Π”ΠΈΠΏΠ»ΠΎΠΌ, курсовая, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°
ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚

ОбоснованиС примСнСния ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… стволовых ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… in vitro Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ с гСматологичСскими ΠΈ онкологичСскими заболСваниями

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ПЦР опрСдСлСния Ρ…ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΌΠ° МБК ΠšΠœ продСмонстрировал Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ для ΠΎΡ†Π΅Π½ΠΊΠΈ приТивлСния МБК Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ с Π³Π΅ΠΌΠ°Ρ‚ологичСскими ΠΈ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠΌΠΈ заболСваниями. ΠŸΡ€ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ in vitro МБК ΠšΠœ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° 3βˆ’4 пассаТа ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ высокой ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, которая сниТаСтся ΠΏΡ€ΠΈ дальнСйшСм ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈ ΡΡ‚ановится минимальной… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Π“Π»Π°Π²Π° 1. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
    • 1. 1. ΠœΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ ΠΌΠΈΠΊΡ€ΠΎΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠ΅
    • 1. 2. Роль ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² Π³ΠΎΠΌΠΎΠΏΠΎΡΠ·Π΅
    • 1. 3. Π˜ΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠΈΡ‡Π΅ΡΠΊΠ°Ρ идСнтификация МБК
    • 1. 4. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ выдСлСния МБК
    • 1. 5. Бвойства МБК
    • 1. 6. Π˜ΠΌΠΌΡƒΠ½ΠΎΠΌΠΎΠ΄ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ свойства МБК
    • 1. 7. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ МБК in vivo
      • 1. 7. 1. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ МБК Ρƒ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…
      • 1. 7. 2. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ МБК Ρƒ Π»ΡŽΠ΄Π΅ΠΉ
    • 1. 8. Π‘Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ примСнСния
    • 1. 9. Π˜ΠΌΠΌΡƒΠ½ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΠΊΠ°
    • 1. 10. ЀизиологичСская Ρ€ΠΎΠ»ΡŒ МБК
  • Π“Π»Π°Π²Π° 2. ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
    • 2. 1. ΠžΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠšΠœ для ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ МБК
    • 2. 2. Π”Π΅Ρ‚ΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΠ΅ МБК для ΠΊΠΎ-трансплантаций
  • Π”Π΅Ρ‚ΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΠ΅ МБК для контроля РВПΠ₯
    • 2. 3. ΠžΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠšΠœ для ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ…ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΌΠ° МБК
    • 2. 4. КлоногСнноС ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… фибробластов костного ΠΌΠΎΠ·Π³Π°
    • 2. 5. Π˜Π½Π΄ΡƒΠΊΡ†ΠΈΡ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠ²
    • 2. 6. Π˜ΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡŽΠΎΡ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ
    • 2. 7. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ роста МБК ΠΏΡ€ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ
    • 2. 8. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ зависимости содСрТания ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ доставки ΠΎΠ±Ρ€Π°Π·Ρ†Π° костного ΠΌΠΎΠ·Π³Π° Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΡŽ
    • 2. 9. ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ цитогСнСтичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²
    • 2. 10. ΠšΠ°Ρ€ΠΈΠΎΡ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
    • 2. 11. Анализ частоты Π°Π½Π΅ΡƒΠΏΠ»ΠΎΠΈΠ΄ΠΈΠΈ
    • 2. 12. КлоногСнноС ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… фибробластов костного ΠΌΠΎΠ·Π³Π° для изучСния Ρ…ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΌΠ°
    • 2. 13. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния Ρ…ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΌΠ° (ΠΌΠ΅Ρ‚ΠΎΠ΄ типирования Π‘Π’Π―-локусов)
    • 2. 14. БактСриологичСскоС исслСдованиС МБК
    • 2. 15. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π”ΠΠš цитомСгаловируса Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° (БМУ)
    • 2. 16. БтатистичСская ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π΄Π°Π½Π½Ρ‹Ρ…
  • Π“Π»Π°Π²Π° 3. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅
  • Π—Π›ΠœΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΉ Π½Π°ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ выдСлСния ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ивирования МБК
    • 3. 2. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹Π΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠΉ Π½Π°ΠΌΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ МБК костного ΠΌΠΎΠ·Π³Π°
  • Π—.ЗБвСтооптичСскиС характСристики МБК ΠΏΡ€ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ
    • 3. 4. ВлияниС сроков ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ Π½Π° Ρ„СнотипичСский состав монослойной ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹
    • 3. 5. Π˜Π½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ экспрСссии, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… для МБК Π°Π½Ρ‚ΠΈΠ³Π΅Π½ΠΎΠ² ΠΏΡ€ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ
  • Π—.Π±Π”ΠΈΠ½Π°ΠΌΠΈΠΊΠ° роста ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ популяции
    • 3. 7. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ зависимости содСрТания ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ доставки костного ΠΌΠΎΠ·Π³Π° Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΡŽ
    • 3. 8. ΠšΠ°Ρ€ΠΈΠΎΡ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ мононослойной ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ костного ΠΌΠΎΠ·Π³Π°
    • 3. 9. Частота Π°Π½Π΅ΡƒΠΏΠ»ΠΎΠΈΠ΄ΠΈΠΈ МБК
    • 3. 10. БактСриологичСскоС исслСдованиС МБК
    • 3. 11. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π”ΠΠš цитомСгаловируса Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° (БМУ)
    • 3. 12. ΠšΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… МБК Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ
  • Π—Π›Π—Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ…ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΌΠ° МБК костного ΠΌΠΎΠ·Π³Π° Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠ΅Ρ€Π΅Π½Π΅ΡΡˆΠΈΡ… Π°Π»Π»ΠΎΠ³Π΅Π½Π½ΡƒΡŽ Ρ‚Ρ€Π°Π½ΡΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΡŽ КМ
    • 3. 14. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Ρ…ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΌΠ°
  • Π’Ρ‹Π²ΠΎΠ΄Ρ‹

