Диплом, курсовая, контрольная работа
Помощь в написании студенческих работ

Вариационное параметрическое геометрическое моделирование в САПР на основе онтологий

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Реализация результатов работы. Результаты работы использованы в ООО «КАМ-Станко» (г. Ижевск) при проектировании планов размещения новых производственных мощностей для ЗАО «Актанышский агрегатный завод» (Республика Татарстан) — в ФГУП «Ижевский механический завод» для размерно-точностного анализа спускового механизма пистолета ПСМна кафедре «Автоматизированные системы обработки информации… Читать ещё >

Содержание

  • УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ
  • 1. ПАРАМЕТРИЧЕСКОЕ ГЕОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ В САПР
    • 1. 1. Параметрическое геометрическое моделирование в САПР
      • 1. 1. 1. Основные термины и понятия параметрического геометрического моделирования
      • 1. 1. 2. Достоинства и недостатки параметрического геометрического моделирования
      • 1. 1. 3. Области применения ПГМ
      • 1. 1. 4. Общий алгоритм параметрического геометрического моделирования
      • 1. 1. 5. Теоретические основы параметрического геометрического моделирования
    • 1. 2. Технологии автоматизированного параметрического геометрического моделирования
      • 1. 2. 1. Требования к технологии параметрического моделирования
      • 1. 2. 2. Классификация технологий параметрического геометрического моделирования
      • 1. 2. 3. Процедурное параметрическое геометрическое моделирование
      • 1. 2. 4. Параметрическое геометрическое моделирование по истории построений
      • 1. 2. 5. Объектно-ориентированное параметрическое геометрическое моделирование
      • 1. 2. 6. Вариационное параметрическое геометрическое моделирование
    • 1. 3. Создание и редактирование вариационных параметрических моделей
      • 1. 3. 1. Структура вариационной параметрической геометрической модели
      • 1. 3. 2. Задачи создания и редактирования вариационных ПГМ
      • 1. 3. 3. Трудоемкость создания и редактирования вариационных ПГМ
      • 1. 3. 4. Способы сокращения объема описания ВПГМ
      • 1. 3. 5. Способы снижения трудоемкости операций задания элементов ВПГМ
    • 1. 4. Расчет вариационных параметрических геометрических моделей
      • 1. 4. 1. Требования к вариационному параметрическому решателю
      • 1. 4. 2. Классификации методов расчета вариационных ПГМ
      • 1. 4. 3. Алгебраический подход
      • 1. 4. 4. Графовый подход
      • 1. 4. 5. Логический подход
    • 1. 5. Выводы по главе и постановка задач
  • 2. ВАРИАЦИОННОЕ ПАРАМЕТРИЧЕСКОЕ ГЕОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ НА ОСНОВЕ ОНТОЛОГИЙ
    • 2. 1. Высокоуровневое описание ПГМ на основе онтологии
      • 2. 1. 1. Требования к механизму высокоуровневого описания ПГМ
      • 2. 1. 2. Онтологическая модель предметной области
      • 2. 1. 3. Определение геометрических понятий в онтологии
      • 2. 1. 4. Использование высокоуровневых понятий онтологии в описании ПГМ
    • 2. 2. Язык описания отношений
      • 2. 2. 1. Требования к языку описания отношений
      • 2. 2. 2. Псевдонимы для объектов
      • 2. 2. 3. Инфиксная форма записи бинарных операций и отношений
      • 2. 2. 4. Постфиксная форма записи групп отношений
    • 2. 3. Онтология базовых геометрических знаний для параметрического моделирования
      • 2. 3. 1. Раздел «Элементарная алгебра»
      • 2. 3. 2. Раздел «Трансцендентные функции»
      • 2. 3. 3. Раздел «Векторная алгебра»
      • 2. 3. 4. Раздел «Геометрия плоскости (Планиметрия)»
    • 2. 4. Анализ эскиза и распознавание геометрических отношений
      • 2. 4. 1. Постановка задачи распознавания
      • 2. 4. 2. Инвариантный алгоритм распознавания
      • 2. 4. 3. Возможности улучшения алгоритма распознавания
      • 2. 4. 4. Ограничения алгоритма распознавания
    • 2. 5. Автоматический синтез размерных отношений ПГМ
      • 2. 5. 1. Синтез габаритных размеров
      • 2. 5. 2. Синтез радиусов и диаметров
      • 2. 5. 3. Привязка отрезков параллельных к размерной базе
    • 2. 6. Выводы по главе
  • 3. СИНТЕЗ И РАСЧЕТ АЛГЕБРАИЧЕСКОГО ПРЕДСТАВЛЕНИЯ ПАРАМЕТРИЧЕСКОЙ ГЕОМЕТРИЧЕСКОЙ МОДЕЛИ
    • 3. 1. Стратегия расчета параметрических геометрических моделей
    • 3. 2. Планы расчета параметрических геометрических моделей
    • 3. 3. Планирование расчета параметрической геометрической модели
      • 3. 3. 1. Синтез системы уравнений, описывающих ПГМ
      • 3. 3. 2. Символьное упрощение системы уравнений
      • 3. 3. 3. Декомпозиция системы уравнений
      • 3. 3. 4. Оптимизация плана расчета
    • 3. 4. Расчет ПГМ по плану
      • 3. 4. 1. Стратегии выполнения плана
      • 3. 4. 2. Численное решение систем нелинейных уравнений
      • 3. 4. 3. Исключение ненужных решений
    • 3. 5. Выводы по главе
  • 4. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПРЕДЛОЖЕННОЙ ТЕХНОЛОГИИ
    • 4. 1. Архитектура экспериментальной системы параметрического геометрического моделирования на плоскости
    • 4. 2. Эксперименты по высокоуровневому описанию вариационных
      • 4. 2. 1. Цель эксперимента
      • 4. 2. 2. Критерий оценки
      • 4. 2. 3. Методика экспериментального исследования
      • 4. 2. 4. Высокоуровневое описание ВПГМ спускового механизма пистолета
      • 4. 2. 5. Анализ результатов эксперимента и
  • выводы
    • 4. 3. Эксперименты по автоматизированному заданию размерных отношений
      • 4. 3. 1. Дель экспериментов
      • 4. 3. 2. Критерии сравнения
      • 4. 3. 3. Методика эксперимента
      • 4. 3. 4. Задание размерных отношений ВПГМ Колодец
      • 4. 3. 5. Анализ результатов эксперимента и
  • выводы
    • 4. 4. Эксперименты по расчету вариационных ПГМ
      • 4. 4. 1. Цели экспериментов
      • 4. 4. 2. Задача о двух линиях
      • 4. 4. 3. Расчет ВПГМ спускового механизма пистолета
      • 4. 4. 4. Анализ результатов эксперимента и
  • выводы
    • 4. 5. Применение предложенной технологии для расчета размерных цепей
      • 4. 5. 1. Расчет размерных цепей на основе параметрического моделирования
      • 4. 5. 2. Расчет размерной цепи спускового механизма пистолета ПСМ
      • 4. 5. 3. Анализ результатов и
  • выводы
    • 4. 6. Применение предложенной технологии для проектированияпланировок технологического оборудования
      • 4. 6. 1. Системы автоматизированного проектирования технологических планировок
      • 4. 6. 2. Параметрическое проектирование технологических планировок
      • 4. 6. 3. Преимущества предлагаемой технологии
      • 4. 6. 4. Результаты и
  • выводы
    • 4. 7. Выводы по главе

