.2005;29: 215−224.
147. Zhan W et al. Origin of stroma cells in long-term bone marrow cultures from patients with acute myeloid leukemia .Ann Hematol. 1999;78:305−324.
148. Bhatia R et al. Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood .1995:85:687 688.
149. Mayani H et al Composition and function of the hematopoietic microenvironment in human myeloid leukemia. Leukemia. 1996;10:1041−1047.
150. Awaya N et al. Marrow stromal cells are not derived from the malignant clone in myelodysplastic syndromes (MDS). Blood.2001;98(Ssppl l):1487a.
151. Soenen V et al. Mesenchymal cells (MC) from patients with myelodysplastic syndrome (MDS) are devoid of cytogenetic abnormalities and support short and long-term hematopoiesis in vitro. Blood.2001;98(Suppl l):3041a.
152. Olga B et al. Chromosomal aberrations in bone marrow mesenchymal stem cells patients with myelodysplastic syndrome and acute myeloblasts leukemia. Experimental Hematology 35. 2007; 221−229.
153. Deeg HJ. Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndromes. Leuk Lymphoma. 2000;37:405−414.
154. Friedenstein AJ, Latzinik NV, Gorskaya Yu F, Luria EA, Moskvina EL. Bone marrow stromal colony formation requires stimulation by haemopoietic cells. Bone Miner. — 1992. — 18. — 199−213.
155. Charbord P, Oostendorp R, Pang W, et al. Comparative study of stromal cell lines derived from embryonic, fetal, and postnatal mouse blood-forming tissues. Exp.
156. Hematol. 2002. — 30. — 1202−1210.
157. Zhan W, Knieling G, Vohwinkel G, et al. Origin of stroma cells in AMI" long-term bone marrow cultures from patients with acute myeloid leukemia. Ann Iiematol. 1999;78:305−324.
158. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J cell Sci. 1992. — 102Pt.2. — 341−351.
159. Romanov YA, Svinsitskaya VA, Smirnov VN. Searching for alternative sources of" postnatal human mesenchymal stem cells: candidate SC-like cells from umbilical cord. — Stem cells.-2003.-21. 105−110.
160. Huss R. Isolation of primary and immortalized CD34- hematopoietic and medenchymal stem cells from various sources. Stem Cells. — 2000. — 18. — 1−9.
161. Zhao LR, Duan WM, Reyes Keene CD, Verfaillie CM, Low WC, Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into ischemic brain of rats. Exp Neurol. — 2002. — 174. — 11−20.
162. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. — 2002. — 418. — 41−49. .
163. Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functiona hepatocyte-like cells. J Clin Invest. — 2002. — 109- — 1291−1302.
164. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Multipotent: progenitor cells can be isolated from postnatal murine bone marrow. J Clin Invest. — 2002. 109.-337−346.
165. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of* endothelial progenitors in human postnatal bone marrow. J Clin Invest. — 2002. — 1 337−346.
166. Clark BR, Kealing A. Biology of bone marrow stroma. Ann NY Acad Sci. — 15 —770.-70−78.
167. K. Le Blanc12 & 0. Ringden: Immunomodulation by mesenchymal stem cells and clinical experience Jornal of Internal Medicine.2007:262:509−525.
168. Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood2005; 105:4 1 ^2−0.
169. Glennie S, Soeiro I, Dyson PJ, Lam EVV, Da/.zi F. Bone marrow mesei chymal slem cells induce division arrest anergy of activated T eel-. Blood 2005; 105:2821.
170. Le Naour F, I Iohenkirk L, Grolleau A, el al. Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomii s. / Biol Chem 2001; 276: 17 920.
171. Ramasainy R, Fazekasova H, Lombard Dazzi F198Mesenchymal Stem Cells Inhibit Dendritic Cell Differentiation and Function by PreventingEntry Into the Cell Cycle/ Transplantation, 2007;Vol 83−71−76.
172. Cheng M, Sexl V, Sherr CJ, Roussel MF. Assembly of cyclin D-dependent kinase and titration of p27Kipl regulated by mitogen-activated protein kinase (MEK1). ProcNatl AcadSciUSA998- 95: 1091.
173. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-medialed tryptophan degradation. Blood 2004:103:4619.
174. Pi Nicola M, Carlo-Stella C, Magni M, el al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific milogenic stimuli. Blood 2002; 99: 3838*.
175. Cheng T, Shen H, Rodrigues N, Stier S, Scadden DT. Transforming growth factor beta 1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21 (Cip 1/Wafl) or p27(Kip 1). Blood 2001; 98: 3643.
176. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition ofTcell proliferation by macrophage tryptophan catah-olism./ Exp Med 1999; 189: 1363.
177. Han C, Wu T. Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through F. PI receptor-mediated activation of the epidermal growth factor receptor and’Akt. I Biol Chem 2005; 280: 24 053.
178. Zhang B et al. Mesenchymal stem cells induce mature dendritic cells into a never Jagged-2-dependent regulatory dendritic cell population.Blood.-2009:l 13:46−56.
179. Π€ΡΠΈΠ΄Π΅Π½ΡΡΠ΅ΠΉΠ½ Π. Π―., Π§Π°ΠΉΠ»Π°Ρ ΡΠ½ Π . Π., ΠΠ°Π»ΡΠΊΠΈΠ½Π°Π.Π‘. Π ΡΠΈΠ±ΡΠΎΠ±Π»Π°ΡΡΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΠΊΠ»Π΅ΡΠΊΠ°Ρ Π² ΠΊΡΠ»ΡΡΡΡΠ°Ρ ΠΊΡΠΎΠ²Π΅ΡΠ²ΠΎΡΠ½ΡΡ ΡΠΊΠ°Π½Π΅ΠΉ ΠΌΠΎΡΡΠΊΠΈΡ ΡΠ²ΠΈΠ½ΠΎΠΊ. Π¦ΠΈΡΠΎΠ»ΠΎΠ³ΠΈΡ 1970; 12: 1147−1155.
180. L.G. Shaffer, N. Tommerup. International System for Human Cytogenetic Nomenclature. Published in collaboration with Cytogenetics and Genome Research under the title ISCN, 2005. Karger, 2005:130.
181. Muraglia A., Cancedda R., Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. Jornal of Cell Science 2000; 113: 1161−1168.
182. Pittenger M., Mackay A., Beck S., et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143−147.
183. Innis M.A., Gelfand D.H., Sninsky J J. et al. PCR protocols, a guide to methods and applications .1990. Academic Press. San Diego. California.
184. Erlich H.A. et al. PCR tehnology. 1989. Stocton Press. New York.
185. Herrington C.S. McGee J. O D. In: In situ hybridization: application to developmental biology and medicine (ed. N. Harris, D.G. Wilkinson).1990, pp.241−69. Cambridge University Press, Cambrige.
186. K. Le Blanc and O. Ringden. Immunomodulation by mesenchymal stem cells and clinical experience. Jornal of INTERNAL MEDECINE, 2007; 262: 509−525.
187. B. Delorme, J. Ringe, N. Gallay et al,. Specific plasma membrane protein phenotype of culture-amplified and native^human bone marrow mesenchymal stem cells. Blood, 2008; 111:2631−2635.
188. Kassem M. et al. Adult stem cells and cancer. Cancer Res., 2005; 65:9601−9607.
189. ΠΠ°Π·Π°ΡΠ΅Π½ΠΊΠΎ Π‘. Π., Π’ΠΈΠΌΠΎΡΠ΅Π²ΡΠΊΠΈΠΉ Π. Π. ΠΠ½Π°Π»ΠΈΠ· ΡΠ°ΡΡΠΎΡΡ ΡΠΏΠΎΠ½ΡΠ°Π½Π½ΠΎΠΉ Π°Π½Π΅ΡΠΏΠ»ΠΎΠΈΠ΄ΠΈΠΈ Π² ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠ»Π΅ΡΠΊΠ°Ρ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈΠ½ΡΠ΅ΡΡΠ°Π·Π½ΠΎΠΉ ΡΠΈΠ³ΠΎΠ³Π΅Π½Π΅ΡΠΈΠΊΠΈ. ΠΠ΅Π½Π΅ΡΠΈΠΊΠ°, 2004, ΡΠΎΠΌ 40, № 2, Ρ. 195−204.
190. ΠΠΎΡΠΊΠΎΠ² Π. Π., ΠΠΈΠΊΠΈΡΠΈΠ½Π° Π. Π. Π¦ΠΈΡΠΎΠ³Π΅Π½Π΅ΡΠΈΠΊΠ° ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠΠΎΠ». ΠΠ΅Π΄., 2008, № 3, Ρ. 40−47.
191. Gatti R, Meuwissen Π, Allen Π, et al. Lancet. 1968;2:1366−1369.
192. Bach F, Albertini R, Joo P, et al.Lancet. 1968;2:1364−1366.