ОбоснованиС примСнСния ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… стволовых ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… in vitro Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ с гСматологичСскими ΠΈ онкологичСскими заболСваниями (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ in vitro МБК ΠšΠœ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ приТивлСния ΠΏΡ€ΠΈ трансплантациях Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ с Π³Π΅ΠΌΠ°Ρ‚ологичСскими ΠΈ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠΌΠΈ заболСваниями.

2. МБК, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ in vitro, ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‚ ΠΏΠΎΠ»Π½ΠΎΡ†Π΅Π½Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΊ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ΅ Π² Π°Π΄ΠΈΠΏΠΎΡ†ΠΈΡ‚Ρ‹ ΠΈ ΠΎΡΡ‚Π΅ΠΎΡ†ΠΈΡ‚Ρ‹.

3. Для стандартной ΠΎΡ†Π΅Π½ΠΊΠΈ МБК Π² Ρ‚рансплантационном ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ иммунофСнотипичСская панСль: CD105, CD166, CD44, CD73, CD13, CD29, CD90.

4. ΠŸΡ€ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ in vitro МБК ΠšΠœ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° 3−4 пассаТа ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ высокой ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, которая сниТаСтся ΠΏΡ€ΠΈ дальнСйшСм ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈ ΡΡ‚ановится минимальной ΠΊ 10−12 пассаТу.

5. ПослС 3 пассаТа Π² ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ популяции отсутствовали ΠΊΠ»Π΅Ρ‚ΠΊΠΈ с Π³Π΅ΠΌΠΎΠΏΠΎΡΡ‚ичСским ΠΈ ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠΌ (CD45, CD34, CD 133, CD3, CD 19, CD25, CD38, CD45, CD106, CD31). Наблюдалась высокая экспрСссия ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² МБК KM (CD90, CD 105, CD 166, CD44, CD73, промСТуточная CD 13 ΠΈ Π‘Π’)29.).ΠŸΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ срока ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ МБК Π΄ΠΎ 10−12 пассаТа сниТаСтся количСство ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… CD90, CD 105 ΠΈ CD166. ΠΠ°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ тСндСнция ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡŽ CD29, CD13, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡΡ‡Π΅Π·Π°ΡŽΡ‚ примСси гСмопоэтичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (CD45+), ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (CD31+) ΠΈ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² (CD 14+).

6. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ Ρƒ ΠœΠ‘К ΠšΠœ Π½Π° Ρ€Π°Π½Π½ΠΈΡ… ΠΈ ΠΏΠΎΠ·Π΄Π½ΠΈΡ… пассаТах хромосомный Π½Π°Π±ΠΎΡ€ Π½Π΅ ΠΌΠ΅Π½ΡΠ»ΡΡ (46,XY ΠΈΠ»ΠΈ 46, XX) ΠΈ ΠΎΡ‚сутствовали Π°Π½Π΅ΡƒΠΏΠ»ΠΎΠΈΠ΄ΠΈΠΈ.

7. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π°ΠΌΠΈ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎΡ†Π΅Π½ΠΊΠΈ трансфузионной бСзопасности Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, ΠΎΠ± ΠΎΡ‚сутствии Ρ€Π°Π½Π½ΠΈΡ… трансфузионных ослоТнСний ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… in vitro МБК Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ.

8. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ПЦР опрСдСлСния Ρ…ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΌΠ° МБК ΠšΠœ продСмонстрировал Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ для ΠΎΡ†Π΅Π½ΠΊΠΈ приТивлСния МБК Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ с Π³Π΅ΠΌΠ°Ρ‚ологичСскими ΠΈ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠΌΠΈ заболСваниями.

ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ.

1. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ для экспансии ex vivo МБК ΠšΠœ Π² ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΡ… цСлях.