Вариационное параметрическое геометрическое моделирование в САПР на основе онтологий (реферат, курсовая, диплом, контрольная)

Актуальность работы.

Значительный вес в автоматизированном проектировании изделий имеет разработка геометрических моделей (ГМ). Геометрические модели используются на протяжении практически всего жизненного цикла изделия. Одной из наиболее мощных технологий разработки ГМ в машиностроительных САПР является параметрическое моделирование, подразумевающее использование параметрических геометрических моделей (ПГМ), управляемых параметрами. Особенно продуктивно вариационное параметрическое моделирование, в котором модель описывается сугубо декларативно, а геометрический решатель САПР сам находит путь построения экземпляра модели.

Применение ПГМ позволяет значительно снизить трудоемкость разработки ГМ благодаря автоматической генерации различных вариантов конструкции по заданным параметрамширокому повторному использованию разработанных моделей и организации библиотек типовых параметрических конструктивных элементовавтоматическому решению большого числа геометрических задач, возникающих в процессе проектирования. Наибольший эффект использование ПГМ дает в типовом конструировании, эскизном черчении, моделировании кинематики механизмов.

Появление и развитие теории параметризации в начертательной геометрии и технических чертежах связано с трудами отечественных ученых: Четве-рухина Н.Ф., Котова И. И., Рыжова H.H., Полозова B.C., Роткова С. И. и их учеников. Разработке и совершенствованию методов расчета вариационных ПГМ в САПР посвящены работы Голованова H.H., Ершова А. Г., Копорушкина П. А., Кучуганова В. Н., Лячека Ю. Т., Чижова A.B. и др. Из западных ученых значительный вклад в развитие методов расчета ПГМ внесли I.E.Sutherland, C.M.Hoffmann, J. Owen, B.N.Freeman-Benson, A. Borning, B.A.Myers и др.

Однако использование даже вариационных ПГМ требует от пользователя ряда дополнительных усилий. Кроме самой геометрии, от него требуется явно задавать геометрические, размерные и другие отношения, которые должны выполняться при расчете экземпляра модели. В сложных геометрических моделях это ведет к значительному повышению трудоемкости подготовки ПГМ. В таких случаях бывает эффективнее разрабатывать ГМ без использования параметризации. Не случайно во всех современных САПР параметризация является необязательной. Даже компания Parametric Technology Company (РТС), первоначально сделавшая ставку на полную параметризацию ГМ, в последних версиях САПР Pro/Engineer отказалась от обязательной параметризации эскизов.

Кроме того, существующие решатели вариационных ПГМ в ряде случаев проявляют свои недостатки: они либо неустойчивы, либо не всегда выдают нужное пользователю решение, либо медлительны, либо способны решать очень ограниченный круг задач и не поддерживают алгебраических отношений, либо поддерживают только функциональные, не зацикленные отношения. В основном это определяется ограничениями используемых методик расчета вариационных ПГМ.

Современное развитие методов искусственного интеллекта и, в частности, баз знаний позволяет продолжить совершенствование технологии вариационного геометрического моделирования в САПР.

В связи с вышеизложенным, считаем, что проблемы снижения трудоемкости создания и применения вариационных ПГМ в САПР, а также совершенствования методов расчета ПГМ являются актуальными.

Объектом исследования является параметрическое геометрическое моделирование в САПР.

Предметом исследования являются технологии описания и расчета вариационных ПГМ в САПР.

Цель работы — снижение трудоемкости разработки и применения вариационных параметрических геометрических моделей в САПР путем применения баз знаний, методов искусственного интеллекта, а также совершенствования методов расчета ПГМ.

Для достижения поставленной цели требуется решение следующих основных научных и практических задач:

1. Анализ существующих технологий, методов и систем параметрического геометрического моделирования в САПР;

2. Разработка методик описания вариационных ПГМ, позволяющих снизить трудоемкость моделирования:

— разработка способов сокращения объема описания вариационных ПГМ;

— совершенствование инструментов задания геометрических и размерных отношений модели;

3. Совершенствование технологии расчета вариационных ПГМ, включающей этапы:

— синтеза системы уравнений, описывающих ПГМ;

— символьного упрощения и декомпозиции системы уравнений;

— решения систем нелинейных алгебраических и трансцендентных уравнений;

4. Реализация разработанных методик и алгоритмов в виде экспериментальной автоматизированной системы параметрического геометрического моделирования на плоскости;

5. Экспериментальное исследование предложенных технологий и инструментальных средств.

Методы исследования. Теоретические исследования выполнены с использованием дискретной математики (теории множеств, теории графов, математической логики), геометрии (аналитической геометрии, векторной и линейной алгебры), математического анализа (интервального анализа), методов искусственного интеллекта.