2. Для ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ МБК in vitro Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Ρ‹ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ костного ΠΌΠΎΠ·Π³Π°, врСмя Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΡ‚ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° Π·Π°Π±ΠΎΡ€Π° костного ΠΌΠΎΠ·Π³Π° Π΄ΠΎΠ½ΠΎΡ€Π° Π΄ΠΎ Π½Π°Ρ‡Π°Π»Π° выдСлСния ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ивирования ΠΏΡ€ΠΎΡˆΠ»ΠΎ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 6 часов.

3. Для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠ° МБК Π² Ρ‚рансплантационном ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ рСкомСндуСтся ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ панСль, ΡΠΎΡΡ‚ΠΎΡΡ‰ΡƒΡŽ ΠΈΠ· Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… для МБК ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² (CD90, CD105, CD166, CD44, CD73, CD13, CD29), Ρ‚Π°ΠΊ ΠΈ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ², спСцифичных для гСмопоэтичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (CD3, CD14, CD 19, CD25, CD29, CD31, CD34, CD38, CD45, CD 106, HLA-DR).

4. Для клиничСских Ρ†Π΅Π»Π΅ΠΉ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ МБК 3−4 пассаТа.

5. Π’ ΡΠ»ΡƒΡ‡Π°Π΅ нСобходимости использования Π² Ρ‚СрапСвтичСских цСлях МБК Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ·Π΄Π½ΠΈΡ… сроков ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ строгий ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ повСрхностного Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠ° ΠΈ Π³Π΅Π½Π΅Ρ‚ичСской ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… трансплантатов.

1. Владимирская Π•. Π‘., ΠœΠ°ΠΉΠΎΡ€ΠΎΠ²Π° О. А. РумянцСв Π‘. А, РумянцСв А. Π“. БиологичСскиС основы ΠΈ ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Ρ‹ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ стволовыми ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ. 2005; стр. 74−82.

2. Kojima Н et al. Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc. Natl.Acad.Sci. USA 2004;101(8):2458−63.

3. Willenbring H et al. Myelomonocytic cells are sufficient for therapeutic cell fusioniin liver. Nat .Med.2004;10−7:744−8'.

4. DelFAgnola Π‘ et al. Hematopoietic stem celltransplantation does not restore dystrophin expression alter engraftment into cardiac and skeletal muscle. J Clin.Invest.2004; 114:1577−85.

5. Lapidos K.A. et al. Transplanted hematopoieticstem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle.J.Clin.Invest. 2004;114:1577−85.

6. Terade N et al. Bone marrow cells adopt the phenotypeb of other cells by spontaneous cell fusion. Nature 2002;416(6880):542−5.

7. Ogle B.M. et al. Biological implications of cell fusion .Nat. Rev.Mol. Cell Biol. 2005;6(7)-567−75.

8. Olge B. M et al. Spontaneous fusion of cells between species yields transdifferentiation and retroviral in vivo. FASEB J.2004; 18:548−50.

9. Shi D. et al. Myogenic fusion of human bone marrow stromal cells, but not hematopoietic cells. Blood 2004;104:290−4.

10. Clark BR, Kealing A. Biology of bone marrow stroma. //Ann NY Acad Sci. -1995. -N770. -P.70−78.

11. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. //Exp Hematol. -2000. -N28. -P.875−884.

12. Colter DC, Class R, Digirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. //Proc. Nati. Acad. Sci USA.-2000. -N97. -P.3213−3218.

13. Javazon E.N., Colter D.C., Schwarz E.J., Prockop D.J. Rat marrow stromal cells aremore sensitive to plating density and expand more rapidly from single-cell-derivedicolonies than human marrow stromal cells. //Stem cells. -2001. -N19. -P.219−225.

14. Martin D.R., CoxN.R., Hathcock T.L., Niemeyer G.P., Baker H.J. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. //Exp. Hematol. -2002. -N30. -P.879−886.

15. Pittenger M., Mackay A., Beck S., et al. Multilineage potential of adult human mesenchymal stem cells. //Science. -1999. -N84. -P. 143−147.

16. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. //J Cell Physiol. -1999. -N181. -P.67−73.

17. Clark E, Wognum AW, Marciniak R et al. Mesenchymal cell precursors from human bone marrow have a phenotype that is direct from cultured mesenchymal cells and are exclusively present in a small subset of CD451ow SH2+ cells. //Blood. -2001. -N98. -P.85a.

18. Haynesworth SE, Baber MA, Caplan AL. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal anibodies. //Bone. -1992. — N13. -P.69−80.

19. Gronthos S, Simmons PJ. The growth factor requirements of STRO-1 -positive human marrow stromal precursors under-deprived conditions in vitro. //Blood. -1995. -N85. -P.929−940.

20. Oyajobi BO, Lomri A, Hott M et al. Isolation and characterization of human clonogenic osteoblast progenitors immunoselected from fetal bone marrow stroma using STRO-1 monoclonal antibody. //J Bone Miner Res. -1999. -N14. -P.351−361.

21. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. //Blood. -1991. -N78. -P.55−62.

22. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, et al. Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. //Nature 2002. -N418. -P.41−49.

23. Lee OK, Kuo TK, Chen W-M et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. //Blood. -2004. -N103. -P. 1669 -1675.

24. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. //J Cell Sci. -2003. -N116. -P. 1827−1835.

25. Gronthos S., Simmons PJ. The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. //Blood. -1995. -N85. -P.4.

26. Majumdar MK, Banks V, Peluso DP, Morris EA. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. //J Cell Physiol. -2000. -N185. -P.198−106.

27. Mitchell JB, Mcintosh K, Zvonic S, Garrett S, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. //Stem Cells. -2006. -Vol.24, N2. -P.376−385.

28. Rochon C, Frouin V, Bortoli S, Giraud-Triboult K, et al. Comparison of gene expression pattern in SP cell populations from four tissues to define common «sternness functions». //Exp Cell Res. -2006. -Vol.312, N11. -P.2074;2082.

29. Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). //Circulation. -2002. -N106. -P.3009−3017.

30. Barry F.P. Mesenchymal stem cell therapy in joint disease. //Novartis Found Syrnp. -2005. -N249. -P.86−96.

31. Kovacic JC, Graham RM. Stem-cell therapy for myocardial diseases. //Lancet. -2004. -N363. -P.1735−1736.

32. Noort W., Kruisselbrink A., de Paus R., et al. Co-transplantation of MSC and UCB CD34+ cells results in enhanced hemopoietic engrafment. //Exp.Hematol.-2002. -N30. -P.870−878.

33. Jiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. //Nature 2002. -N418. -P.41−49.

34. Jiang Y, Vaessen B, Lenvik T et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. //Exp Hematol 2002. -N30. -P.896−904.

35. Reyes M, Dudek A, Jahagirdar B et al. Origin of endothelial progenitors in human postnatal bone marrow. //J Clin Invest. -2002. -N109. -P.337−346.

36. Reyes M, Lund T, Lenvik T et al. Purification and ex-vivo expansion of postnatal human marrow mesodermal progenitor cells. //Blood. -2001. -N98. -P.2615−2625.

37. Reyes M., Verfaillie C.M. Charakterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. //Ann NY Acad Sei. -2001. -N938. -P.231−235.

38. Schwartz RE, Reyes M, Koodie L et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. //J Clin Invest. -2002. -N109. -P.1291−1302.

39. Herzog E., Chai. Li., Krause S. Plasticity of marrow-derived stem cells. //Blood. -2003. -N102. -P.3483−3493.

40. Aldhous P, Reich ES. Flawed stem cell data withdrawn. //New Scientist. -2007, -Vol.15- N2591.-P. 12.

41. Hardeman EC, Chiu CP, Minty A, Blau HM. The pattern of actin expression in human fibroblast X mouse muscle heterokaryons suggests that human muscle regulatory factors are produced. //Cell. -1986. -N47. -P. 123−130.

42. Honma T, Honmou O, Iihoshi S, et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. //Exp Neurol. -2006. -N199. -P.56−66.

43. Sugaya K, Alvarez A, Marutle A, Kwak YD, et al. Stem cell strategies for Alzheimer’s disease therapy.

44. Zhang I I Huang Z, Xu Y, Zhang S. Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurol Res. 2006, 28, 104−112.

45. Couri C, Foss M, Voltarelli C. Secondary prevention of type 1 diabetes mellitus, stopping immune destruction and promoting B-cell regeneration. //Braz J Med Biol Res. -2006.-N39.-P. 1271−1280.

46. Rabb H. Paracrine and differentiation mechanisms underlying stem cell therapy for the damaged kidney. //Am J Physiol Renal Physiol. -2005. -N289. -P.29−30.

47. Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 2005, 328, 258 264.

48. Minguell JJ. Mesenchymal stem cells. //Exp Biol Med. -2001. -N226. -P.507−520.

49. Conget P, Minguel JJ. Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. //Exp Hematol. —2000. -N28. -P.3 82−390.

50. Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype, implications for osteopenic disorders. Hi Bone Miner Res. -1998. -N13. -P.371−382.

51. Owen M. Marrow stromal stem cells. //J Cell Sci. -1988. -N10. -P.63−76.

52. Tontonoz P, Hu E. Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. //Cell. -1994. -N79. -P.l 1 471 156.

53. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. //J Cell Biochem. -1997. -N64. -P.278−294.

54. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfal, A transcriptional activator of osteoblast differentiation. //Cell 1997. -N89. -P.743−754.

55. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. //Exp Hematol. -1976. -N4. -P.267−274.

56. Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. //J Cell Sci. -2000. -N113. -P. 1161−1166.

57. Liu B, Buckley SM, Lewis ID, et al. Homing defect of cultured human hematopoietic cells in the NOD/SCID mouse is mediated by Fas/CD95. //Exp Hematol. -2003. -N31. -P.824−832.

58. Miura M, Miura Y, Padilla-Nash H. et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. //Stem Cells. -2006. -Vol.24, N4. -P. 1095−1103.

59. Rubio D., Garcia-Castro J., Martin M. et al. Spontaneous human adult stem cell transformation. //Cancer Res. -2005. -Vol.65, N8. -P.3035−3039.

60. Tolar J., Nauta A., Osborn M. et al. Sarcoma Derived from Cultured Mesenchymal Stem Cells. //Stem cells. -2007. -Vol.25, N2. -P.371−379.

61. Wang Y., Huso D., Harrington J. et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. //Cytotherapy. -2005. — Vol.7, N6. -P.509−519.

62. Sale GE, Stoib R. Bilateral diffuse pulmonary ectopic ossification after marrow allograft in a dog. Evidence for allotransplantation of hemopoietic and mesenchymal stem cells. //Exp Hematol. -1983. -Vol.11, N10. -P.961−966.

63. Young-Sup Yoon, et al. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction //Circ 2004. -N109. -P.3154−3157.

64. El-Seisi S, et al. Renal pathology at autopsy in patients who died after hematopoietic stem cell transplantation. //Biol Blood Marrow Transplant. -2003. -Vol9, N11. -P.683−688.

65. Di Nicola M et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood.2002;99:3838−3843.

66. Le Blanc K et al. Mesenchymal stem cell inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57:11−20.

67. Potian JA et al. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigenes and recall antigens. J lmmunol.2003:171: 3426−3434.

68. Tse WT et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cell .-implication in transplantation. Transplantation .2003 -75: 389−397.

69. Bartholomew A et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol.2002;30: 42−48.

70. Djouad F et al. Immunosuppressive effect of mesenchymal stem cell favors tumor growth in allogeneic animals.Blood.2003.102:3837−3844.

71. Krampera M et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigenspecific T cells to their cognate peptide. Blood .2003;101:3722−3729.

72. Augello A. et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol.2005;35: 1482−1490.

73. Le Blance K et al. Mesenchymal stem cells inhibit the expression of CD 25(interleukin -2 receptor) and CD 38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol. 2004;60:307−315.

74. Rasmusson I et al. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogenes and alloantigens by different mechanisms. Exp Cell Res.2005;305:33−41.

75. Meisel R et al. Human Bone marrow stromal cell inhibit allogeneic T-cell responses by indolamine 2,3-dioxygenasemediatad tryptophan degradation.Blood.2004:103 -4619−4621.

76. Aggarvval S et al. Human Mesenchymal stem cells modulate allogeneic immune cell responses.Blood.2005; 105:1815−1822.

77. Plumas let al. Mesenchymal stem cells induce apoptosis of activated-T cells.Leukemia.2005; 19:1597−1604'.

78. Rasmusson I et al. Immune modulation by mesenchymal stem cells .Exp Cell Res.2006;312:2169−2179.91Giennie S et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood.2005;105:2821−2827.

79. Maccario R et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4 + subsets expressing a regulatory/suppressive phenotype.Haemotologica.2005;90:516−525.

80. Rutella S et al. Tolerogenic dendritic cells? cytokine modulation comes of age.Blood. 2006;108:1435−1440.

81. Jiang XX et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells.Blood.2005; 105:4120−4126.

82. Nauta AJ et al. Mesenchymal stem cells inhibit generation and function of both CD 34+ derived and monocyte-derived dendritic cells. J Immunol.2006;177:2080;2087.

83. Zhang W et al. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 2004;13:263−271.

84. Beyth S et al. Human mesenchymal stem cells alter antigenpresenting cell maturation and induce T-cell unresponsiveness.Blood.2005;105:2214−2219.

85. Corcione A. et al. Human mesenchymal stem cells modulate B-cell functions.Blood.2006; 107:367−372.

86. Krampera M et al. Role for interferongamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24:386−398.

87. Smuth MJ et al. New aspects of naturalkiller-cell surveillance and therapy of cancer .Nat Rev Cancer. 2002;2 :850−861.

88. Sotiropoulou PA et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24:74−85.

89. Spaggiari GM et al. Mesenchymal stem cells-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation.Blood.2006; 107:1484−1490.

90. Nauta AJ et al. Donor-derived mesenchymal stem cells are immunogenic in an allogenec host and stimulate donor graft rejection in a nonmyeloblative setting. Blood.2006;108 :2114−2120.

91. Yanez R et al. Adipose tissue-derived mesenchymal stem cells (AD-MSC) have in vivo immunosuppressive properties applicable for the control of graftversus-host disease (GVHD). Stem Cells.2006; 24:2582−2591.

92. Sudres M et al. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vivo but fail to prevent grafit-versus-host disease in mice. J Immunol. 2006;176:7761−7767.