Экспериментальные исследования выполнены с помощью разработанной программной системы и известных САПР: Pro/Engineer, Unigraphics NX, Компас, Solidworks.

Достоверность и обоснованность полученных в работе результатов и выводов подтверждается корректностью разработанных математических моделей, их адекватностью по известным критериям оценки в рассматриваемой предметной области, использованием известных положений фундаментальных наук, положительными результатами проведенных экспериментальных исследований и опытом практической эксплуатации разработанной программной системы.

На защиту выносятся:

1. Методика высокоуровневого описания ПГМ в САПР, позволяющая сократить описание ПГМ путем применения более емких по смыслу понятий;

2. Инвариантный алгоритм распознавания геометрических отношений, позволяющий распознавать высокоуровневые геометрические отношения, определяемые пользователем;

3. Методика задания размерных отношений ПГМ, включающая автоматический синтез наиболее распространенных видов размеров и позволяющая снизить трудоемкость задания размерных отношений;

4. Технология расчета вариационных параметрических геометрических моделей, основанная на алгебраическом подходе и включающая этапы синтеза системы уравнений, ее декомпозиции и численного решения;

5. Методика формирования системы уравнений, описывающих ПГМ, позволяющая в рамках алгебраического подхода рассчитывать ПГМ, описанные с использованием высокоуровневых понятий;

6. Разработанная и программно реализованная экспериментальная система параметрического геометрического моделирования на плоскости;

7. Результаты экспериментального исследования предложенных методик и инструментальных средств.

Научная новизна. Предложена технология вариационного параметрического геометрического моделирования в САПР на основе онтологий, отличающаяся от известных:

— расширяемым посредством онтологии понятийным аппаратом моделирования;

— инвариантным алгоритмом распознавания геометрических отношений в эскизе, основанным на анализе графа эскиза и сопоставлении с формальным определением геометрического отношения в онтологии;

— методикой автоматизированного задания размерных отношений, включающей автоматический синтез размерных отношений наиболее распространенных видов;

— оригинальной методикой формирования системы уравнений, описывающих ПГМ, на основе формальных определений геометрических понятий из онтологии, что позволяет значительно снизить трудоемкость моделирования, а также решать различные проектные инженерные задачи, связанные с геометрической моделью изделия и сводимые к системе алгебраических уравнений.

Практическая полезность.

1. Предложенная технология вариационного параметрического геометрического моделирования на основе разработанных методик и алгоритмов позволяет значительно снизить трудоемкость моделирования, а также решать различные проектные инженерные задачи, связанные с геометрической моделью изделия и сводимые к системе алгебраических уравнений.

2. Разработанная система параметрического геометрического моделирования на плоскости используется как часть системы трехмерного параметрического моделирования CONCEPT. Система CONCEPT используется в учебном процессе вуза для обучения геометрическому моделированию в САПР, что позволило повысить сложность моделей, разрабатываемых студентами в рамках курсового проектирования, и приблизить их к промышленным образцам благодаря снижению трудоемкости создания параметрических геометрических моделей. Раздел разработанной онтологической модели базовых знаний по векторной алгебре был использован в учебном процессе, что позволило систематизировать знания студентов по векторной алгебре.

3. Разработанная система параметрического геометрического моделирования может применяться для расчета сложных размерных цепей механизмов с подвижными звеньями, что позволяет снизить трудоемкость подготовки исходных данных для расчета.

4. Реализованный кооперативный решатель систем нелинейных алгебраических и трансцендентных уравнений может применяться в других программных продуктах для гарантированного и высокоточного решения задач, сводимых к системе уравнений.

Реализация результатов работы. Результаты работы использованы в ООО «КАМ-Станко» (г. Ижевск) при проектировании планов размещения новых производственных мощностей для ЗАО «Актанышский агрегатный завод» (Республика Татарстан) — в ФГУП «Ижевский механический завод» для размерно-точностного анализа спускового механизма пистолета ПСМна кафедре «Автоматизированные системы обработки информации и управления» ГОУ ВПО «ИжГТУ» в курсовом проектировании по дисциплине «Автоматизация конструкторского и технологического проектирования», в преподавании дисциплин «Вычислительная геометрия» и «Геометрическое моделирование в САПР», а также в дипломном проектировании по специальности САПР.

Апробация работы. Основные положения диссертационной работы докладывались: на Международной научно-технической конференции, посвященной 50-летию ИжГТУ (Ижевск, 2002) — на 14-й Международной конференции по компьютерной графике и зрению «Графикон — 2004» (Москва, 2004) — на Международной научно-технической конференции IEEE «Интеллектуальные системы» (AIS'05) и «Интеллектуальные САПР» (CAD-2005) (Дивноморское, 2005) — на Первом форуме молодых ученых в рамках Международного форума «Качество образования — 2008» (Ижевск, 2008).

Публикации. Результаты работы отражены в 7 научных публикациях. В том числе 2 в изданиях, рекомендуемых ВАК:

1. Ермилов, В. В. Синтез системы уравнений в задаче параметризации геометрической модели/ В. В. Ермилов // Известия ТРТУ. Тематический выпуск «Интеллектуальные САПР». — Таганрог: Изд-во ТРТУ, 2006. — № 8(63). — С. 99 105.

2. Ермилов, В. В. Онтологический справочник по геометрическому моделированию /В.В. Ермилов, Н. Н. Исенбаева // Вестник ИжГТУ. — Ижевск: Изд-во ИжГТУ, 2008. — Вып. 4. — С. 161 -163.

Структура и объем работы. Диссертационная работа состоит из введения, четырех глав, заключения и приложений. Основной текст изложен на 165 машинописных страницах с иллюстрациями.

Список литературы

включает 108 наименований.

3.5. Выводы по главе.

Разработана технология расчета вариационных ПГМ, описанных с использованием высокоуровневых геометрических понятий, основанная на алгебраическом подходе. Технология включает синтез и декомпозицию системы уравнений, описывающих ПГМ на этапе планирования расчета ПГМ и численное решение подзадач интервальными численными методами на этапе выполнения плана.

Выделение фаз планирования и расчета по готовому плану позволяет значительно повысить эффективность повторного расчета ПГМ. В качестве основы выделения подзадач при планировании расчета ПГМ используется декомпозиция системы уравнений, описывающих ПГМ, позволяющая разделить сложную геометрическую задачу на ряд простых, которые можно решать изолировано.

Использование иерархических условных частично упорядоченных планов, для представления планов расчета ПГМ позволяет встраивать готовые планы расчета фрагментов ПГМ, представлять аналитически раскладываемые подзадачи в виде условных элементов плана, обеспечивать возможность параллельного выполнения планов.

Предложена методика синтеза системы уравнений по высокоуровневому описанию ПГМ, на основе традиционного декартова моделирования геометрической задачи, использующего координатный метод Декарта. Для обеспечения синтеза системы уравнений ПГМ, описанных с использованием высокоуровневых понятий, предложен алгоритм автоматического формирования алгебраического эквивалента для новых геометрических понятий онтологии путем анализа и трансляции его формального определения.

Совместное применение трех методов декомпозиции СУ: декомпозиции на слабо связанные части, ОМ-декомпозиции и символьного разложения отдельных уравнений позволяет полнее декомпозировать систему уравнений с минимальными вычислительными затратами.

Традиционные численные методы решения СУ по отношению к использованию в геометрическом решателе имеют существенные недостатки. Применение интервальных численных методов для решения систем нелинейных уравнений на этапе выполнения плана позволяет гарантированно находить все решения СУ в заданной области поиска с гарантированной точностью. Совместное (кооперативное) использование нескольких интервальных методов на конкурентной основе позволяет повысить невысокую в общем случае эффективность интервальных методов и снизить зависимость от особенностей решаемых СУ.

4. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПРЕДЛОЖЕННОЙ.

ТЕХНОЛОГИИ.

В главе описываются разработанная и программно реализованная экспериментальная система вариационного параметрического геометрического моделирования на плоскости, реализующая предложенную технологию вариационного моделирования, а также проведенные экспериментальные исследования предложенных методик и инструментальных средств. Кроме проверки полученных в работе теоретических положений, целью проведения экспериментов также являлась практическая оценка эффективности предложенных технологий в различных предметных областях.

4.1. Архитектура экспериментальной системы параметрического геометрического моделирования на плоскости.

Разработанная экспериментальная система ВПГ-моделирования на плоскости оформлена как подсистема, интегрированная в систему геометрического моделирования CONCEPT, разрабатываемую на кафедре АСОИУ ИжГТУ [22, 60]. Главное окно системы представлено на рис. 4.1. Concept (Привязка к размерной базе).

Проект Соамства 6ГД Настройки 3D £праеха.

— '? |[Х — п ИИШ^! ^^^^МШ^ЧИ! I II I IЯМ J Ш Ш ' ¦ i -—.

Рисование Реажтирое""'? горная сетка Фески и скрипения В Размеры.

Антогенердшчя Рщактцювание Сложше объекты Я Сцена.

Й Робота) В Лист1 * Размеры Лотт спой 1.

В одоление:

15 злое.

Г" Тоб/Mia размера.

Расчет контура.

Обновить размеры Г Элементы размер Г" Без стрелок Г" Номера размеров.

Рэди^сы.

ОС.

Габар1лты.

Удаляемся оусюй о&ьект! Удаляется пустой о5млт! v.

Х15ШЮ Y: -10.00 Масштаб 53S.

Рис. 4.1. Главное окно системы CONCEPT.

Структурная схема разработанной системы приведена на рис. 4.2. Основными подсистемами являются: онтологическая СУБЗ KG [52], система геометрического моделирования CONCEPT, выполняющая роль редактора ПГМ и подсистема расчета ПГМ.

Рис. 4.2. Структурная схема разработанной системы ВПГ-моделирования на плоскости.

Редактор ВПГМ включает инструменты редактирования геометрических фигур, геометрических и размерных отношений, распознавания геометрических отношений в эскизе и автоматического синтеза размеров наиболее распространенных видов. Подсистема расчета ПГМ состоит из подсистемы планирования расчета ПГМ и подсистемы исполнения планов. Подсистема планирования включает модуль синтеза СУ, описывающих ВПГМ, подсистему декомпозиции СУ и модуль оптимизации расчетных планов.

В разработанной экспериментальной системе проведен ряд экспериментальных исследований предложенной технологии ВПГ-моделирования. Рассмотрим их подробнее.

4.2. Эксперименты по высокоуровневому описанию вариационных ПГМ.

4.2.1. Цель эксперимента.

Целью проведения эксперимента являлась оценка степени сокращения объема описания ВПГМ, достигаемого при использовании предложенной методики высокоуровневого описания ВПГМ, по сравнению со стандартной методикой описания ВПГМ в существующих САПР.

4.2.2. Критерий оценки.

В качестве критерия оценки использовался объем описания ВПГМ, измеряемый суммарным количеством геометрических фигур и геометрических, размерных и алгебраических отношений, необходимых для описания ВПГМ.

Достигаемое сокращение объема вычислялось по формуле (Осо — Ово) / Осо, где Осо — объем стандартного описания, Ово — объем высокоуровневого описания ВПГМ.

4.2.3. Методика экспериментального исследования.

Для каждой тестовой модели проводился подсчет числа геометрических фигур, геометрических и размерных отношений, необходимых для описания ВПГМ как стандартными средствами САПР, так и при использовании высокоуровневых понятий.

В тестируемых системах учитывались все известные автору доступные средства построения ВПГМ, описанные в учебной литературе по этим САПР [48, 47, 83, 15]. Из всех известных автору возможных способов описания модели выбирался наиболее компактный, но при этом и не исключена возможность существования более компактного способа. Рассмотрим в качестве примера один из проведенных экспериментов подробно.

4.2.4. Высокоуровневое описание ВПГМ спускового механизма пистолета.