93. Zappia E et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106:1755−1761.

94. Zhang J et al. Human bone marrow stromal cell treatment improves neurological function recovery in EAE mice .Exp Neurol.2005; 195:16−26.

95. Djouad F et al. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collageninduced arthritis. Arthritis Rheum .2005;52:1595−1603.

96. Studney M et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2006;62:3603−3608.

97. Koc ON et al. Rapid hematopoietic recovery after coinfusion of autologousblood stem cells and cultureexpanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy .J Clin Oncol. 2000; 18:307−316.

98. Lazarus HM et al. Contransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patiets. Biol Blood Marrow Transplantat. 2005; 11:389−398.

99. Ball LM et al. Cotransplantation of haploidentical bone marrow derived mesenchymal stem cells overcomes graft dysfunction and improves hematological and lymphocyte recovery in haploidentical stem cells transplantation. Blood.2006; 108: Abstract 3118.

100. Le Blanc K et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004; 363:1439−1441.

101. Horwitz EM et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sei USA. 2002; 99:8932−8937.

102. Gao J et al. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells afterinfusion. Cells Tissues Organs.2001; 169:12−20.

103. Breitbach M et al. Potential risks of bone marrow cell transplantation into infracted hearts. Blood. 2007;110: 1362−1369.

104. Rubio D et al. Spontaneous human adult stem cell transformation. Cancer Res .2005;65:3035−3039.

105. Miura M et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells. 2006;24: 10 951 103.

106. Tolar J et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 2006;25:371−379.

107. Bacigalupo A et al. T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Exp Hematol .2005;33: 819−827.

108. Del Papa N et al. Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum. 2006;54:2605−2615.

109. In 4 Anker PS et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102:1548−1549.

110. In4 Anker PS et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica.2003;88:845−852.

111. Bieback К et al. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22:625−634.

112. Kogler G et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004; 200:123−135.

113. Niederkoni JY. See no evil, hear no evil, do no evil: the lessons of immune privilege .Nat Immunol. 2006;7:354−359.

114. Barry FP et al. Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev .2005; 14: 252−265.

115. Кос ON ct al. Allogeneic mesenchymal stem cells infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant.2002;30:215−222.

116. Stagg J et al. Interferon-gammastimulated marrow stromal cells: a new type of nonhematopoietic antigenpresenting cell. Blood. 2006:107:2570−2577.

117. Chan JL et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood.2006; 107:4817−4824.

118. Eliopoulos N et al. Allogeneic marrow stromal cells are immune rejected by MHC class I and II mismatched recipient mice. Blood.2005;106:4057−4065.

119. Grinnemo KH et al. Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infracted rat myocardium .J Thorac Cardiovasc Surg .2004;127:1293−1300.

120. Alma J et al. Immunomodulatory properties mesenchymal stromal cells. Blood.2007.110:3499−3506.

121. Tai M.-H. et al. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis doi:10.1093.321.

122. Rubio D. et al. Spontaneous human adult stem cell transformation. Cancer Res.2005;65:3035−9.

123. Kassem M. et al. Adult stem cells and cancer. Cancer Res.2005;65:9601.

124. Miura M et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells to malignant transformation. Stem Cells. 2005.

125. Stenderup К et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003;33:26−919.

126. Π€Ρ€ΠΈΠ΄Π΅Π½ΡˆΡ‚Π΅ΠΈΠ½ А. Π―., Π§Π΅Ρ€Ρ‚ΠΊΠΎΠ² И. Π›. ΠšΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ основы Π½ΠΌΠΌΡƒΠ½Π½Ρ‚Π΅Ρ‚Π°.М. :ΠœΠ΅Π΄ΠΈΡ†ΠΈΠ½Π°, 1969; 256.

127. Friedenstein A., Petrakova К., Kurolesova A., Frolova G/ Heterotopic transplants of bone marrow Analysis of precursors cells for osteogenic and hematopoietic tissues. Transplantation. 1968; 6- 230−247.

128. Baserga A. Le nicchie di mitosi hemopoietiche. Hematologica (Pavia). 1976. Vol.61. N1. 1−8.

129. Sotiropoulou PA, Perez SA, Gritzapis AP, et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24: 74−85.

130. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune responses. Blood. 2005;105:1815−1822.

131. Bottino Π‘, Castriconi R, Moretta L, Moretta A. Cellular ligands of activating NIC receptors. Trends Immunol. 2005;26:221−226.

132. Brunning R, Bennett J, et al. Myelodysplasia syndromes .IARC Press-2001 p61−73.

133. Schoch Π‘ et al. Patients with de novo acute myeloid leukaemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: a study of 90 patients. Br J Haematol.2001; 112:118−126.

134. Schoch Π‘ et al. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML):an analysis of 93 patients t-AML in comparison to 1091 patients with de novo AML.Leukemia. 2004;18:120−125.