Задача вариационного моделирования состоит в построении ВПГМ спускового механизма пистолета ПСМ, представленной на рис. 4.3. ВПГМ необходима для размерно-точностного анализа механизма. Особенностью задачи с точки зрения параметрического моделирования является то обстоятельство, что механизм состоит из нескольких деталей, каждая из которых задана в своей локальной системе координат. Рассчитывать требуется не всю геометрию деталей, а только положение точек взаимодействия, образуемых рабочими поверхностями деталей.

Рис. 4.3. Схема спускового механизма пистолета К понятиям, характерным для этой предметной области, можно отнести особый способ задания расстояний между точками взаимодействия деталей, которые нередко задаются под некоторым заданным углом к осям координат. Определяется это тем обстоятельством, что эти точки образуются пересечением рабочих поверхностей детали, которые, как правило, задаются в системе координат детали через расстояние до начала системы координат и угол к некоторой оси координат. Будем считать положительным направлением для откладывания угла против часовой стрелки, а для откладывания расстояний правую полуплоскость.

Функция Расстояние между точками под заданным углом к оси X координат Префиксное имя «Расстояние под углом к оси X».

Входные параметры Точка !(Т1), Точка2(Т2): ТочкаУгол (а): ВеличинауглаРезультат Расстояние^): Величина.

Метод Р = «Правый перпендикуляр» («Ортпоуглу» (а))*(Т2-Т1). функция Расстояние между точками под заданным углом к оси У координат Префиксное и, чя «Расстояние под углом к оси У».

Входные параметры Точка 1(Т1), Точка2(Т2): ТочкаУ гол (а): ВеличинауглаРезультат Расстояние^): Величина.

Метод О = «Орт по углу» (а) * (Т2 — Т1).

Функция Расстояние от начала координат под заданным углом к оси X координат Префиксное имя «Расстояние под углом к оси X» Входные параметры Точка (Т): ТочкаУгол (а): ВеличинауглаРезультат Расстояние^): Величина.

Метод О = «Расстояние под углом к оси Х» (Точка (0, 0), Т, а).

Функция Расстояние от начала координат под заданным углом к оси У координат Префиксное имя «Расстояние под углом к оси У» Входные параметры Точка (Т): ТочкаУгол (а): ВеличинауглаРезультат Расстояние (О): Величина.

Метод Б = «Расстояние под углом к оси У» (Точка (0, 0), Т, а).

Рассматриваемый спусковой механизм пистолета состоит из 5 деталей: Шептало, Рамка, Крючок спусковой, Тяга крючка спускового, Курок.

Основной объем описания ВПГМ составляют размерные отношения. Так как в большинстве существующих САПР набор базовых размерных отношений одинаков (см. табл. 1.2), то объем описания представленной ВПГМ в этих САПР будет практически одинаковый, и для оценки степени сокращения объема описания ВПГМ при использовании высокоуровневых понятий достаточно сравнивать с одной САПР. Для сравнения использовалась САПР Компас-ЗО у9.

4.2.4.1. Деталь «Шептало».

Для описания ВПГМ детали «Шептало» (табл. 4.1), используя понятийный аппарат подсистемы параметризации САПР Компас, необходимо минимум 4 геометрических фигуры, 1 геометрическое отношение и 7 стандартных размерных отношений. Для высокоуровневого описания этой же ВПГМ достаточно 3 геометрические фигуры и 4 высокоуровневых размерных отношения.

ЗАКЛЮЧЕНИЕ

.

Основной результат работы заключается в разработке оригинальной технологии вариационного параметрического геометрического моделирования в САПР. Предложенная технология, включает методику высокоуровневого описания модели и ряд инструментов автоматизированного описания геометрических и размерных отношений модели, что снижает трудоемкость вариационного параметрического геометрического моделирования в САПР.

В работе также получены следующие выводы и результаты:

1. Анализ существующей технологии вариационного параметрического геометрического моделирования позволил определить основные направления снижения трудоемкости построения вариационных параметрических геометрических моделей: сокращение объема описания ПГМ и совершенствование инструментов задания геометрических и размерных отношений модели. Установлена причина излишнего разрастания описания ПГМ — ограниченность (не расширяемость) понятийного аппарата (наборов фигур, отношений, расчетных функций) доступного для описания ПГМ. Необходимые пользователю, но не поддерживаемые САПР геометрические понятия (отношения, фигуры, функции) приходится заменять эквивалентными в геометрическом смысле совокупностями других объектов из числа поддерживаемых САПР, что ведет к росту объема описания модели.

2. Предложена методика высокоуровневого описания ПГМ, основанная на использовании в описании ПГМ высокоуровневых (более емких по смыслу) геометрических понятий, характерных для области применения САПР. Применение онтологической модели знаний (онтологии) в качестве механизма расширения набора поддерживаемых САПР геометрических отношений, фигур и расчетных функций, позволяет пользователю самостоятельно вводить новые геометрические понятия, характерные для его задач, и применять их в описании ПГМ, что в свою очередь сокращает объем описания модели. Разработана онтология базовых понятий, необходимых для обеспечения вариационного параметрического геометрического моделирования на плоскости.

3. Унифицированное представление (определение) геометрических отношений в онтологии позволило разработать единый алгоритм распознавания геометрических отношений, неявно присутствующих в эскизе. Алгоритм основан на анализе графа эскиза и сопоставлении с формальным определением геометрического отношения в онтологии. Инвариантность алгоритма снимает необходимость программировать процедуры распознавания для каждого геометрического отношения в отдельности, а также позволяет распознавать геометрические отношения, определяемые пользователем.

4. Предложены инструменты автоматического синтеза наиболее распространенных видов размеров: габаритных размеров, радиусов дуг, диаметров окружностей, размеров привязки отрезков параллельных к размерной базе. Каждый вид размеров создается по отдельной команде, что позволяет пользователю управлять процессом автоматического синтеза размеров и минимизировать число лишних (ненужных ему) генерируемых размеров. Применение предложенных инструментов позволяет снизить трудоемкость задания размерных отношений ПГМ.

5. Разработана технология расчета вариационных ПГМ, описанных с использованием высокоуровневых геометрических понятий, основанная на алгебраическом подходе. Технология включает синтез и декомпозицию системы уравнений, описывающих ПГМ на этапе планирования расчета ПГМ и численное решение подзадач интервальными численными методами на этапе выполнения плана. Предложена методика синтеза системы уравнений, описывающих ПГМ, на основе формальных определений геометрических понятий из онтологии и методов символьного упрощения, что позволяет обеспечить расчет ПГМ, описанных с использованием высокоуровневых понятий.

6. Разработана и программно реализована экспериментальная автоматизированная система вариационного параметрического геометрического моделирования на плоскости, поддерживающая разработанную технологию моделирования. Система апробирована на промышленном предприятии и в образовательном учреждении. Проведенные эксперименты показали сокращение объема описания ПГМ до 72% (в среднем 33%), снижение трудоемкости задания размерных отношений ПГМ по числу элементарных действий до 86% (в среднем на 47%), что подтверждает теоретические положения работы.

Показать весь текст

Список литературы

  1. Г., Херцбергер Ю. Введение в интервальные вычисления: Пер. с англ. М.: Мир, 1987.-360 с.
  2. И. А., Теория конструкторской семантики. — Ижевск: Изд-во ИжГТУ, 2003. 360 с.
  3. А.Б. Исследование и реализация методов и алгоритмов параметризации двумерных геометрических объектов в машиностроительных САПР : Автореф. дис. канд. физ.-мат. наук: 05.13.11.-М. 1990.- 15 с.
  4. Библиотека планировок цехов. Руководство пользователя. М.: ЗАО «Аскон», 2005. — 27 с.
  5. A.A. Построение онтологической модели компонентов информационной системы http://nit.miem.edu.ni/2004/section/3/90.htm
  6. С.А., Смолянинов В. В., Терентьев М. Н. Способы создания параметризованной геометрической модели http://www.cosmos.rcnet.ru/articles/param.html
  7. В.М. Основы численных методов: Учебник для вузов. М.: Высш. шк., 2002. — 840 с.
  8. И. Н. Планирование задач в сложноструктурированных ситуациях : Дис.. канд. техн. наук: 05.13.01 Ижевск, 2006.
  9. А.Г. Пакет программ машинной графики для ЕС ЭВМ. М.: Машиностроение, 1986.-320 с.
  10. А. И., Коваленко В. Н., Мартынюк В. В., Хухлаев Е. В, Параметризация чертежей по размерам, основанная на задании образца. Построение экземпляра методом поэлементного расчета. Препринт №ХХ. М.: ИПМ им. М. В. Келдыша АН СССР, 1987. -20 с.
  11. А. И., Коваленко В. Н., Мартынюк В. В., Хухлаев Е. В, Параметризация чертежей по размерам, основанная на задании образца. Постановка задачи. Препринт № 66. М.: ИПМ им. М. В. Келдыша АН СССР, 1987. 22 с.
  12. Н.Ю., Загайко С. А. Самоучитель SolidWorks 2006. СПб.: БХВ-Петербург, 2006.-336 с.
  13. А., Ершов А. Два новых метода декомпозиции задач с геометрическими ограничениями. Препринт 11. Новосибирск: Издательство ЗАО «Ледас», 2004. — 36 с.
  14. Е.С. Принципы многоуровневой параметризации при формировании объектов: Автореф. дис. канд. техн. наук: 05.13.12. Н. Новгород, 2007. — 23 с.
  15. Е.С. Принципы многоуровневой параметризации при формировании объектов:
  16. Дис.. канд. техн. наук: 05.13.12. Н. Новгород, 2007. — 170 с.
  17. В.В., Ардашева А. И. Алгоритм анализа симметричности векторного изображения // Информационно-вычислительные технологии и их приложения: сборник статей V Международной научно-технической конференции. — Пенза: РИО ПГСХА, 2006, С. 112 115
  18. В.В., Синтез системы уравнений в задаче параметризации геометрической модели. // Известия ТРТУ. Тематический выпуск «Интеллектуальные САПР» Таганрог: Изд-во ТРТУ, № 8, 2006. — С. 99−105.
  19. , В.В. Онтологический справочник по геометрическому моделированию / В. В. Ермилов, H.H. Исенбаева // Вестник ИжГТУ. Ижевск: Изд-во ИжГТУ, 2008. — Вып. 4. -С. 161−163.
  20. А. Новый метод моделирования задач параметрического проектирования // САПР и Графика. 2007. — № 9. — С.32−35.
  21. А.Г. Алгоритмы и программные системы для геометрических задач параметрического проектирования : Автореф. дис. канд. физ.-мат. наук: 05.13.11. Новосибирск, 2007.-19 с.
  22. А.Г. Алгоритмы и программные системы для геометрических задач параметрического проектирования : Дис. канд. физ.-мат. наук: 05.13.11. Новосибирск, 2007. -168 с.
  23. А.Г. Методы улучшения решения задач с геометрическими ограничениями. Препринт 3. Новосибирск: Издательство ЗАО «Ледас», 2003. — 40 с.
  24. В. О том, как твердое тело может быть слишком твердым, или Взгляд на параметризацию сбоку // САПР и графика. 2000. — № 1. http://sapr.ru/article.aspx?id=6646&iid:272
  25. Л., Кифер М., Дидри О., Вальтер Э. Прикладной интервальный анализ: Пер. с англ. М.—Ижевск: Институт компьютерных исследований, 2005. — 468 с.
  26. Н.И., Тарасова C.B. Параметризация. Конструктивный анализ: Методическое пособие. Н. Новгород: Издательство ФГОУ ВПО ВГАВТ, 2004. — 68 с.
  27. С.А., Полещук H.H. САПР на базе AutoCAD как это делается. — Спб.: БХВ-Петербург, 2004. — 1168 с.