135. PatientsBr J Haematol. 2001;ll3−737−745.

136. J-lromal stem cells: marrow-derived osteogenic preciarsors.

137. Found Symp. 1988; 136:42−60.

138. Al Marr0WStr0raal flbrΒ°Wasts. Calcif Tissue Int. l995−56- (Sup^X 1).17.

139. VisserPj" 13 AH' BrΒ°Ckbank KG' Ploemacher RE, van Vliet E, Brakel-van Peer ICM, jsser. Characterization of fibroblastic stromal cells from murine bone marrow. — Exp.

140. Hematol.- 1985. 13.-237−243.y rth SE, Babei MA, Caplan A I. Cell surface antigens on human marrow-derived mesenchymal cells in vitro: effects of dexamethasone and IL-1 alpha. -J Cell Physiol. 1996. — 166. — 585−592.

141. Goldberg VM, Caplan AI. The osteogenic potential of cuIture-ocparLded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks.

142. Orthop.-1991.-269.-298−311.

143. Flores-Figueroa E et al. In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplasia syndrome. Leuke Res .2002;26:677−686.

144. Borojevic R et al. Bone marrow stromal in childhood myelodysplastic syndrome xomposition, ability to sustain hematopoiesis in vitro, and altered gene expression. Leuk Res. 2004;28: 831−844.

145. Narendran A et al. Characterization of bone marrow stromal abnormalities in a patients with constitutional trisomy 8 mosaicism and myelodysplastic syndromes (MDS) .Pediatr Hematol Oncol. 2004;21:209−221.

146. Flores-Figueroa E et al. Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res.2005;29: 215−224.

147. Zhan W et al. Origin of stroma cells in long-term bone marrow cultures from patients with acute myeloid leukemia .Ann Hematol. 1999;78:305−324.

148. Bhatia R et al. Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood .1995:85:687 688.

149. Mayani H et al Composition and function of the hematopoietic microenvironment in human myeloid leukemia. Leukemia. 1996;10:1041−1047.

150. Awaya N et al. Marrow stromal cells are not derived from the malignant clone in myelodysplastic syndromes (MDS). Blood.2001;98(Ssppl l):1487a.

151. Soenen V et al. Mesenchymal cells (MC) from patients with myelodysplastic syndrome (MDS) are devoid of cytogenetic abnormalities and support short and long-term hematopoiesis in vitro. Blood.2001;98(Suppl l):3041a.

152. Olga B et al. Chromosomal aberrations in bone marrow mesenchymal stem cells patients with myelodysplastic syndrome and acute myeloblasts leukemia. Experimental Hematology 35. 2007; 221−229.

153. Deeg HJ. Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndromes. Leuk Lymphoma. 2000;37:405−414.

154. Friedenstein AJ, Latzinik NV, Gorskaya Yu F, Luria EA, Moskvina EL. Bone marrow stromal colony formation requires stimulation by haemopoietic cells. Bone Miner. — 1992. — 18. — 199−213.

155. Charbord P, Oostendorp R, Pang W, et al. Comparative study of stromal cell lines derived from embryonic, fetal, and postnatal mouse blood-forming tissues. Exp.

156. Hematol. 2002. — 30. — 1202−1210.

157. Zhan W, Knieling G, Vohwinkel G, et al. Origin of stroma cells in AMI" long-term bone marrow cultures from patients with acute myeloid leukemia. Ann Iiematol. 1999;78:305−324.

158. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J cell Sci. 1992. — 102Pt.2. — 341−351.

159. Romanov YA, Svinsitskaya VA, Smirnov VN. Searching for alternative sources of" postnatal human mesenchymal stem cells: candidate SC-like cells from umbilical cord. — Stem cells.-2003.-21. 105−110.

160. Huss R. Isolation of primary and immortalized CD34- hematopoietic and medenchymal stem cells from various sources. Stem Cells. — 2000. — 18. — 1−9.

161. Zhao LR, Duan WM, Reyes Keene CD, Verfaillie CM, Low WC, Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into ischemic brain of rats. Exp Neurol. — 2002. — 174. — 11−20.

162. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. — 2002. — 418. — 41−49. .

163. Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functiona hepatocyte-like cells. J Clin Invest. — 2002. — 109- — 1291−1302.

164. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Multipotent: progenitor cells can be isolated from postnatal murine bone marrow. J Clin Invest. — 2002. 109.-337−346.

165. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of* endothelial progenitors in human postnatal bone marrow. J Clin Invest. — 2002. — 1 337−346.

166. Clark BR, Kealing A. Biology of bone marrow stroma. Ann NY Acad Sci. — 15 —770.-70−78.

167. K. Le Blanc12 & 0. Ringden: Immunomodulation by mesenchymal stem cells and clinical experience Jornal of Internal Medicine.2007:262:509−525.

168. Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood2005; 105:4 1 ^2−0.

169. Glennie S, Soeiro I, Dyson PJ, Lam EVV, Da/.zi F. Bone marrow mesei chymal slem cells induce division arrest anergy of activated T eel-. Blood 2005; 105:2821.

170. Le Naour F, I Iohenkirk L, Grolleau A, el al. Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomii s. / Biol Chem 2001; 276: 17 920.

171. Ramasainy R, Fazekasova H, Lombard Dazzi F198Mesenchymal Stem Cells Inhibit Dendritic Cell Differentiation and Function by PreventingEntry Into the Cell Cycle/ Transplantation, 2007;Vol 83−71−76.

172. Cheng M, Sexl V, Sherr CJ, Roussel MF. Assembly of cyclin D-dependent kinase and titration of p27Kipl regulated by mitogen-activated protein kinase (MEK1). ProcNatl AcadSciUSA998- 95: 1091.

173. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-medialed tryptophan degradation. Blood 2004:103:4619.

174. Pi Nicola M, Carlo-Stella C, Magni M, el al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific milogenic stimuli. Blood 2002; 99: 3838*.

175. Cheng T, Shen H, Rodrigues N, Stier S, Scadden DT. Transforming growth factor beta 1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21 (Cip 1/Wafl) or p27(Kip 1). Blood 2001; 98: 3643.

176. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition ofTcell proliferation by macrophage tryptophan catah-olism./ Exp Med 1999; 189: 1363.

177. Han C, Wu T. Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through F. PI receptor-mediated activation of the epidermal growth factor receptor and’Akt. I Biol Chem 2005; 280: 24 053.

178. Zhang B et al. Mesenchymal stem cells induce mature dendritic cells into a never Jagged-2-dependent regulatory dendritic cell population.Blood.-2009:l 13:46−56.

179. Π€Ρ€ΠΈΠ΄Π΅Π½ΡˆΡ‚Π΅ΠΉΠ½ А. Π―., Чайлахян Π . К., Π›Π°Π»Ρ‹ΠΊΠΈΠ½Π°Πš.Π‘. О Ρ„ΠΈΠ±Ρ€ΠΎΠ±Π»Π°ΡΡ‚ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Ρ… ΠΊΡ€ΠΎΠ²Π΅Ρ‚Π²ΠΎΡ€Π½Ρ‹Ρ… Ρ‚ΠΊΠ°Π½Π΅ΠΉ морских свинок. Цитология 1970; 12: 1147−1155.

180. L.G. Shaffer, N. Tommerup. International System for Human Cytogenetic Nomenclature. Published in collaboration with Cytogenetics and Genome Research under the title ISCN, 2005. Karger, 2005:130.

181. Muraglia A., Cancedda R., Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. Jornal of Cell Science 2000; 113: 1161−1168.

182. Pittenger M., Mackay A., Beck S., et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143−147.

183. Innis M.A., Gelfand D.H., Sninsky J J. et al. PCR protocols, a guide to methods and applications .1990. Academic Press. San Diego. California.

184. Erlich H.A. et al. PCR tehnology. 1989. Stocton Press. New York.

185. Herrington C.S. McGee J. O D. In: In situ hybridization: application to developmental biology and medicine (ed. N. Harris, D.G. Wilkinson).1990, pp.241−69. Cambridge University Press, Cambrige.

186. K. Le Blanc and O. Ringden. Immunomodulation by mesenchymal stem cells and clinical experience. Jornal of INTERNAL MEDECINE, 2007; 262: 509−525.

187. B. Delorme, J. Ringe, N. Gallay et al,. Specific plasma membrane protein phenotype of culture-amplified and native^human bone marrow mesenchymal stem cells. Blood, 2008; 111:2631−2635.

188. Kassem M. et al. Adult stem cells and cancer. Cancer Res., 2005; 65:9601−9607.

189. НазарСнко Π‘. А., ВимошСвский Π’. А. Анализ частоты спонтанной Π°Π½Π΅ΡƒΠΏΠ»ΠΎΠΈΠ΄ΠΈΠΈ Π² ΡΠΎΠΌΠ°Ρ‚ичСских ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½ΠΎΠΉ Ρ†ΠΈΠ³ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΠΊΠΈ. Π“Π΅Π½Π΅Ρ‚ΠΈΠΊΠ°, 2004, Ρ‚ΠΎΠΌ 40, № 2, с. 195−204.

190. Π‘ΠΎΡ‡ΠΊΠΎΠ² Н. П., Никитина Π’. А. Π¦ΠΈΡ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΠΊΠ° стволовых ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Мол. МСд., 2008, № 3, с. 40−47.

191. Gatti R, Meuwissen Н, Allen Н, et al. Lancet. 1968;2:1366−1369.

192. Bach F, Albertini R, Joo P, et al.Lancet. 1968;2:1364−1366.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