  28. H.H. Пособие по решению задач по курсу «Взаимозаменяемость, стандартизация и технические измерения» : учеб. пособие для вузов. / H.H. Зябрева, Е.И. Перель-ман, МЛ. Шегал. М.: Высш. школа, 1977. — 204 с.
  29. М.С. Размерное моделирование функционирования составных частей и деталей машин : Автореф. дис. канд. техн. наук: 05.02.08. Ижевск, 1996. — 20 с.
  30. М.С. Размерное моделирование функционирования составных частей и деталей машин : Дис. канд. техн. наук: 05.02.08. Ижевск, 1996. — 113 с.
  31. А. Собрание сочинений в трех томах. Том 2 М.: Молодая гвардия, 1977. — 528 с.
  32. В.Н., Евстигнеев В. А. Графы в программировании: обработка, визуализация и применение. СПб.: БХВ-Петербург, 2003. — 1104 е.: ил.
  33. A.B. Семантическая обработка чертежей // УСиМ. 1989. — N 3. — С.85−89
  34. Е.С. Проектирование механосборочных и вспомогательных цехов машиностроительных предприятий: учебное пособие. Ульяновск: УлГТУ, 1999. -118 с.
  35. Е.С., Богданов В. В. Выполнение технологических планировок механосборочных и вспомогательных цехов на ПЭВМ: Учебное пособие. Ульяновск: УлГТУ, 2001 -96 с.
  36. Р., Кулиш У., Неага М., Рац Д., Улльрих X. PASCAL-XSC. Язык численного программирования: пер. с англ. Изд. 3-е. — М. -Ижевск: НИЦ «Регулярная и хаотическая динамика», 2006. — 352 с.
  37. A.C., Шалфеева Е. А. Классификация свойств онтологий. Онтологии и их классификации: Перпринт, 2005. Владивосток: ИАПУ ДВО РАН, 2005,19 с.
  38. Компьютерная алгебра: Символьные и алгебраические вычисления: Пер. с англ./Под ред. Б. Бухбергера, Дж. Коллинза, Р. JIooca. М.: Мир, 1986. — 392 е., ил.
  39. П.А. Разработка структур данных и алгоритмов расчета параметрических моделей геометрических объектов : Автореф. дис. канд. техн. наук: 05.13.12 — Екатеринбург, 2005. 28 с.
  40. П.А. Разработка структур данных и алгоритмов расчета параметрических моделей геометрических объектов : Дис. канд. техн. наук: 05.13.12. — Екатеринбург 2005.-174 с.
  41. И.И., Полозов B.C., Широкова JI.B. Алгоритмы машинной графики. М., «Машиностроение», 1977.-231 с.
  42. М., Чигишев Ю. Unigraphics для профессионалов. М. Лори, 2004. — 319 с.
  43. Е.М. КОМПАС-ЗБ Y8. Наиболее полное руководство. М.: ДМК Пресс, 2006. 928 с.
  44. ., Хараджиев В. SprutCAD: особенности национальной параметризации // САПР и Графика. 2001. — № 9. http://vww.sapr.ro/Article.aspx?id=7889
  45. У., Рац Д., Хаммер Р., Хокс М. Достоверные вычисления. Базовые численные методы / Пер. с англ. М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2005. -496 с.
  46. В.Н. Методология и инструментальные средства синтеза сценариев графического инженерного диалога и объектно-ориентированных САПР : Дис. докт. техн. наук: 05.13.12. Ижевск, 1993.-295 с.
  47. В.Н., Габдрахманов И. Н. Система визуального проектирования баз знаний. -Информ. технологии в инновационных проектах: Труды III междунар. науч.-техн. конф. -Ижевск, 2001. с. 140−143.
  48. М.В. Логический синтез схем геометрических вычислений // Вестник Иж-ГТУ. Ижевск: Изд-во ИжГТУ, 2003. — Вып. 4. — С. 50−52.
  49. Д., Малюх В., Ушаков Д. Энциклопедия PLM. Новосибирск: Издательский дом «Азия», 2008. — 448 с.
  50. Ли К. Основы САПР (CAD/CAM/CAE). СПб.: Питер, 2004. — 560 с.
  51. В. Комбинаторика для программистов. М.: Мир, 1988. — 200 с.
  52. Л., Пламмер М. Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии: Пер. с англ. — М.: Мир, 1998. 653 с.
  53. М.Ю. Методы внешнего оценивания множества решений задачи удовлетворения ограничений : Дис.. канд. физ.-мат. наук: 05.13.18. Новосибирск, 2003. — 134 с.
  54. М.Ю. Улучшение внешней оценки множества решений задач удовлетворения ограничений //Новосибирск, 2000. 42 е.- (Препр./ РАН. ИСИ- N. 79).
  55. В.Н. К вопросам о выборе системы или о чисто субъективном подходе к тестированию высокопроизводительных графических систем САПР http://wcad.chat.ru/21intest.html
  56. Ю.Т., Нахимовский Я. А., Павлов С. Н. Аналитико-синтетический метод формирования параметрических моделей конструкторских чертежей // Труды 5 межд. конференции по компьютерной графике и визуализации «Графикон-95», С-Пб., 1995, том 1, С. 7178.
  57. И. П., Маничев В. Б., Основы теории и проектирования САПР: Учебник для втузов. -М.: Высшая школа, 1990. 335 с.
  58. И.П. Основы автоматизированного проектирования: Учеб. для вузов. 3-е изд., перераб. и доп. М.: Изд-во МГТУ им. Н. Э. Баумана, 2006. — 448 с.
  59. А. И., О параметрах. Математика в школе. 1963, № 5 С.23−25.
  60. Отклики на «клики» // CAD/CAM/CAE Observer. 2003. — № 3(12).
  61. Официальный сайт компании Научно-технический центр «Автоматизированное Проектирование Машин» http://www.apm.ru
  62. В. С., Будеков О. А., Ротков С. И., Широкова Л. В., Автоматизированное проектирование. Геометрические и графические задачи. М.: Машиностроение, 1983. — 280 с.
  63. B.C., Ротков С. И., Дергунов, В.И. Базисный курс начертательной геометрии. Учебник под ред. проф. С. И. Роткова. Нижний Новгород, Москва: Издательство Ассоциации строительных вузов, 2007. — 184 с.
  64. Разработка САПР. В 10 кн. Кн. 7. Графические системы САПР: Практ. пособие / Климов В.Е.- Под ред. A.B. Петрова. М.: Высш. шк., 1990. — 142 с.
  65. Д. Интерфейс: новые направления в проектировании компьютерных систем. — Пер. с англ. СПб: Символ-Плюс, 2003. — 272 с.
  66. С., Норвиг П. Искусственный интеллект: современный подход, 2-е изд.: Пер. с англ. М.: Издательский дом «Вильяме», 2006. — 1408 е.: ил. — Парал. тит. англ.
  67. РД 50−635−87. Цепи размерные. Основные понятия. Методы расчета линейных и угловых цепей. Методические указания. М., 1987−46 с.
  68. Н. Н., Параметрическая геометрия. — М.: МАДИ, 1988, — 56 с.
  69. Система автоматизации проектирования технологических планировок предприятий на основе комплекса T-Flex / Ковшов А., Димитрюк С. // САПР и графика. 2002. — № 8: Градостроительство. — С. 54−56.
  70. Тан К.Ш., Стиб В.-Х., Харди Й. Символьный С++: Введение в компьютерную алгебру с использованием объектно-ориентированного программирования: Пер. со 2-го англ. Изд. -М.: Мир, 2001.-622 с.
  71. A.M., Иванов Г. С., Нартова Л. Г., Полозов B.C., Якунин В. И. Курс начертательной геометрии (на базе ЭВМ): Учебник для инж.-техн. вузов. М.: Высшая школа, 1983. — 175 с.
  72. Технолог наследует параметрику от конструктора // RM Magazine. 2001. — № 3
  73. Д. Технологии вариационного проектирования для разработки типичных приложений САПР http://isicad.ru/m/articles.php?article num-11 571
  74. Д.М. Введение в математические основы САПР. Курс лекций. Новосибирск: Издательство ЗАО «Ледас», 2006. — 180 с.
  75. K.M. Введение в двумерные задачи удовлетворения геометрических ограничений. Препринт 14. Новосибирск: Издательство ЗАО «Ледас», 2004. — 68 с.
  76. Чемоданова T.B. Pro/ENGINEER: Деталь, Сборка, Чертеж. СПб.: БХВ-Петербург, 2003.-560 с.
  77. Н. Ф., Геометрические характеристики причины трудности узнавания фигур на чертеже. — Математика в школе. 1965, № 4С.13−16.
  78. Н. Ф., К вопросу о параметризации многогранников. Математика в школе. 1964, № 2 С. 82.
  79. Н. Ф., О параметризации кривых линий и поверхностей и ее значении в учебном процессе. Математика в школе. 1964, № 5 С.29−33.
  80. Н. Ф., Яцкевич Л. А., Параметризация и ее применение в геометрии. Математика в школе. 1963, № 5 С. 15−23.
  81. A.B. Ограничения целостности в геометрических моделях графических редакторов: Автореф. канд. техн. наук: 05.13.11. М., 2000. — 21 с.
  82. A.B. Ограничения целостности в геометрических моделях графических редакторов: Дис. канд. техн. наук: 05.13.11. М., 2000. — 130 с.
  83. A.B. Ограничения целостности в графических системах. // Инженерный журнал-справочник. 1999. — № 7.
  84. О.Г. Метод параметризации чертежей по образцу в технологии типового конструирования : Автореф. дис. канд. техн. наук: 05.13.07. — М., 1994. 23 с.
  85. Ait-Aoudia S., Jegou R., Michelucci D. Reduction of constraint systems. Compugraphics, p. 83−92, 1993.
  86. Bouma W., Fudos I., Hoffmann С. M., Cai J., Paige R. A Geometric Constraint Solver. Computer Aided Design v.21, 6 (June) 1995, p. 487−501.
  87. Bruderlin B. Using Prolog for constructing geometric objects defined by constraints. Proceedings of European Conference on Computer Algebra, 1985.
  88. Dulmage A.L., Mendelsohn N.S. Coverings of bipartite graphs, Canad. J. Math., 10, p. 517 534, 1958.
  89. Granvilliers L., Monfroy E., Benhamou F. Symbolic-interval cooperation in constraint programming, Proc. ISSAC 2001, ACM, 2001.
  90. J. Испытание «щелчками» // CAD/CAM/CAE Observer. 2003. — № 2(11).
  91. Gruber T. A translation Approach to Portable Ontology Specifications // Knowledge Acquisition Journal, vol. 5, pages 199−220, 1993.
  92. Gruber T. What is an Ontology? http://www.ksl.stanford.edu/kst/what-is-an-ontology.html
  93. Gruber T.R. Towards principles for the design of ontologies used for knowledge sharing, International Journal of Human-Computer Studies, Vol. 43, No. 5/6, November-December, 1995, p. 907−928.
  94. LCAD 4 приложение для AutoCAD. Программный комплекс автоматизации разработки технологических планировок производственных цехов и участков. http://www.intermech.ru/lcad.htm
  95. LCAD Система автоматизации проектирования технологических планировок предприятий. http://www.intermech.ru/lcad s 1 .htm
  96. Lin V.C., Gossard D.C., Light R.A., «Variational Geometry in Computer-Aided Design, «Computer Graphics (Proc. SIGGRAPH), Aug. 1981, pp. 171−177.
  97. McConnell C. Designing with Parametric Sketches http://images.autodesk.com/adsk/files/ designing with parametric sketches white paper. pdf
  98. Owen J. Algebraic solution for geometry from dimensional constraints. Proc 1st ACM Symposium on Solid Modeling and CAD/CAM Applications, ACM Press (1991), 397−407.
  99. Sutherland I.E. Sketchpad: A man-machine graphical communication system, a paper from AFIPS conference proceedings. Reprinted from proceedings of the AFIPS Spring Joint Computer Conference, Detroit, Michigan, May 21−23, 1963, pp. 329−346
  100. Sutherland I.E. Sketchpad: A man-machine graphical communication system. Technical report № 574 http://www.cl.cam.ac.uk/TechReports/lJCAM-CL-TR-574.pdf
  101. T-FLEX CAD Основы. 2D проектирование и черчение. Руководство пользователя. М.: АО «Топ Системы», 2005. 720 с.
Заполнить форму текущей работой